
Lecture Note:

Quaternions, Exponential Map, and Quaternion Jacobians

Marc Toussaint

Learning & Intelligent Systems Lab, TU Berlin

March 1, 2024

SO(2) is the space of rotations in the plane R2 (or about a single axis), which can be described by an

angle α ∈ [0, 2π]. But there are good arguments to instead represent such rotations by a point on S1,

which is the circle in R2. E.g., topologically SO(2) is equal to S1 and not to the interval [0, 2π]. Points

in S1 can also be described as eiα ∈ C, which is the circle in the complex plane. Quaternions similarly

represent rotations of SO(3) as points on S3, i.e., the sphere in R4. And just as eiα ∈ C gives points on

the circle S1, the exponential map of SO(3) gives defines quaternions on S3.

The following will first provide reference equations for quaternions, but then explain in more detail

interpolation between rotations, which naturally introduces the exponential map directly for quaternions

without need to go deeper into Lie groups. An emphasis is then on deriving the quaternion Jacobian,

which describes the angular velocity that is induced when perturbing a quaternion parameter.

1 Reference

Let’s define a quaternion q ∈ R4 as a 4-vector.1 To represent a rotation, a quaternion needs to be

normalized, i.e., q ∈ S3. We denote the first entry by q0 and the last three entries by q̄ ≡ q1:3 ∈ R3. Let’s

first summarize some basic properties for a normalized quaternion:

rotation angle θ ∈ R: θ = 2acos(q0) = 2 asin(|q̄|) (1)

normalized axis ŵ ∈ S2: ŵ = q̄
|q̄| =

1
sin(θ/2) q̄ (2)

rotation vector w ∈ R3: w = log(q) = 2 acos(q0)
q̄
|q̄| (3)

quat. from vector w = θŵ: q = exp(w) = (cos(θ/2), sin(θ/2) ŵ) (4)

rotation matrix R ∈ R3×3: R =


1− q22 − q33 q12 − q03 q13 + q02
q12 + q03 1− q11 − q33 q23 − q01
q13 − q02 q23 + q01 1− q11 − q22

, qij := 2qiqj (5)

quaternion from matrix: q0 = 1
2

√
1 + trR, q1 = R32−R23

4q0
, q2 = R13−R31

4q0
, q3 = R21−R12

4q0
(6)

quaternion inverse: q−1 = (q0,−q̄) or q−1 = (−q0, q̄) (7)

quaternion concatenation: q ◦ q′ = (q0q
′
0 − q̄⊤q̄′, q0q̄

′ + q′0q̄ + q̄ × q̄′) (8)

vector application, x ∈ R3: q · x = (q ◦ (0, x) ◦ q−1)1:3 (or via matrix) (9)

Eqs. (3) and (4) follow from (1) and (2), but why they are defined as ’log’ and ’exp’ will become clear

below. Concerning the application of a rotation quaternion q on a vector x, equation (9) is elegant,

1In the original meaning, they are defined as q = q0+q1i+q2j+q3k, with j, k being extensions to the imaginary number

i. But we just treat them as 4-vectors.

1

but computationally less efficient than first converting to matrix using (5) and then multiplying to the

vector. Note that concatenating quaternions as well as applying a quaternion to a vector never requires

to compute a sin or cos, as opposed, e.g. to the Rodriguez’ equation (see below).

2 Continuously moving from I to q – exponential and log map-

pings

Given a quaternion q, how can we continuously move from the I = (1, 0̄) to q? The answer is simply

given by continuously increasing the rotation angle (1) from 0 to θ about a fixed normalized axis ŵ. Let

t ∈ [0, θ] be the interpolation coefficient, we have

q(t) = (cos(t/2), sin(t/2) ŵ) . (10)

This “motion” from I to q is a geodesic (=shortest path) on S3, and it has constant absolute velocity:

q̇(t) = (− sin(t/2), cos(t/2) ŵ) , |q̇(t)| = 1
2 . (11)

At the origin (for t = 0), the velocity is q̇(0) = 1
2 (0, ŵ), which shows how the rotation axis ŵ provides

the tangent vector at I. For t > 0 the velocity (11) “rotates along the tangent arc” on S3. We can show

that q̇(t) can also be written as (using that ŵ and q̄(t) are colinear):

q(t) ◦ 1
2 (0, ŵ) =

1
2 (0q0(t)− ŵ⊤q̄(t), 0q̄(t) + q0(t)ŵ + ŵ × q̄(t)) (12)

= 1
2 (0− sin(t/2), cos(t/2) ŵ + 0) = q̇(t) . (13)

The relation q̇(t) = q(t) ◦ 1
2 (0, ŵ) nicely makes explicit how the tangent vector Frac12(0, ŵ) at I is being

transported along the arc by multiplying it with q(t) from the left.

Eq. (13) is a differential equation of the form q̇(t) = q(t)α, but with the multiplication being the group

operation ◦. The solution q(t) to this differential equation is defined as the exponential map.2 Namely,

for a vector w = tŵ ∈ R3 we define

exp(tŵ) = (cos(t/2), sin(t/2) ŵ) , ⇒ ∂
∂t exp(tŵ) = exp(tŵ) ◦ 1

2 (0, ŵ) , (14)

fully consistent to (10) and (13). Conversely, given a quaternion, we define the log as

log(q) = 2 acos(q0)
q̄
|q̄| . (15)

3 Continuously moving from qA to qB – interpolation in quater-

nion space

Consider two quaternions qA, qB . When concatenating qB = qA ◦ qAB , you should think of qAB as

describing an “additional” rotation in the output coordinates of qA. This is exactly as multiplying

matrices RB = RARAB , where RAB describes a rotation from orientation RA to orientation RB . The

relative rotation qAB = q−1
A ◦ qB retrieves exactly this relative rotation from qA to qB .

There are two ways to interpolate between orientations qA and qB . Let t ∈ [0, 1]. The proper interpolation

uses the exponential map:

q(t) = qA ◦ exp(t log(q−1
A ◦ qB)) . (16)

2When describing SO(3) as a Lie groups, analogous equations appear when tangent motion is integrated to continuously

move to group elements. The solutionis defined as exp(·) of a tangent vector.

2

This first computes the relative transform qAB = q−1
A ◦ qB , computes its tangent vector representation

wAB = log(qAB), and interpolates from I to qAB as we described above. Finally it multiplies qA from the

left, making all this relative to orientation qA. For completeness, the velocity is

q̇(t) = qA ◦
[

∂
∂t exp(t log(q

−1
A ◦ qB))

]
(17)

= qA ◦
[
exp(twAB) ◦ 1

2 (0, wAB)
]

(18)

= q(t) ◦ 1
2 (0, wAB) , |q̇(t)| = 1

2 |wAB | . (19)

Again, notice how the tangent vector 1
2 (0, wAB) at I is being transported to become the local tangent

vector (=velocity) by multiplying it with q(t) from the left.

As an alternative, we can define the embedded interpolation as

q(t) = normalize((1− t) qA + t qB) , (20)

where normalize(q) = q/|q|. This assumes that the two quaternions are sign aligned, i.e. q⊤AqB ≥ 0. This

interpolation seems native. However, it describes the exact same path as the proper interpolation: along

the geodesic arc on S3 from qA to qB . The only difference is that it does not have constant absolute

velocity on S3. The non-normalized interpolation (1 − t)qA + tqB in R4 has constant velocity, but the

projection to S3 modulates velocities depending on the angle of the tangent space to the embedded

interpolation. But note that, as q⊤AqB ≥ 0, the angle between qA and qB in R4 is at most 90 degrees;

and therefore the angle between the linear interpolation and the tangent spaces is at most 45 degrees –

in this worst case, the velocities at start and end are by a factor 1/
√
2 larger than in the middle.

The point here is that interpolation of rotations is very intuitive: “straight” interpolation on the sphere S3

which can equally described using (20) (with the exponential map) or the naive embedded interpolation

(20). But only the proper interpolation with the exponential map has constant absolute velocity.

4 Angular Jacobian w.r.t. Quaternion Parameters

Assume we have a quaternion q ∈ R4 as a parameter of some optimization problem and need a Jacobian

w.r.t. q. More concretely, we want to know the angular velocity w = Jq̇ that is induced by a velocity (or

infinitesimal variation) of q. To relate to Eq. (19) we think of q = qA as the base orientation, and q̇ as

moving from qA to qB . Eq. (19) for t = 0 becomes

q̇ = q ◦ 1
2 (0, w) . (21)

This equation relates q̇ to an angular vector w ∈ R3, where 1
2 (0, w) is a tangent vector at I that is

transported to become a tangent vector q̇ at q. Conversely, if q̇ is given and tangential, then we can read

out w by multiplying q−1 from the left,

q−1 ◦ q̇ =
1

2
(0, w) , w = 2 [q−1 ◦ q̇]1:3 . (22)

However, in the case where q̇ is non-tangential, i.e., q̇⊤q ̸= 0, the change in length of the quaternion does

not represent any angular velocity. One approach is to first tangentialize ˙̂q = q̇ − qq⊤q̇. However, when

pluging in the tangentialized ˙̂q we get

w = 2 [q−1 ◦ (q̇ − q(q⊤q̇))]1:3 (23)

= 2 [q̇ ◦ q−1]1:3 − 2 [q−1 ◦ q]1:3 (q⊤q̇) , (24)

and the latter term is identically zero. So, our “tangentialization term” drops out anyway.

To construct the Jacobian, let’s assume q̇ = ei is one of the unit vectors e0, .., e3 ∈ R4. Then we have

wi = 2 [q−1 ◦ ei]1:3 . (25)

3

Further, if q itself was not normalized we want the angular Jacobian of q̃ = 1
|q|q w.r.t. q. As the above

relation between q and w is linear, we have

wi =
2
|q| [q̃

−1 ◦ ei]1:3 . (26)

Based on this we construct the angular quaternion Jacobian J(q) ∈ R3×4 with the 4 columns

J·i(q) =
2
|q| [q̃

−1 ◦ ei]1:3 , (27)

so that we have w = J(q) q̇ for any (also non-normalized) q and any (also non-tangential) q̇.

Again, note that this angular vector w is to be interpreted relative to q, in the output space of q. To

translate this to a world coordinate angular Jacobian, we need to transform by q again. To give a more

complete example: if we have a pose qB = qA ◦normalize(q) that is parameterized by arbitrary (non-zero)

q ∈ R4, then q̇ translates to a world coordinate angular velocity w = RBJ(q)q̇, with RB the rotation

matrix of pose B.

5 Random rotations & “Gaussians”

To get a random rotation, we want to uniformly sample from S3. This is particularly easy by first

sampling q ∼ N(0, 1) in R4 and then normalize.

To sample a rotation “Gaussian around a mean” quaternion q, we have two options (akin to the interpo-

lation options): The tangent space sampling:

q′ = exp(w) ◦ q , w = N(0, σ2) ∈ R3 , (28)

or

q′ = normalize(q + δ/2) , δ = N(0, σ2) ∈ R4 . (29)

In the limit of small σ2 these become the same, as the Gaussian projected to the tangent space is the

same as the Gaussian in the tangent space.

A Similarly: Rotation vector and angular velocity

To recap, a rotation vector is w ∈ R3, with rotation axis ŵ = w
|w| , and rotation angle θ = |w| (in radians,

using the right thumb convention).

The application of a rotation described by w ∈ R3 on a vector x ∈ R3 is given as (Rodrigues’ formula)

w · x = cos(θ) x+ sin(θ) (ŵ × x) + (1− cos(θ)) ŵ(ŵ⊤x) . (30)

This directly also implies convertion to a rotation matrix, as the rows of the corresponding rotation

matrix are simply w · ei for the unit vectors e1:3 ∈ R3. To simplify the notation, we define the skew

matrix of a vector w ∈ R3 as

skew(w) =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (31)

This allows to express the cross product as matrix multiplication, w × v = skew(w) v. The rotation

matrix R(w) corresponding to a given rotation vector w then is:

R(w) = exp(skew(w)) (32)

4

= cos(θ) I+ sin(θ)/θ skew(w) + (1− cos(θ))/θ2 ww⊤ (33)

The exp function is called exponential map (generating a group element (=rotation matrix) via an element

of the Lie algebra (=skew matrix)). The other formular is called Rodrigues’ formular: the first term is a

diagonal matrix (I is the 3D identity matrix), the second terms the skew symmetric part, the last term

the symmetric part (ww⊤ is also called outper product).

Angular velocity & derivative of a rotation matrix: We represent angular velocities by a vector

w ∈ R3, with rotation axis ŵ, and rotation velocity |w| (in radians per second). When a body’s orientation

at time t is described by a rotation matrix R(t) and the body’s angular velocity is w, then

Ṙ(t) = skew(w) R(t) . (34)

(That’s intuitive to see for a rotation about the x-axis with velocity 1.) Some insights from this relation:

Since R(t) must always be a rotation matrix (fulfill orthogonality and determinant 1), its derivative Ṙ(t)

must also fulfill certain constraints; in particular it can only live in a 3-dimensional sub-space. It turns

out that the derivative Ṙ of a rotation matrix R must always be a skew symmetric matrix skew(w) times

R – anything else would be inconsistent with the contraints of orthogonality and determinant 1.

Note also that, assuming R(0) = I, the solution to the differential equation Ṙ(t) = skew(w) R(t) can be

written as R(t) = exp(t skew(w)), where here the exponential function notation is used to denote a more

general so-called exponential map, as used in the context of Lie groups. It also follows that R(w) from

(32) is the rotation matrix you get when you rotate for 1 second with angular velocity described by w.

5

	Reference
	Continuously moving from I to q – exponential and log mappings
	Continuously moving from qA to qB – interpolation in quaternion space
	Angular Jacobian w.r.t. Quaternion Parameters
	Random rotations & ``Gaussians''
	Similarly: Rotation vector and angular velocity

