Lecture Note: Robot Kinematics & Dynamics

Marc Toussaint

Learning & Intelligent Systems Lab, TU Berlin

May 1, 2024

This is meant as essentials on robotic kinematics and dynamics – developed as background for the *Robot Learning* course.

Articulated Multibody System

A robot is a multibody system. Each body has a **pose** $x_i \in SE(3)$, an inertia (m_i, I_i) with mass $m_i \in \mathbb{R}$ and inertia tensor $I_i \in \mathbb{R}^{3\times 3}$ sym.pos.def., and a shape s_i (any shape representation that defines a pairwise signed-distance $d(s_i, s_j)$ is sufficient).

We assume this multibody system is tree-structured, i.e., every body is linked to a parent body or the world. Body *i* has a relative transformations $Q_i \in SE(3)$ from its parent (or world) par(*i*). Given the tree structure, we can compute the pose x_i of each body simply by forward chaining all relative transformations all Q_j from world to *i*. Some robotic systems might not really be tree-structured – these will first be represented as a tree plus additional constraints to describe loops.

What is special about robots is that some of the relative transformations have degrees of freedom (dofs) that are *articulated* (i.e., are motorized/movable). Let Q_i have 1 dofs $q_i \in \mathbb{R}^1$, then $Q_i(q_i)$ is a function of this dof. We stack all dofs of the whole multibody tree into a vector $q \in \mathbb{R}^n$, which is called **joint vector**. We will discuss in more depth the concepts of generalized and minimal coordinates below.

Forward Kinematics & Jacobian

We have defined $x_i \in SE(3)$ as the pose of body i, and $q \in \mathbb{R}^n$ as the dofs of the full multibody system. The mappings $\phi_i : q \mapsto x_i$ (for any i) is what so-called "forward kinematics" is concerned about – and we already explained that $x_i = \phi_i(q)$ can be computed simply by chaining all relative transformations. (Very often we are not interested in really computing all poses x_i of the multibody system, but only the pose of one relevant body i (esp. the so-called endeffector or manipulator of a robot), or only the position x_i^{pos} or some rotated vector $x_i^v = R_i v$ (with $R_i \in SO(3)$ its orientation) for body i. In robotics, the word forward kinematics is often used to refer only to computing the endeffector pose, position, or orientation.)

The derivative $J_i(q) = \partial_q \phi_i(q) \in \text{se}(3) \otimes \mathbb{R}^n$ is of central importance to later solve constraint problems, or also to relate joint space velocities \dot{q} to the velocity $\dot{x}_i \in \text{se}(3)$ of the *i*th body. Note that elements $(v, w) \in \text{se}(3) \equiv \mathbb{R}^6$ are 6-vectors composed of the linear velocity $v \in \mathbb{R}^3$ and angular velocity $w \in \mathbb{R}^3$ (always in world coordinates). Therefore, we can write $J_i(q) \in \mathbb{R}^{6 \times n}$ as a matrix, called **Jacobian**, and

$$(v_i, w_i) = J_i(q) \dot{q} \tag{1}$$

gives us the linear and angular velocity of body *i* when joints have velocities \dot{q} . In practice, code typically returns separate positional Jacobian $J_i^{\text{pos}} \in \mathbb{R}^{3 \times n}$ and angular Jacobian $J_i^{\text{ang}} \in \mathbb{R}^{3 \times n}$. In fact, the core

job of a kinematics engine is (1) to represent the articulated multibody tree, (2) to forward compute $\phi_i(q)$, and (3) to compute $J_i^{\text{pos}}, J_i^{\text{ang}}$ for any *i*.

Since we know how to compute $\phi_i(q)$, we could use "autodiff" to also compute the derivative $J_i(q)$. However, the columns of the positional and angular Jacobians can actually be computed very easily and more efficiently by simple insight of how the local translational/angular velocity of each joint dof translates to the translational/angular velocity of body *i*. The footnote¹ provides details on how to derive the Jacobian for rotational (hinge), translational (prismatic), and quaternion (ball) joints. The Jacobians are typically sparse for large robotic systems (e.g., multi-robot systems): Every column of $J_i \in \mathbb{R}^{6 \times n}$ describes how dof $j \in \{1, ..., n\}$ influences body *i*. This column will be zero if dof *j* is not between the world and body *i* in the tree.

Fundamental Kinematics Concepts

The word "kinematics" more generally refers to the mathematical description of the possible motions of a (potentially constrained) multibody system or mechanism *without considering the forces*.

For a multibody system, the poses $x_{1:m}$ fully describe the *configuration* of the system. When x is some (potentially redundant) description of system state, we generally call its embedding space the **configuration space** \mathcal{X} . E.g., for our multibody system $\mathcal{X} = SE(3)^m$ is a generic embedding space. However, not all configurations may be feasible, e.g. because bodies are linked in a multibody system, the relative transformations Q_i have limits, or body shapes cannot penetrate. We can imagine the **feasible configuration space**

 $\mathfrak{X}_{\text{fea}}$

as a manifold of feasible configurations, potentially with disconnected components or holes. (Actually also trans-dimensionality, where some parts have different dimensionality is possible, but we neglect this here.) When introducing coordinates $q \in \mathbb{R}^n$ for \mathcal{X} or \mathcal{X}_{fea} these are called **generalized coordinates**. (This should not be confused with the word **canonical coordinates**, which is used for coordinates in the phase space of a system, and usually denoted (q, p).)

We discussed the manifold of feasible configurations, however kinematics is about describing feasible *motions* on that manifold. Therefore, formally, kinematics describes which $\dot{q} \in T_q \mathcal{X}$ (in the tangent space of \mathcal{X}) are feasible, and therefore which paths of motion on the manifold.

A holonomic constraint is of the form h(q,t) = 0, with h a d-dimensional function (where t allows a dependence on absolute time, which is hardly ever relevant in our field). In such a system, the generalized coordinates are not minimal and provide only an embedding space for the true, lower-dimensional feasible manifold. The true **degrees of freedom** of the system are p = n - d. **Minimal coordinates** are defined to be generalized coordinates of dimension n = p (where no further holonomic constraints exist). However, sometimes it may be convenient to stick with non-minimal generalized coordinates: E.g. when the feasible manifold is S^1 , it might be convenient to use redundant q = (x, y) coordinates and add the constraint $x^2 + y^2 = 1$ rather than introducing an angle coordinate and running into the annoying modulo issue. Analogous for SO(3) and embedding quaternion coordinates \mathbb{R}^4 may be more convenient than minimal coordinates for SO(3) (see the Quaternion Lecture Notes). Further, when we have a closed loop robotic system, it is convenient to use non-minimal joint coordinates along a tree and profit from the efficiency of tree-based kinematics engines, and handle the closed loop constraint otherwise.

is $a = (R_{\text{par}(j)}e)$ (rotates about the axis of j in world coordinates), and the jth column of J_i^{pos} is

$$u \times (x_i^{\mathsf{pos}} - x_{\mathrm{par}(i)}^{\mathsf{pos}})$$

¹For instance, if j is a rotational ("hinge") joint around axis e in the joint's origin frame $x_{par(j)}$, and body i is downstream at current pose x_i , then the jth column of J_i^{ang}

⁽translates with a lever around the axis). Similar arguments can be made if j is a translational ("prismatic") joint, and a bit more complicated arguments if j is a ball joint parameterized by a quaternion $q_j \in \mathbb{R}^4$ (see the Quaternion Lecture Notes). Thinking of other joint types as compositions of these basic joints, this covers all cases.

A non-holonomic constraint is of the form $h(q, \dot{q}, t) = 0$, which is a general description of any constraints on possible motions on the feasible manifold. A typical example is a car or wheel in 2D: We describe the configuration naturally with $x = (p, \varphi)$ with 2D position $p \in \mathbb{R}^2$ and heading angle $\varphi \in \mathbb{R}$. Note that (without obstacles) any configuration is feasible, so the full configuration space is feasible. As there is no better alternative, we choose generalized coordinates equally as q = x. However, at any q, the positional velocity is constraint to aligned with the heading direction, $\dot{p}^{\top}(\sin \phi, \cos \phi) = 0$, which is a non-holonomic constraint.

There are cases where a constraint is naturally expressed as $h(q, \dot{q}, t) = 0$ and "looks" non-holonomic, but actually it is so-called integratable. This mean that, by analyzing integrals of trajectories of feasible velocities $\dot{q}(t)$, we understand that the actually reachable q all lie on a sub-manifold which we could more directly be described by a holonomic constraint h(q, t) = 0 (here, the absolute time t dependence really is important). So, such "integratable non-holonomic constraints" can be reformulated to become holonomic and still describe a holonomic system. The literature describes elaborate maths (Pfaffian form of constraints) to uniquely decide whether a system is truly holonomic or non-holonomic. But this is rarely relevant for typical robotic systems in our field.

"Force Kinematics"

We learned that with $(v_i, w_i) = J_i \dot{q}$ the Jacobian relates joint velocities to body velocities. Let's do the analogous for forces: Assume we have a wrench (f_i, τ_i) directly acting on body i, what "do we feel" in the joints, i.e., what torques $u \in \mathbb{R}^n$ are propagated into the joints? The answer is the Jacobian transpose: $u = J^{\top}(f_i, \tau_i)$. We can derive this by the conservation of work, or better, power (=work/time): For joint torques u and velocities \dot{q} we would consume power $u^{\top}\dot{q}$, which needs to equal the power received at the body, $(f_i, \tau_i)^{\top}(v_i, w_i) = (f_i, \tau_i)^{\top}J\dot{q}$. As this holds for any \dot{q} we have $u^{\top} = (f_i, \tau_i)^{\top}J$.

Dynamics

While kinematics describes which q and \dot{q} are feasible, dynamics describes which \ddot{q} are feasible. For a passive dynamical system there is just one \ddot{q} feasible: the one that follows from the laws of physics. For an articulated robotic system we can choose to exert torques u in each joint (or some joints), and thereby create various \ddot{q} . For standard, fully actuated robotic systems we can command torques $u \in \mathbb{R}^n$ in all dofs and create arbitrary accelerations in them. However, when our multibody system description includes passive objects of the environment, or describes a free-floating (walking/running) robot, the feasible accelerations are highly constrained, depending esp. on contacts and possibilities of force transmission to objects or the ground through contacts.

Assume we know how we want to accelerate \ddot{q} the system, and want to compute the necessary joint torques u to achieve this acceleration. That is, we want to derive the mapping $(q, \dot{q}, \ddot{q}) \mapsto u$. Given the Jacobians described above, this is easy to derive: For each body, we can compute $(v_i, w_i) = J_i \dot{q}$ and $(\dot{v}_i, \dot{w}_i) = J_i \ddot{q} + \dot{J}_i \dot{q}$. I.e., we know how we want each body to accelerate. The Newton-Euler equation tells us that such an acceleration would raise the following inertia forces at the body:

$$\begin{pmatrix} f_i \\ \tau_i \end{pmatrix} = \begin{pmatrix} m_i \dot{v}_i \\ \bar{I}_i \dot{w}_i + w_i \times \bar{I}_i w_i \end{pmatrix} = M_i J_i \ddot{q} + c_i , \qquad (2)$$

with $M_i = \text{diag}(m\mathbf{I}_3, \bar{I}_i), c_i = M_i \dot{J}_i \dot{q} + (0_3, w_i \times \bar{I}_i w_i)$, where $\bar{I}_i = R_i I_i R_i^{\top}$ and I_i the inertia tensor in body coordinates. Note that for brevity we dropped dependencies $M_i = M_i(q), J_i = J_i(q)$, and $c_i = c_i(q, \dot{q})$. (When implementing this, note that $\dot{J}_i \dot{q}$ is the frame acceleration for $\ddot{q} = 0$, which can best be computed by forward propagation of accelerations over the full tree and captures the Coriolis effects.²)

Conversely, to counteract these inertia forces we have to apply joint torques $u = J_i^{\top} [M_i J_i \ddot{q} + c_i]$ – this is how "we feel" the inertia in the joints. We can separately consider gravity: By the same argument we

²Forward propagation of velocities and accelerations: If parent frame has $(p, R, v, w, \dot{v}, \dot{w})$, the relative transform is

need joint torques $u = J_i^{\mathsf{T}} g_i$ to counteract gravity, where $g_i = (mge_z, 0_3) \in \mathbb{R}^6$ has only a single entry in z-direction. As we have many bodies that are accelerated and need gravity compensation, we overall have

$$u = \sum_{i=1}^{m} J_{i}^{\mathsf{T}} \Big[M_{i} J_{i} \ddot{q} + c_{i} + g_{i} \Big] .$$
(4)

Other texts provide derivations either via the general Euler-Lagrange equations, or recursive Newton-Euler equations. I find the above very concise and easy to implement, and efficient with sparse J_i . The first term $\sum_{i=1}^{m} J_i^{\mathsf{T}} M_i J_i \ddot{q}$ can elegantly also be found in the Euler-Lagrange derivation,³ but the Coriolis terms c_i are less obvious. Recursive Newton-Euler can be tuned to be numerically faster, but does not provide this nice general and invertible form.

In standard notation, general robot dynamics are written in the form

$$u = M(q) \ \ddot{q} + F(q, \dot{q}) \tag{7}$$

where, for multi-rigid-body systems, we derived $M(q) = \sum_i J_i^{\top} M_i J_i$ and $F(q, \dot{q}) = \sum_i J_i^{\top} (c_i + q_i)$.

Keep in mind that only when M(q) is invertible we have a one-to-one relation between our controls and the system acceleration, and we have the guarantee that our system accelerates with $\ddot{q} = M(q)^{-1}u - F(q,\dot{q})$ as desired. M(q) is not invertible if J_i do not have full rank, e.g., if some body i is not articulated at all and J_i is zero. In this case the equation $u = J_i^{\top} |M_i J_i \ddot{q} + c_i|$ says that we feel none of the accelerations of i in our joints – and conversely cannot induce any accelerations of i. That's the case when the robot is not in contact with body i.

Standard Usage: Waypoint + Reference Motion + Controller

With the above equations we can accelerate the system in any way we like – at least those dofs that are currently articulable. In this view, the rest is planning: We need to decide how we want to accelerate the system right now in order to reach some future goal.

There are a myriad of opinions on how robotic control systems and middleware should be structured. Here is just one version, which I consider a baseline.

Consider that we want to have the robot fulfill a kinematic constraint

$$\phi(q_{t=T}) = y^* \tag{8}$$

at time t = T, where ϕ is a d-dimensional constraint function that typically depends on some poses x_i of some bodies, and $y^* \in \mathbb{R}^d$ is called a setpoint. A standard control stack could address this problem as follows:

(p', R', v', w', 0, 0), then child frame has

$$\begin{pmatrix} \bar{p} \\ \bar{R} \\ \bar{v} \\ \bar{v} \\ \bar{w} \\ \bar{v} \\ \bar{w} \\ \bar{w}$$

where capital letters are relative vectors rotated to world coordinates. ³The Euler-Lagrange derivation starts with $\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = u$, where $L(q, \dot{q}) = T(q, \dot{q}) - U(q)$ with the system kinetic energy

$$T(q, \dot{q}) = \sum_{i} \frac{1}{2} m_{i} v_{i}^{2} + \frac{1}{2} w_{i}^{\top} \bar{I}_{i} w_{i} = \sum_{i} \frac{1}{2} \dot{q}^{\top} J_{i}^{\top} M_{i} J_{i} \dot{q}, \ M_{i} = \text{diag}(m_{i} \mathbf{I}_{3}, \bar{I}_{i}),$$
(5)

and the system potential energy $U(q) = \sum_{i} gm_i x_i^z$. When computing the partial derivatives analytically we get something of the form

$$u = \frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = M(q)\ddot{q} + \dot{M}\dot{q} - \frac{\partial T}{\partial q} + \frac{\partial U}{\partial q},\tag{6}$$

where total inertial $M(q) = \sum_i J_i^{\mathsf{T}} M_i J_i$ is simple to compute, but the Coriolis terms are more complicated.

- (i) First compute a final robot pose q_T that fulfills constraint $\phi(q_{t=T}) = y^*$ that problem is called **inverse kinematics** and discussed below.
- (ii) Next compute a *reference* motion from current robot pose q_0 to q_T that problem can be addressed with **path finding**, **trajectory optimization**, or basic interpolation with a motion profile or spline (see the Spline Lecture Notes).
- (iii) Finally, determine a control policy $\pi : (x,t) \mapsto u$ that reactively computes motor commands u to follow the reference motion that problem can be addressed using **PD control**, inverse dynamics as derived above, **Riccati**, or **model-predictive control** (MPC).

You could think of these as three different time scales: First rough future waypoint(s)/goal(s), then continuous motion to next waypoint, then short-term controls. Continuous replanning/re-estimation can also make (1) and (2) reactive.

Of course, robotics systems do not have to be organized in that way: Some approaches skip step (1) and let step (2) also solve for the final configuration (e.g., including the optimization of q_T into the trajectory optimization problem); or one may skip steps (1) and (2) and let step (3) handle the full problem (e.g., including the goal constraint in the MPC formulation, or a basic task-space PD controller ("operational space control"); which typically looses the power of path finding and trajectory optimization).

Inverse Kinematics

Inverse kinematics (IK) simply means computing q to fulfill $\phi(q) = y^*$. A proper approach is to formulate this as an NLP (non-linear mathematical program)

$$\min_{q \in \mathbb{R}^n} \|q - q_0\|^2 \quad \text{s.t.} \quad \phi(q) = y^* \tag{9}$$

or
$$\min_{q \in \mathbb{R}^n} \|q - q_0\|^2 + \mu \|\phi(q) - y^*\|^2$$
 for large μ (10)

and use an efficient NLP solver (e.g. Augmented Lagrangian, or SQP, exploiting potential sparseness of $\frac{\partial}{\partial q}\phi$). However, typical textbooks at length discuss computing IK more low-level. For instance, when approximating $\phi(q) \approx \phi(q_0) + J(q - q_0)$ as linear with Jacobian J, the analytical solution to (10) can be written as (allowing for $\mu \to \infty$):

$$q^* = q_0 + J^{\mathsf{T}} (JJ^{\mathsf{T}} + \frac{1}{\mu} \mathbf{I})^{-1} (y^* - \phi(q_0)) .$$
(11)

In the context of optimization, this is the first Newton step when initializing optimization at q_0 . Students sometimes interpret this equation as a tool to directly generate robot motion: They let the robot literally execute these Newton steps (scaled by a small factor α), and then the robot starts moving like the decision variable in a non-linear optimization problem with small-scaled Newton steps. This is not proper! Proper IK should really first compute the solution q_T to (9), and then think about how the robot can actually move to q_T (e.g. using proper optimal control, or reactive spline interpolation, or a basic but nice motion profile).