
Lecture Note:

Robot Kinematics & Dynamics

Marc Toussaint

Learning & Intelligent Systems Lab, TU Berlin

May 1, 2024

This is meant as essentials on robotic kinematics and dynamics – developed as background for the Robot

Learning course.

Articulated Multibody System

A robot is a multibody system. Each body has a pose xi ∈ SE(3), an inertia (mi, Ii) with mass mi ∈ R
and inertia tensor Ii ∈ R3×3 sym.pos.def., and a shape si (any shape representation that defines a pairwise

signed-distance d(si, sj) is sufficient).

We assume this multibody system is tree-structured, i.e., every body is linked to a parent body or the

world. Body i has a relative transformations Qi ∈ SE(3) from its parent (or world) par(i). Given

the tree structure, we can compute the pose xi of each body simply by forward chaining all relative

transformations all Qj from world to i. Some robotic systems might not really be tree-structured – these

will first be represented as a tree plus additional constraints to describe loops.

What is special about robots is that some of the relative transformations have degrees of freedom (dofs)

that are articulated (i.e., are motorized/movable). Let Qi have 1 dofs qi ∈ R1, then Qi(qi) is a function

of this dof. We stack all dofs of the whole multibody tree into a vector q ∈ Rn, which is called joint

vector. We will discuss in more depth the concepts of generalized and minimal coordinates below.

Forward Kinematics & Jacobian

We have defined xi ∈ SE(3) as the pose of body i, and q ∈ Rn as the dofs of the full multibody system.

The mappings ϕi : q 7→ xi (for any i) is what so-called “forward kinematics” is concerned about – and

we already explained that xi = ϕi(q) can be computed simply by chaining all relative transformations.

(Very often we are not interested in really computing all poses xi of the multibody system, but only the

pose of one relevant body i (esp. the so-called endeffector or manipulator of a robot), or only the position

xpos
i or some rotated vector xv

i = Riv (with Ri ∈ SO(3) its orientation) for body i. In robotics, the word

forward kinematics is often used to refer only to computing the endeffector pose, position, or orientation.)

The derivative Ji(q) = ∂qϕi(q) ∈ se(3)⊗ Rn is of central importance to later solve constraint problems,

or also to relate joint space velocities q̇ to the velocity ẋi ∈ se(3) of the ith body. Note that elements

(v, w) ∈ se(3) ≡ R6 are 6-vectors composed of the linear velocity v ∈ R3 and angular velocity w ∈ R3

(always in world coordinates). Therefore, we can write Ji(q) ∈ R6×n as a matrix, called Jacobian, and

(vi, wi) = Ji(q) q̇ (1)

gives us the linear and angular velocity of body i when joints have velocities q̇. In practice, code typically

returns separate positional Jacobian Jpos
i ∈ R3×n and angular Jacobian Jang

i ∈ R3×n. In fact, the core

1

job of a kinematics engine is (1) to represent the articulated multibody tree, (2) to forward compute

ϕi(q), and (3) to compute Jpos
i , Jang

i for any i.

Since we know how to compute ϕi(q), we could use “autodiff” to also compute the derivative Ji(q).

However, the columns of the positional and angular Jacobians can actually be computed very easily

and more efficiently by simple insight of how the local translational/angular velocity of each joint dof

translates to the translational/angular velocity of body i. The footnote1 provides details on how to derive

the Jacobian for rotational (hinge), translational (prismatic), and quaternion (ball) joints. The Jacobians

are typically sparse for large robotic systems (e.g., multi-robot systems): Every column of Ji ∈ R6×n

describes how dof j ∈ {1, .., n} influences body i. This column will be zero if dof j is not between the

world and body i in the tree.

Fundamental Kinematics Concepts

The word “kinematics” more generally refers to the mathematical description of the possible motions of

a (potentially constrained) multibody system or mechanism without considering the forces.

For a multibody system, the poses x1:m fully describe the configuration of the system. When x is

some (potentially redundant) description of system state, we generally call its embedding space the

configuration space X. E.g., for our multibody system X = SE(3)m is a generic embedding space.

However, not all configurations may be feasible, e.g. because bodies are linked in a multibody system, the

relative transformations Qi have limits, or body shapes cannot penetrate. We can imagine the feasible

configuration space

Xfea

as a manifold of feasible configurations, potentially with disconnected components or holes. (Actually

also trans-dimensionality, where some parts have different dimensionality is possible, but we neglect this

here.) When introducing coordinates q ∈ Rn for X or Xfea these are called generalized coordinates.

(This should not be confused with the word canonical coordinates, which is used for coordinates in

the phase space of a system, and usually denoted (q, p).)

We discussed the manifold of feasible configurations, however kinematics is about describing feasible

motions on that manifold. Therefore, formally, kinematics describes which q̇ ∈ TqX (in the tangent space

of X) are feasible, and therefore which paths of motion on the manifold.

A holonomic constraint is of the form h(q, t) = 0, with h a d-dimensional function (where t allows a

dependence on absolute time, which is hardly ever relevant in our field). In such a system, the generalized

coordinates are not minimal and provide only an embedding space for the true, lower-dimensional feasible

manifold. The true degrees of freedom of the system are p = n−d. Minimal coordinates are defined

to be generalized coordinates of dimension n = p (where no further holonomic constraints exist). However,

sometimes it may be convenient to stick with non-minimal generalized coordinates: E.g. when the feasible

manifold is S1, it might be convenient to use redundant q = (x, y) coordinates and add the constraint

x2 + y2 = 1 rather than introducing an angle coordinate and running into the annoying modulo issue.

Analogous for SO(3) and embedding quaternion coordinates R4 may be more convenient than minimal

coordinates for SO(3) (see the Quaternion Lecture Notes). Further, when we have a closed loop robotic

system, it is convenient to use non-minimal joint coordinates along a tree and profit from the efficiency

of tree-based kinematics engines, and handle the closed loop constraint otherwise.

1For instance, if j is a rotational (“hinge”) joint around axis e in the joint’s origin frame xpar(j), and body i is downstream

at current pose xi, then the jth column of

Jang
i

is a = (Rpar(j)e) (rotates about the axis of j in world coordinates), and the jth column of Jpos
i is

a× (xpos
i − xpos

par(j)
)

(translates with a lever around the axis). Similar arguments can be made if j is a translational (“prismatic”) joint, and

a bit more complicated arguments if j is a ball joint parameterized by a quaternion qj ∈ R4 (see the Quaternion Lecture

Notes). Thinking of other joint types as compositions of these basic joints, this covers all cases.

2

A non-holonomic constraint is of the form h(q, q̇, t) = 0, which is a general description of any constraints

on possible motions on the feasible manifold. A typical example is a car or wheel in 2D: We describe the

configuration naturally with x = (p, φ) with 2D position p ∈ R2 and heading angle φ ∈ R. Note that

(without obstacles) any configuration is feasible, so the full configuration space is feasible. As there is no

better alternative, we choose generalized coordinates equally as q = x. However, at any q, the positional

velocity is constraint to aligned with the heading direction, ṗ⊤(sinϕ, cosϕ) = 0, which is a non-holonomic

constraint.

There are cases where a constraint is naturally expressed as h(q, q̇, t) = 0 and “looks” non-holonomic,

but actually it is so-called integratable. This mean that, by analyzing integrals of trajectories of feasible

velocities q̇(t), we understand that the actually reachable q all lie on a sub-manifold which we could

more directly be described by a holonomic constraint h(q, t) = 0 (here, the absolute time t dependence

really is important). So, such “integratable non-holonomic constraints” can be reformulated to become

holonomic and still describe a holonomic system. The literature describes elaborate maths (Pfaffian form

of constraints) to uniquely decide whether a system is truly holonomic or non-holonomic. But this is

rarely relevant for typical robotic systems in our field.

“Force Kinematics”

We learned that with (vi, wi) = Jiq̇ the Jacobian relates joint velocities to body velocities. Let’s do the

analogous for forces: Assume we have a wrench (fi, τi) directly acting on body i, what “do we feel” in the

joints, i.e., what torques u ∈ Rn are propagated into the joints? The answer is the Jacobian transpose:

u = J⊤(fi, τi). We can derive this by the conservation of work, or better, power (=work/time): For joint

torques u and velocities q̇ we would consume power u⊤q̇, which needs to equal the power received at the

body, (fi, τi)
⊤(vi, wi) = (fi, τi)

⊤Jq̇. As this holds for any q̇ we have u⊤= (fi, τi)
⊤J .

Dynamics

While kinematics describes which q and q̇ are feasible, dynamics describes which q̈ are feasible. For a

passive dynamical system there is just one q̈ feasible: the one that follows from the laws of physics. For

an articulated robotic system we can choose to exert torques u in each joint (or some joints), and thereby

create various q̈. For standard, fully actuated robotic systems we can command torques u ∈ Rn in all dofs

and create arbitrary accelerations in them. However, when our multibody system description includes

passive objects of the environment, or describes a free-floating (walking/running) robot, the feasible

accelerations are highly constrained, depending esp. on contacts and possibilities of force transmission to

objects or the ground through contacts.

Assume we know how we want to accelerate q̈ the system, and want to compute the necessary joint

torques u to achieve this acceleration. That is, we want to derive the mapping (q, q̇, q̈) 7→ u. Given the

Jacobians described above, this is easy to derive: For each body, we can compute (vi, wi) = Jiq̇ and

(v̇i, ẇi) = Jiq̈ + J̇iq̇. I.e., we know how we want each body to accelerate. The Newton-Euler equation

tells us that such an acceleration would raise the following inertia forces at the body:

fi
τi

 =

 miv̇i
Īiẇi + wi × Īiwi

 = MiJiq̈ + ci , (2)

with Mi = diag(mI3, Īi), ci = MiJ̇iq̇+(03, wi× Īiwi), where Īi = RiIiR
⊤
i and Ii the inertia tensor in body

coordinates. Note that for brevity we dropped dependencies Mi = Mi(q), Ji = Ji(q), and ci = ci(q, q̇).

(When implementing this, note that J̇iq̇ is the frame acceleration for q̈ = 0, which can best be computed

by forward propagation of accelerations over the full tree and captures the Coriolis effects.2)

Conversely, to counteract these inertia forces we have to apply joint torques u = J⊤i

[
MiJiq̈ + ci

]
– this

is how “we feel” the inertia in the joints. We can separately consider gravity: By the same argument we

2Forward propagation of velocities and accelerations: If parent frame has (p,R, v, w, v̇, ẇ), the relative transform is

3

need joint torques u = J⊤i gi to counteract gravity, where gi = (mgez, 03) ∈ R6 has only a single entry

in z-direction. As we have many bodies that are accelerated and need gravity compensation, we overall

have

u =

m∑
i=1

J⊤i

[
MiJiq̈ + ci + gi

]
. (4)

Other texts provide derivations either via the general Euler-Lagrange equations, or recursive Newton-

Euler equations. I find the above very concise and easy to implement, and efficient with sparse Ji. The

first term
∑m

i=1 J
⊤
i MiJiq̈ can elegantly also be found in the Euler-Lagrange derivation,3 but the Coriolis

terms ci are less obvious. Recursive Newton-Euler can be tuned to be numerically faster, but does not

provide this nice general and invertible form.

In standard notation, general robot dynamics are written in the form

u = M(q) q̈ + F (q, q̇) (7)

where, for multi-rigid-body systems, we derived M(q) =
∑

i J
⊤
i MiJi and F (q, q̇) =

∑
i J

⊤
i (ci + gi).

Keep in mind that only whenM(q) is invertible we have a one-to-one relation between our controls and the

system acceleration, and we have the guarantee that our system accelerates with q̈ = M(q)−1u− F (q, q̇)

as desired. M(q) is not invertible if Ji do not have full rank, e.g., if some body i is not articulated at all

and Ji is zero. In this case the equation u = J⊤i

[
MiJiq̈ + ci

]
says that we feel none of the accelerations

of i in our joints – and conversely cannot induce any accelerations of i. That’s the case when the robot

is not in contact with body i.

Standard Usage: Waypoint + Reference Motion + Controller

With the above equations we can accelerate the system in any way we like – at least those dofs that are

currently articulable. In this view, the rest is planning: We need to decide how we want to accelerate

the system right now in order to reach some future goal.

There are a myriad of opinions on how robotic control systems and middleware should be structured.

Here is just one version, which I consider a baseline.

Consider that we want to have the robot fulfill a kinematic constraint

ϕ(qt=T) = y∗ (8)

at time t = T , where ϕ is a d-dimensional constraint function that typically depends on some poses xi

of some bodies, and y∗ ∈ Rd is called a setpoint. A standard control stack could address this problem as

follows:

(p′, R′, v′, w′, 0, 0), then child frame has

p̄
R̄
v̄
w̄
¯̇v
¯̇w


=



p+Rp′

RR′

v +Rv′ + w×Rp′

w +Rw′

v̇ + w×Rv′ + w×w×Rp′ + ẇ×Rp′

ẇ + w×Rw′


=



p+ P ′

RR′

v + V ′ + w×P ′

w +W ′

v̇ + w×V ′ + (w×w× + ẇ×)P ′

ẇ + w×W ′


(3)

where capital letters are relative vectors rotated to world coordinates.
3The Euler-Lagrange derivation starts with d

dt
∂L
∂q̇

− ∂L
∂q

= u, where L(q, q̇) = T (q, q̇) − U(q) with the system kinetic

energy

T (q, q̇) =
∑
i

1

2
miv

2
i +

1

2
w⊤

i Īiwi =
∑
i

1

2
q̇⊤J⊤i MiJiq̇, Mi = diag(miI3, Īi), (5)

and the system potential energy U(q) =
∑

i gmix
z
i . When computing the partial derivatives analytically we get something

of the form

u =
d

dt

∂L

∂q̇
−

∂L

∂q
= M(q)q̈ + Ṁq̇ −

∂T

∂q
+

∂U

∂q
, (6)

where total inertial M(q) =
∑

i J
⊤
i MiJi is simple to compute, but the Coriolis terms are more complicated.

4

(i) First compute a final robot pose qT that fulfills constraint ϕ(qt=T) = y∗ – that problem is called

inverse kinematics and discussed below.

(ii) Next compute a reference motion from current robot pose q0 to qT – that problem can be addressed

with path finding, trajectory optimization, or basic interpolation with a motion profile or

spline (see the Spline Lecture Notes).

(iii) Finally, determine a control policy π : (x, t) 7→ u that reactively computes motor commands u to

follow the reference motion – that problem can be addressed using PD control, inverse dynamics

as derived above, Riccati, or model-predictive control (MPC).

You could think of these as three different time scales: First rough future waypoint(s)/goal(s), then

continuous motion to next waypoint, then short-term controls. Continuous replanning/re-estimation can

also make (1) and (2) reactive.

Of course, robotics systems do not have to be organized in that way: Some approaches skip step (1) and

let step (2) also solve for the final configuration (e.g., including the optimization of qT into the trajectory

optimization problem); or one may skip steps (1) and (2) and let step (3) handle the full problem (e.g.,

including the goal constraint in the MPC formulation, or a basic task-space PD controller (“operational

space control”); which typically looses the power of path finding and trajectory optimization).

Inverse Kinematics

Inverse kinematics (IK) simply means computing q to fulfill ϕ(q) = y∗. A proper approach is to formulate

this as an NLP (non-linear mathematical program)

min
q∈Rn

||q − q0||2 s.t. ϕ(q) = y∗ (9)

or min
q∈Rn

||q − q0||2 + µ||ϕ(q)− y∗||2 for large µ (10)

and use an efficient NLP solver (e.g. Augmented Lagrangian, or SQP, exploiting potential sparseness of
∂
∂qϕ). However, typical textbooks at length discuss computing IK more low-level. For instance, when

approximating ϕ(q) ≈ ϕ(q0) + J(q − q0) as linear with Jacobian J , the analytical solution to (10) can be

written as (allowing for µ → ∞):

q∗ = q0 + J⊤(JJ⊤+ 1
µI)

−1(y∗ − ϕ(q0)) . (11)

In the context of optimization, this is the first Newton step when initializing optimization at q0. Students

sometimes interpret this equation as a tool to directly generate robot motion: They let the robot literally

execute these Newton steps (scaled by a small factor α), and then the robot starts moving like the decision

variable in a non-linear optimization problem with small-scaled Newton steps. This is not proper! Proper

IK should really first compute the solution qT to (9), and then think about how the robot can actually

move to qT (e.g. using proper optimal control, or reactive spline interpolation, or a basic but nice motion

profile).

5

	Articulated Multibody System
	Forward Kinematics & Jacobian
	Fundamental Kinematics Concepts
	``Force Kinematics''
	Dynamics
	Standard Usage: Waypoint + Reference Motion + Controller
	Inverse Kinematics

