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One can view a matrix A ∈ R3×4 as a collection of rows, A =


v⊤1
v⊤2
v⊤3

, vi ∈ R4. Applying A on x is then

scalar-producting all rows with x and outputs Ax =


v⊤1x
v⊤2x
v⊤3x

. The rows span an input space I = span v1:3.

All x that are orthogonal to I will be mapped to zero. The rows only pick up components of x that lie

within I.

Or one can view a matrix A as a collection of columns, A =
(
u1 u2 u3 u4

)
, ui ∈ R3. Applying A

on x then gives the linear combination Ax = x1u1 + ..+ x4u4 of these columns, with xi being the linear

coefficients. All outputs y = Ax will lie in the output space O = spanu1:4.

This view of matrices as input space spanning rows, or output space spanning columns, is useful and

clarifies that matricies transport from some input space to some output space. But given a matrix A in

raw form we don’t really have an explicit understanding of that transport: Regarding the input space,

some rows might be linearly dependent, so that the input dimension could be less than n. And the rows

may not be orthonormal, so we do not have an explicit orthonormal basis describing the input space.

The same two points hold for the output space (columns being linearly dependent and not orthonormal).

The SVD rewrites a matrix in a form where we really have an orthonormal basis for the input and output

spaces, and a clear understanding which input directions are mapped to which output directions. Here

the theorem:

For any matrix A ∈ Rm×n there exists a k ≤ m,n, orthonormal vectors v1, .., vk ∈ Rn, orthonormal

vectors u1, .., uk ∈ Rm, and scalar numbers σk > 0, such that

A =

k∑
i=1

uiσiv
⊤
i = USV⊤ , where S = diag(σ1:k), U = u1:k ∈ Rm×k, V = v1:k ∈ Rn×k . (1)

In this form, we see that V⊤ spans the input space with orthonormal rows v⊤i , and U spans the output

space with orthonormal columns ui. Further, we understand what’s happening “in between”: Each

component uiσiv
⊤
i first projects x on the ith input direction vi, then scales this with the factor σi, then

out-projects it to the output direction ui. This is done “independently” for all i = 1, .., k, as all vi and

ui are orthogonal. In short, what the matrix does it: it transports each input direction vi to the output

direction vi and scales by σi in between. The number k tells us how many dimensions are actually

transported (could be less than m and n).

k is called the rank of the matrix (note that we required σi > 0) and σi are called the singular values.

The matrices U and V are orthonormal and in some explanations characterized as rotations, and the
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equation A = USV⊤ described as rotation-scaling-rotation. That’s ok, but this story does not work well

if m ̸= n (we have different input and output spaces), or k < m,n (we don’t have full rank). I think the

above story is better.

Matrices of the form xy⊤ (which is also called outer product of x and y) are of rank 1 (the singular value

would be σ1 = |x||y|, and u = x/|x|, v = y/|y|). One can think of rank 1 matrices as minimalistic matrices:

they pick up a single input direction, scale, and out-project to a single output direction. The sum notation

A =
∑k

i=1 σiuiv
⊤
i describes A as a sum of rank 1 matrices, i.e., every matrix A can be thought of as a

composition of rank 1 matrices. This clarifies in what sense rank 1 matrices are minimalistic building

blocks of higher rank matrices.
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