Robotics

Exercise 1

Marc Toussaint
Machine Learning \& Robotics lab, U Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

October 14, 2014

No need to prepare for this first tutorial. We'll do the exercises together on the fly.

1 Matrix equations

a) Let X, A be arbitrary matrices, A invertible. Solve for X :

$$
X A+A^{\top}=\mathbf{I}
$$

b) Let X, A, B be arbitrary matrices, $\left(C-2 A^{\top}\right)$ invertible. Solve for X :

$$
X^{\top} C=2 A(X+B)^{\top}
$$

c) Let $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{d}, A \in \mathbb{R}^{d \times n}$. A obviously not invertible, but let $A^{\top} A$ be invertible. Solve for x :

$$
(A x-y)^{\top} A=\mathbf{0}_{n}^{\top}
$$

d) As above, additionally $B \in \mathbb{R}^{n \times n}, B$ positive-definite. Solve for x :

$$
(A x-y)^{\top} A+x^{\top} B=\mathbf{0}_{n}^{\top}
$$

2 Vector derivatives

Let $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{d}, f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}, A \in \mathbb{R}^{d \times n}, C \in \mathbb{R}^{d \times d}$. (Also provide the dimensionality of the results.)
a) What is $\frac{\partial}{\partial x} x$?
b) What is $\frac{\partial}{\partial x}\left[x^{\top} x\right]$?
c) What is $\frac{\partial}{\partial x}\left[f(x)^{\top} f(x)\right]$?
d) What is $\frac{\partial}{\partial x}\left[f(x)^{\top} C g(x)\right]$?
e) Let B and C be symmetric (and pos.def.). What is the minimum of $(A x-y)^{\top} C(A x-y)+x^{\top} B x$?

3 Optimization

Given $x \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we want to find $\operatorname{argmin}_{x} f(x)$. (We assume f is uni-modal.)
a) What 1st-order optimization methods (querying $f(x), \nabla f(x)$ in each iteration) do you know?
b) What 2nd-order optimization methods (querying $f(x), \nabla f(x), \nabla^{2} f(x)$ in each iteration) do you know?
c) What is backtracking line search?

