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Entropy

Entropy is expected neg-log-likelihood, which can also be desribed as expected surprise, expected code

length, or expected error. The notes below are to explain this, as well as clarify the relation between ML

objectives and minimal description length.

Let p(x) be the probability or likelihood of a sample x.

Consider x ∈ {A,B,C,D}. If the distribution over these four symbols was p(·) = [.7, .1, .1, .1], then

you would be less surprised to see a sample x = A than a sample x = B. If you want an optimal

encoding/compression of samples from this distribution, you would allocate a shorter code for the frequent

symbol A, and a longer code for the infrequent symbols B,C,D (cf. Huffman code).

The neg-log-likelihood − log p(x) is also called surprise. It provides the optimal code length you should

assign to a symbol x (modulo rounding): E.g., for p(·) = [.5, .25, .25, .0], − log2 p(x) equals 1 bit for

symbol x = A, 2 bits for symbols B and C, and D never appears. When using log2, bits is the unit of

neg-log-likelihood and can also be thought of as unit of information: a sample A surprises you less and

only gives 1 bit of information, a sample B surprises you more and gives you 2 bits of information.

The entropy

H(p) = −
∑
x

p(x) log p(x) = Ep(x){− log p(x)} (1)

is the expected neg-log-likelihood. It is a measure of the distribution p itself, not of a specific sample.

It measures, how much in average samples of p surprise you. Or: What is the average coding length of

samples of p. Or: What is the average information given by samples of p. The unit of entropy is bits

(when using log2). That is, we can specifically say “the average information given by a sample of p is as

much as the information given by H(p) uniform binary variables”.

Sometimes another unit of information is used: The perplexity of p is defined as PP (p) = 2H(p) (when

using log2), which is one-to-one with entropy but uses different units of information. Note that a discrete

uniform random variable of cardinality PP has entropy H = log2 PP , which explains the definition of

perplexity. Therefore, we can now say “the average information given by a sample of p is as much as the

information given by a uniform discrete random variable of cardinality PP (p)”.

Given a gaussian distribution p(x) ∝ exp(− 1
2 (x − µ)2/σ2), the neg-log-likelihood of a specific sample x

is − log p(x) = − 1
2 (x − µ)2/σ2 + const. This can be thought of as the square error of x from µ, and its

expectation (entropy) is the mean square error. Generally, the neg-log-likelihood − log p(x) often relates

to an error or loss function.
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Cross-Entropy

The cross-entropy

H(p, q) = −
∑
x

p(x) log q(x) = Ep(x){− log q(x)} (2)

is also an expected neg-log-likelihood, but expectation is w.r.t. p, while the nll is w.r.t. q. This corresponds

to the situation that samples are actually drawn from p, but you model or encode them using q. So your

measure of surprise or code length is relative to q. In ML, q is typically a learned distribution or function

model, H(p, q) measures the code length of using the learned model q to encode samples from the true

distribution p.

In ML, cross-entropy is often used as a classification loss function ℓ(ȳ, qθ(y|x)) between the true class label

ȳ and the predicted class distribution qθ(y|x) (for some input x). For each individual data point, the true

class label ȳ is not probabilistic, but we can use it to define a one-hot-encoding pȳ(·) = [0, .., 0, 1, 0, .., 0]

with 1 for y = ȳ. The cross-entropy is then nothing but the neg-log-likelihood of the true class label

under the learned model:

H(pȳ, qθ(·|x)) = − log qθ(ȳ|x) . (3)

Note that we could equally cast a square error loss as a cross-entropy: If y is continuous, qθ(y|x) Gaussian

around a mean prediction fθ(x), and pȳ(y) = δȳ(y) the Kronecker distribution (the “continuous one-hot-

encoding”), then the cross-entropy loss H(pȳ, qθ(·|x)) is nothing but square error.

Relative Entropy (KL-divergence)

The Kullback-Leibler divergence, also called relative entropy, is defined as

D
(
p
∣∣∣∣ q) = ∑

x

p(x) log
p(x)

q(x)
= Ep(x)

{
log

p(x)

q(x)

}
. (4)

Given our definitions above, we can rewrite it as

D
(
p
∣∣∣∣ q) = H(p, q)−H(p) . (5)

Note that we described H(p) as the expected code length when encoding p-samples using a p-model; and

H(p, q) as the expected code length when encoding p-samples using a q-model. The latter will always be

larger than H(q), as if q ̸= p you will not have a perfect model to define an encoding.

In general D
(
p
∣∣∣∣ q) ≥ 0. The proof is directly given by the Jenson’s inequality (the log is concave, and

pulling a concave function out of an expectation (=linear interpolation) gives ≤).

The KL-divergence is a measure of similarity between q and p. As it is not symmetric, it is better to say:

a measure of how similar q is to p. It measures how much longer the average code length is if you use q

instead of the perfect knowledge p to define an encoding of p-samples.

In the context of ML, if you want to model data from from a true p(y|x), even a perfect model will have

non-zero error: If the data is inherently stochastic (e.g. Gaussian distributed around a mean function),

then even if you learned the perfect mean function you will still have an expected error. The entropy

H(p(·|x)) is the smallest expected neg-log-likeihood your model could possibly achieve. The cross-entropy

of your learnt model will therefore always be larger than this entropy. In this view, the KL-divergence

D
(
p
∣∣∣∣ qθ) is equal to the cross-entropy of your model, but subtracting H(p) as the baseline. It measures

only your error above the minimal achievable error.

The above establishes the close relation between Machine Learning and compression or Minimal Descrip-

tion Length: When ML minimizes a cross-entropy or KL-divergence, then it also minimizes the expected

code length when encoding p-samples (data) using the learned q-model.
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