
Lecture Note:

Splines

Marc Toussaint

Learning & Intelligent Systems Lab, TU Berlin

August 27, 2024

A spline is a piece-wise polynomial path x : [0, T] → Rn. Let’s first clearly distinguish the use of words

knot, waypoint, and control point :

� A knot ti is a point in time, ti ∈ R, we assume ti ∈ [0, T]. For a spline, we have a non-decreasing

sequence of knots t0, .., tm (we assume t0 = 0 and tm = T) which partition the time interval [0, T]

into pieces [ti, ti+1] so that the path is polynomial in each piece. Note that we may often have

double or triple knots, meaning that several consecutive knots ti = ti+1 are equal, especially at the

beginning and end.

� A waypoint xi is a point on the path, typically at a knot, xi = x(ti). So a path really passes

through a waypoint. At waypoints, we often also care about velocities vi and accelerations αi,

where vi = ẋ(ti), ai = ẍ(ti), .

� A control point zj is (usually) not a point on the path, but it indirectly defines the path as an

linear combination of several control points. B-splines, defined below, make this explicit.

In robotics, there are two main conventions to define and parameterize splines: Hermite splines and B-

splines. Hermite splines are defined by the knot sequence and explicitly prescribing waypoints xi and (for

cubic) velocities vi at each knot (for quintic also acceperations ai). In contrast, B-splines are specified by

the knot sequence and K control points zj . As in B-splines we do not need to provide velocities as part

of the specification, they are sometimes easier to use in practice. However, the resulting path does not go

(exactly) through the provided control points – but below we explain how a by simple matrix inversion

(done just once) we can choose control points to ensure B-splines to pass through given waypoints.

Cubic splines are a common choice in robotics, as they have a still continuous (piece-wise linear) accel-

eration profile, and therefore limited jerk (3rd time derivative).

In the following we first discuss a single cubic spline-piece as a means of control, then Hermite splines,

then B-splines.

Single cubic piece for timing-optimal control to a target

The following discusses a single cubic spline piece and how to use it for timing-optimal control to a target.

Although very simple, the method is a powerful alternative to typical PD-control to a target. It also lays

foundations on how timing-optimality can be realized with Hermite splines.

Consider a cubic polynomial x(t) = at3 + bt2 + ct+ d. Given four boundary conditions x(0) = x0, ẋ(0) =

v0, x(τ) = xτ , ẋ(τ) = vτ , the four coefficients are

d = x0 , (1)

1

c = ẋ0 , (2)

b =
1

τ2

[
3(xτ − x0)− τ(ẋτ + 2ẋ0)

]
, (3)

a =
1

τ3

[
− 2(x0 − xτ) + τ(ẋτ + ẋ0)

]
. (4)

This cubic spline is in fact the solution to an optimization problem, namely it is the path that minimizes

accelerations between these boundary conditions and it can therefore be viewed as the solution to optimal

control with acceleration costs:

min
x

∫ τ

0

ẍ(t)2 dt s.t.

x(0)
ẋ(0)

 =

x0

v0

,
x(τ)
ẋ(τ)

 =

x1

v1

 . (5)

The minimal costs can analytically be given as∫ T

0

ẍ(t)2dt = 4τb2 + 12τ2ab+ 12τ3a2 (6)

=
12

τ3
[(x1 − x0)−

τ

2
(v0 + v1)]

2 +
1

τ
(v1 − v0)

2 (7)

=
12

τ3
D⊤D +

1

τ
V⊤V , D := (x1 − x0)−

τ

2
(v0 + v1), V := v1 − v0, (8)

= D̃⊤D̃ + Ṽ⊤Ṽ , D̃ :=
√
12 τ−

3
2 D, Ṽ := τ−

1
2 V , (9)

where we used some help of computer algebra to get this right.

Eq. (7) explicitly gives the optimal cost in terms of boundary conditions (x0, v0, x1, v1) and time τ . Eq.

(9) rewrites this as sum-of-squares, which help using quasi-Newton methods. This is a very powerful

formulation to optimize boundary conditions and τ . The following is a simple application that realizes

reactive control.

Single-piece optimal timing control

Consider the system is in state (x, ẋ) and you want to control it to a reference point (xref, ẋref = 0).

An obvious approach would be to use a PD law ẍdes = kp(xref − x) + kd(ẋref − ẋ) and translate ẍdes

to controls using inverse dynamics. By choosing kp and kd appropriately one can generate any desired

damped/oscillatory-exponential approach behavior.

However, while PD laws are fundamental for low-level optimal control under noise (e.g. as result of the

Riccati equation), they are actually not great for generating more macroscopic approach behavior: They

are “only” exponentially converging, never really reaching the target in a definite time, never providing a

clear expected time-to-target. And accelerations seem intuitively too large when far from the set point,

and too small when close. (Which is why many heuristics were proposed, such as capped PD laws.)

Instead of imposing a desired PD behavior, we can impose a desired cubic spline behavior, which leads

to succinct convergence in a finite expected time-to-target, as well as moderate gains when far. The

approach is simply to choose an optimal τ (time-to-target) that minimizes

min
τ,x

ατ +

∫ τ

0

ẍ(t)2 dt (10)

under our boundary conditions, assuming a cubic spline x(t), t ∈ [0, τ]. Using (7), we know the optimal

x and optimal control costs for given τ . When δ = xref − x and v are co-linear (i.e., the system moves

towards the target), computer algebra can tell us the optimal τ :

τ∗ =
1

α

[√
6|δ|α+ v2 − |v|

]
. (11)

If the system has a lateral movement, the analytical solution provided by computer algebra is overly

complex, but a numerical solution to the least-squares form (9) is very very efficient. However, in

2

practise, using (11) with scalar v ← (δ⊤v)/|δ| for easy timing control of convergence to a target is highly

effective and versatile.

To make this a reactive control scheme, in each control cycle

τ∗

is reevaluated and the corresponding cubic spline reference send to low-level control. If there are no

perturbations, the estimated τ∗ will be the true time-to-target. See the SecMPD paper for details and

comparision to a PD approach behavior.

Hermite Cubic Splines

A Hermite cubic spline is specified by the series of non-decreasing time knots, t0, .., tm ∈ [0, T], t0 =

0, tm = T , and the waypoints xi and velocities vi at each time knot. There are no double knots, so the

interval [0, T] is split in m cubic pieces, where the ith piece is determined by the boundary conditions

(xi-1, vi-1, xi, vi) and τi = ti − ti-1.

Specifying the timings (i.e., knots) and velocities of all waypoints is often not easy for a user. Therefore

the question is whether a series of given weypoints can easily be augmented with optimal knots and

waypoint velocities.

Continuity of states, velocities and accelerations at the knots is an issue. If we require the path to be

C0 (continuous in states x(t) only), each piece needs to respect one constraint with the previous, and

for m pieces we have 1 + 3m degrees of freedom (assuming x(t) ∈ R1 for simplicity). If we require C1

(continuity in velocities), m pieces have 2 + 2m parameters; for C2 (continuity in accelerations) we only

have 3+m parameters; and for C3 (continuity in jerk) we have 4 parameters no matter how many pieces

– which shows that using a single piece is the only option to get continuous jerk.

One typically assumes C2 (continuous accelerations), and optimizing both, the knots and waypoint ve-

locities, under our optimal control objective is rather efficient and effective under these constraints. Note

that the optimal control cost over the full spline is just the sum of single piece costs (9). This represents

costs as a least-squares of differentiable features, where D can be interpreted as distance to be covered by

accelerations, and V as necessary total acceleration, and the Jacobians of D̃ and Ṽ w.r.t. all boundary

conditions and τi are trivial. Exploiting this least-squares formulation we can use the Gauss-Newton

approximate Hessian.

As a concequence, it is fairly efficient to solve for τ1:m, v1:m-1 given v0, vm, x0:m under continuous accel-

eration constraints subject to total time and control costs.

As a final note, in Hermite quintic splines we need positions xi, velocities vi and accelerations ai at each

knot, which describe the quintic polynomial pieces between knots.

B-Splines

In B-splines, the path x : [0, T]→ Rn is expressed as a linear combination of control points z0, .., zK ∈ Rn,

x(t) =

K∑
i=0

Bi,p(t) zi , (12)

where Bi,p : R→ R maps the time t to the weighting of the ith control point – it blends in and out the

ith control point. For any t it holds that
∑K

i=0 Bi,p(t) = 1, i.e., all the weights Bi,p(t) sum to one (as

with a probability distribution over i), and the path point x(t) is therefore always in the convex hull of

control points.

Concerning terminology, actually the functions Bi,p(t) themselves are called B-splines, not the resulting

path x(t). (But in everyday robotics language, one often calls the path a B-spline.) As the linear (scalar)

product in (12) is trivial, the maths (and complexity of code) is all about the B-splines Bi,p(t).

3

The B-spline functions Bi,p(t) are fully specified by a non-decreasing series of time knots t0, .., tm ∈ [0, T]

and the integer degree p ∈ {0, 1, ..}. Namely, the recursive definition is

Bi,0(t) = [ti ≤ t < ti+1] , for 0 ≤ i ≤ m− 1 , (13)

Bi,p(t) =
t− ti

ti+p − ti
Bi,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1
Bi+1,p−1(t) , for 0 ≤ i ≤ m− p− 1 . (14)

The zero-degree B-spline functions Bi,0 are binary indicators of ti ≤ t < ti+1, and i ranges from i =

0, ..,m− 1. The 1st-degree B-spline functions Bi,1 have support in ti ≤ t < ti+2 and i only ranges from

i = 0, ..,m−2, so that the normalization
∑m−2

i=0 Bi,1(t) = 1 holds (the recursion would also not be clearly

defined for i > m− 2). In general, degree p B-spline functions Bi,p have support in ti ≤ t < ti+p+1 and i

ranges from i = 0, ..,m+ p− 1, which is why we need K + 1 control points z0:K with

K = m+ p− 1 , (15)

which ensures the normalization property
∑K

i=0 Bi,p(t) = 1 for every degree. The time derivative

Ḃi,p(t) =
1

ti+p − ti

[
Bi,p-1(t) + (t− ti) Ḃi,p-1(t)

]
+

1

ti+p+1 − ti+1

[
−Bi+1,p-1(t) + (ti+p+1 − t) Ḃi+1,p-1(t)

]
(16)

shows that the derivative of a degree-p B-spline is a linear combination of degree-p−1 splines. Therefore,

a degree-p spline is always p − 1-order differentiable. For instance, a quadratic B-spline has continuous

velocities; a cubic B-spline has continuous accelerations.

Illustration

Fig. 1 provides an illustration of B-spline functions for degrees p = 0, .., 4. Above each plot of functions,

a rough illustration of a resulting path is provided, where bullets indicate control points. Note that

this illustration implies a localization of control points in time, namely roughly where the coresponding

weighting function (B-spline function) is highest. But control points are formally not localized in time,

they are just being linearly combined, x(t) =
∑K

i=0 Bi,p(t) zi, with different weighting in time. However,

intuitively we can see that for odd degrees, the “localization in time” of control points roughly aligns

with knots, while for even degrees the localization is between knots. Further, the illustrations assume

multi-knots at the start and end (namely p+1-fold knots), which ensures that the spline starts with

z0 and ends with zK . Duplicated control points z0:p//2 and zK−p//2:K (illustrated with gray bars) are

needed to ensure also zero vel/acc/jerk at start and end (where p//2 means integer division). However, by

choosing the initial/final p//2 + 1 control points non-equal we can impose arbitrary initial/final velocity

(and acceleration for p ≥ 4), as detailed below.

Retrieving the piece-wise polynomials: Convertion to Hermite spline

B-splines might seem rather different from Hermite splines. However, it still holds that the resulting path

x(t) as well as all the B-spline functions Bi,p are piece-wise polynomials, with pieces of degree p between

knots. So the semantics of the knot times t0, .., tm is the separation of polynomial pieces – as is generally

the case for splines – and not the temporal localization of control points. Inspecting the definition (13) of

the B-spline functions one may tell that they are polynomial between knots, but one cannot easily read

of the polynomial coefficients.

A simple and efficient way to convert a B-spline to Hermite cubic spline is to evaluate (x(t), ẋ(t)) at each

knot and use equations (1)-(4) to get the four polynomial coefficient for each piece. Is the B-spline of

degree less than cubic, the respective coefficient will be zero. This clarifies that each cubic B-spline can

directly be converted to cubic Hermite.

The conversion from Hermite to B-spline is equally possible iff the Hermite spline is smooth (i.e., p− 1-

order continuous) at all knots. Focussing on cubic splines, p−1-order continuous means that accelerations

4

Figure 1: See section 0.3.1 for explanations.

5

are continuous; each cubic piece has 4 parameters, but 3 are bound by continuity with the next piece.

If we have m pieces we have 3 +m parameters in total. For a cubic B-spline with multi-knots we need

m′ = m + 6 knots (3 duplicates at start and end), which also gives m′ − p = m + 3 parameters. Below

we discuss concretely how to retrieve a B-spline that explicitly goes through given waypoints, which can

be used to do this convertion from a smooth cubic Hermite to cubic B-spline.1

In conclusion, we can convert back-and-forth between Hermite and B-spline iff we talk about p−1-order

continuous splines. In this view, neither of them is better than the other – they are just alternative

parameterizations of smooth splines.

B-spline Matrix for Time Discretized Paths

Splines describe a continuous path x(t), but often we want to evaluate this path only at a finite number

of time slices t ∈ {t̂1, .., t̂S} ⊂ [0, T]. E.g., this could be a grid of S = 100 time slices over which we want

to optimize using KOMO, and for which we have to compute collision features. Let x ∈ RS×n be the

time discretized path, and z ∈ R(K+1)×n be the stack of control points. Then the B-spline representation

becomes

x = Bpz , with Bp ∈ RS×(K+1), Bp,si = Bi,p(t̂s) , (17)

where Bp is the B-spline matrix of degree p for this particular time grid {t̂1, .., t̂S}.

So whenever we have a problem (e.g., NLP) defined over the fine resolution samples x, the B-spline

matrix provides a linear re-parameterization and it is trivial to pull gradients (and Hessians) back to

define a problem over z. In our code, KOMO defines NLPs over discretized trajectories x – it is trivial

to wrap this with a linear B-spline parameterization to then imply a much lower-dimensional NLP over

the control points z.

Ensuring B-splines pass through waypoints

As we emphasized, the control point parameterization is not necessarily intuitive for a user, as the

resulting path does not transition through control points and control points are not “time-localized” at

the knot times. If a user provides a series of waypoints at desired times t̂s, how can we construct a

B-spline to ensure transitioning through these waypoints at the desired times?

The answer is again the matrix equation. Consider the cubic spline case and that the start and end

points and times are fixed. Therefore z0:1 and zK-1:K , as well as knots t0:3 and tm−3:m are fixed. The

user wants waypoints x1, .., xS at times t̂1, .., t̂S between start and end.

We can distribute S knots t4:3+S uniformly between start and end knots (or also at t̂1, .., t̂S), from which

it follows we have m = S + 7, and K = m − p − 1 = S + 3, which are K + 1 = S + 4 control points in

total, of which 4 are already fixed. So the S middle control points are still free, and matrix inversion

gives them from the desired waypoints,

z2:S+1 = B-1x1:S , with B ∈ RS×S , Bsi = Bi+1,3(t̂s), s, i = 1, .., S . (18)

Ensuring boundary velocities

Consider an online control situation where the system is in state (x, ẋ) and we want to steer it through

future waypoints. In the B-spline representation we have to construct a spline that starts with current

state as starting boundary.

For degrees 2 and 3 this is simple to achieve: In both cases we usually have z0 = z1 and zK-1 = zK to ensure

zero start and end velocities. Modifying z1 directly leads to the start velocity ẋ(0) = Ḃ0,p(0)z0+Ḃ1,p(0)z1.

1The method uses a matrix inversion. But the matrix is band-diagonal and the complexity of the inversion is linear in

m. I’m not aware of a simpler way to do the conversion.

6

But because of the normalization we have Ḃ0,p(0) = −Ḃ1,p(0), and therefore

ẋ(0) = Ḃ0,p(0)(z0 − z1) (19)

z1 = z0 −
ẋ(0)

Ḃ0,p(0)
. (20)

Gradients

The gradients of a B-spline represented path w.r.t. control points are trivial. But the gradients w.r.t. the

knots are less trivial. Here the basic equations:

Bi,p(t) =
t− ti

ti+p − ti
Bi,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1
Bi+1,p−1(t) (21)

=: v Bi,p−1 + w Bi+1,p−1 (22)

∂tiBi,p =
[−1
ti+p − ti

+
t− ti

(ti+p − ti)2

]
Bi,p−1 + v ∂tiBi,p−1 + w ∂tiBi+1,p−1 (23)

=
[−1
t− ti

+
1

ti+p − ti

]
v Bi,p−1 + v ∂tiBi,p−1 + w ∂tiBi+1,p−1 (24)

∂ti+1
Bi,p =

[1

ti+p+1 − ti+1

]
w Bi+1,p−1 + v ∂ti+1

Bi,p−1 + w ∂ti+1
Bi+1,p−1 (25)

∂ti+pBi,p =
[
− 1

ti+p − ti

]
v Bi,p−1 + v ∂ti+p Bi,p−1 + w ∂ti+p Bi+1,p−1 (26)

∂ti+p+1
Bi,p =

[1

ti+p+1 − t
− 1

ti+p+1 − ti+1

]
w Bi+1,p−1 + v ∂ti+p+1

Bi,p−1 + w ∂ti+p+1
Bi+1,p−1

(27)

7

	Single cubic piece for timing-optimal control to a target
	Single-piece optimal timing control

	Hermite Cubic Splines
	B-Splines
	Illustration
	Retrieving the piece-wise polynomials: Convertion to Hermite spline
	B-spline Matrix for Time Discretized Paths
	Ensuring B-splines pass through waypoints
	Ensuring boundary velocities
	Gradients

