
Artificial Intelligence

Dynamic Programming

Marc Toussaint
University of Stuttgart
Winter 2016/17

Motivation:
So far focussed on tree search-like solvers for decision problems. There is a second important
family of methods based on programming approaches, including Value Iteration. The Bellman
optimality equation is at the heart of these methods.
Such dynamic programming methods are important also because standard Reinforcement
Learning methods (learning to make decisions when the environment model is initially
unknown) are directly derived from them.

Dynamic Programming – – 1/30

• The previous lecture introduced a whole range of formalisms to model
interactive domains

• What are methods to “solve” these problems, that is, compute optimal
policies for these problem formulations?

Dynamic Programming – – 2/30

Dynamic Programming

Dynamic Programming – Dynamic Programming – 3/30

State value function
• We consider a stationary MDP described by

P (s0) , P (s′ | s, a) , P (r | s, a) , π(at | st)

• The value (expected discounted return) of policy π when started in
state s:

V π(s) = Eπ{r0 + γr1 + γ2r2 + · · · | s0 =s}

discounting factor γ ∈ [0, 1]

• Definition of optimality: A policy π∗ is optimal iff

∀s : V π
∗
(s) = V ∗(s) where V ∗(s) = max

π
V π(s)

(simultaneously maximising the value in all states)

(In MDPs there always exists (at least one) optimal deterministic policy.)

Dynamic Programming – Dynamic Programming – 4/30

State value function
• We consider a stationary MDP described by

P (s0) , P (s′ | s, a) , P (r | s, a) , π(at | st)

• The value (expected discounted return) of policy π when started in
state s:

V π(s) = Eπ{r0 + γr1 + γ2r2 + · · · | s0 =s}

discounting factor γ ∈ [0, 1]

• Definition of optimality: A policy π∗ is optimal iff

∀s : V π
∗
(s) = V ∗(s) where V ∗(s) = max

π
V π(s)

(simultaneously maximising the value in all states)

(In MDPs there always exists (at least one) optimal deterministic policy.)
Dynamic Programming – Dynamic Programming – 4/30

An example for a
value function...

demo: test/mdp runVI

Values provide a gradient towards desirable states

Dynamic Programming – Dynamic Programming – 5/30

Value function

• The value function V is a central concept in all of RL!

Many algorithms can directly be derived from properties of the value function.

• In other domains (stochastic optimal control) it is also called cost-to-go
function (cost = −reward)

Dynamic Programming – Dynamic Programming – 6/30

Recursive property of the value function

V π(s) = E{r0 + γr1 + γ2r2 + · · · | s0 =s;π}
= E{r0 | s0 =s;π}+ γE{r1 + γr2 + · · · | s0 =s;π}
= R(s, π(s)) + γ

∑
s′ P (s′ | s, π(s)) E{r1 + γr2 + · · · | s1 =s′;π}

= R(s, π(s)) + γ
∑
s′ P (s′ | s, π(s)) V π(s′)

• We can write this in vector notation V π = Rπ + γP πV π

with vectors V π
s = V π(s), Rπ

s = R(s, π(s)) and matrix
P π
ss′ = P (s′ | s, π(s))

• For stochastic π(a|s):
V π(s) =

∑
a π(a|s)R(s, a) + γ

∑
s′,a π(a|s)P (s′ | s, a) V π(s′)

Dynamic Programming – Dynamic Programming – 7/30

Recursive property of the value function

V π(s) = E{r0 + γr1 + γ2r2 + · · · | s0 =s;π}
= E{r0 | s0 =s;π}+ γE{r1 + γr2 + · · · | s0 =s;π}
= R(s, π(s)) + γ

∑
s′ P (s′ | s, π(s)) E{r1 + γr2 + · · · | s1 =s′;π}

= R(s, π(s)) + γ
∑
s′ P (s′ | s, π(s)) V π(s′)

• We can write this in vector notation V π = Rπ + γP πV π

with vectors V π
s = V π(s), Rπ

s = R(s, π(s)) and matrix
P π
ss′ = P (s′ | s, π(s))

• For stochastic π(a|s):
V π(s) =

∑
a π(a|s)R(s, a) + γ

∑
s′,a π(a|s)P (s′ | s, a) V π(s′)

Dynamic Programming – Dynamic Programming – 7/30

Bellman optimality equation

• Recall the recursive property of the value function

V π(s) = R(s, π(s)) + γ
∑
s′ P (s′ | s, π(s)) V π(s′)

• Bellman optimality equation

V ∗(s) = maxa

[
R(s, a) + γ

∑
s′ P (s′ | s, a) V ∗(s′)

]
with π∗(s) = argmaxa

[
R(s, a) + γ

∑
s′ P (s′ | s, a) V ∗(s′)

]
(Sketch of proof: If π would select another action than argmaxa[·], then π′ which = π

everywhere except π′(s) = argmaxa[·] would be better.)

• This is the principle of optimality in the stochastic case

Dynamic Programming – Dynamic Programming – 8/30

Richard E. Bellman (1920-1984)
Bellman’s principle of optimality

A

B

A opt ⇒ B opt

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′ P (s′ | s, a) V ∗(s′)

]
π∗(s) = argmax

a

[
R(s, a) + γ

∑
s′ P (s′ | s, a) V ∗(s′)

]

Dynamic Programming – Dynamic Programming – 9/30

Value Iteration

• How can we use this to compute V ∗?

• Recall the Bellman optimality equation:

V ∗(s) = maxa

[
R(s, a) + γ

∑
s′ P (s′ | s, a) V ∗(s′)

]
• Value Iteration: (initialize Vk=0(s) = 0)

∀s : Vk+1(s) = max
a

[
R(s, a) + γ

∑
s′

P (s′|s, a) Vk(s′)
]

stopping criterion: maxs |Vk+1(s)− Vk(s)| ≤ ε

• Note that V ∗ is a fixed point of value iteration!

• Value Iteration converges to the optimal value function V ∗ (proof below)
demo: test/mdp runVI

Dynamic Programming – Dynamic Programming – 10/30

State-action value function (Q-function)

• We repeat the last couple of slides for the Q-function...

• The state-action value function (or Q-function) is the expected
discounted return when starting in state s and taking first action a:

Qπ(s, a) = Eπ{r0 + γr1 + γ2r2 + · · · | s0 =s, a0 =a}

= R(s, a) + γ
∑
s′

P (s′ | s, a) Qπ(s′, π(s′))

(Note: V π(s) = Qπ(s, π(s)).)

• Bellman optimality equation for the Q-function
Q∗(s, a) = R(s, a) + γ

∑
s′ P (s′ | s, a) maxa′ Q

∗(s′, a′)

with π∗(s) = argmaxaQ
∗(s, a)

Dynamic Programming – Dynamic Programming – 11/30

Q-Iteration

• Recall the Bellman equation:

Q∗(s, a) = R(s, a) + γ
∑
s′ P (s′ | s, a) maxa′ Q

∗(s′, a′)

• Q-Iteration: (initialize Qk=0(s, a) = 0)

∀s,a : Qk+1(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a) max
a′

Qk(s′, a′)

stopping criterion: maxs,a |Qk+1(s, a)−Qk(s, a)| ≤ ε

• Note that Q∗ is a fixed point of Q-Iteration!

• Q-Iteration converges to the optimal state-action value function Q∗

Dynamic Programming – Dynamic Programming – 12/30

Proof of convergence*

• Let ∆k = ||Q∗ −Qk||∞ = maxs,a |Q∗(s, a)−Qk(s, a)|

Qk+1(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a) max
a′

Qk(s′, a′)

≤ R(s, a) + γ
∑
s′

P (s′|s, a) max
a′

[
Q∗(s′, a′) + ∆k

]
=

[
R(s, a) + γ

∑
s′

P (s′|s, a) max
a′

Q∗(s′, a′)
]

+ γ∆k

= Q∗(s, a) + γ∆k

similarly: Qk ≥ Q∗ −∆k ⇒ Qk+1 ≥ Q∗ − γ∆k

• The proof translates directly also to value iteration

Dynamic Programming – Dynamic Programming – 13/30

For completeness*

• Policy Evaluation computes V π instead of V ∗: Iterate:

∀s : V πk+1(s) = R(s, π(s)) + γ
∑
s′ P (s′|s, π(s)) V πk (s′)

Or use matrix inversion V π = (I − γP π)−1Rπ, which is O(|S|3).

• Policy Iteration uses V π to incrementally improve the policy:
1. Initialise π0 somehow (e.g. randomly)
2. Iterate:

– Policy Evaluation: compute V πk or Qπk

– Policy Update: πk+1(s)← argmaxaQ
πk (s, a)

demo: test/mdp runPI

Dynamic Programming – Dynamic Programming – 14/30

Bellman equations

• Discounted infinite horizon:

V ∗(s) = max
a

Q∗(s, a) = max
a

[
R(s, a) + γ

∑
s′ P (s′ | s, a) V ∗(s′)

]
Q∗(s, a) = R(s, a) + γ

∑
s′

P (s′ | s, a) max
a′

Q∗(s′, a′)

• With finite horizon T (non stationary MDP), initializing VT+1(s) = 0

V ∗t (s) = max
a

Q∗t (s, a) = max
a

[
Rt(s, a) + γ

∑
s′ Pt(s

′ | s, a) V ∗t+1(s′)
]

Q∗t (s, a) = Rt(s, a) + γ
∑
s′

Pt(s
′ | s, a) max

a′
Q∗t+1(s′, a′)

• This recursive computation of the value functions is a form of Dynamic
Programming

Dynamic Programming – Dynamic Programming – 15/30

Comments & relations
• Tree search is a form of forward search, where heuristics (A∗ or UCB)

may optimistically estimate the value-to-go

• Dynamic Programming is a form of backward inference, which exactly
computes the value-to-go backward from a horizon

• UCT also estimates Q(s, a), but based on Monte-Carlo rollouts instead
of exact Dynamic Programming

• In deterministic worlds, Value Iteration is the same as Dijkstra
backward; it labels all nodes with the value-to-go (↔ cost-to-go).

• In control theory, the Bellman equation is formulated for continuous
state x and continuous time t and ends-up:

− ∂

∂t
V (x, t) = min

u

[
c(x, u) +

∂V

∂x
f(x, u)

]
which is called Hamilton-Jacobi-Bellman equation.
For linear quadratic systems, this becomes the Riccati equation

Dynamic Programming – Dynamic Programming – 16/30

Comments & relations

• The Dynamic Programming principle is applicable throughout the
domains – but inefficient if the state space is large (e.g. relational or
high-dimensional continuous)

• It requires iteratively computing a value function over the whole state
space

• If this is feasible, we get optimal policies

table PDDL NID MDP POMDP DEC-POMDP Games control

y y y y y y

Dynamic Programming – Dynamic Programming – 17/30

Dynamic Programming in Belief Space

Dynamic Programming – Dynamic Programming – 18/30

Back to the Bandits

• Can Dynamic Programming also be applied to the Bandit problem?
We learnt UCB as the standard approach to address Bandits – but
what would be the optimal policy?

Dynamic Programming – Dynamic Programming – 19/30

Bandits recap

• Let at ∈ {1, .., n} be the choice of machine at time t
Let yt ∈ R be the outcome with mean 〈yat〉
A policy or strategy maps all the history to a new choice:

π : [(a1, y1), (a2, y2), ..., (at-1, yt-1)] 7→ at

• Problem: Find a policy π that

max〈
∑T
t=1 yt〉

or
max〈yT 〉

• “Two effects” of choosing a machine:
– You collect more data about the machine→ knowledge
– You collect reward Dynamic Programming – Dynamic Programming – 20/30

The Belief State

• “Knowledge” can be represented in two ways:
– as the full history

ht = [(a1, y1), (a2, y2), ..., (at-1, yt-1)]

– as the belief
bt(θ) = P (θ|ht)

where θ are the unknown parameters θ = (θ1, .., θn) of all machines

• In the bandit case:
– The belief factorizes bt(θ) = P (θ|ht) =

∏
i bt(θi|ht)

e.g. for Gaussian bandits with constant noise, θi = µi

bt(µi|ht) = N(µi|ŷi, ŝi)

e.g. for binary bandits, θi = pi, with prior Beta(pi|α, β):

bt(pi|ht) = Beta(pi|α+ ai,t, β + bi,t)

ai,t =
∑t−1
s=1[as= i][ys=0] , bi,t =

∑t−1
s=1[as= i][ys=1]

Dynamic Programming – Dynamic Programming – 21/30

The Belief MDP
• The process can be modelled as

a1 a2 a3y1 y2 y3

θ θ θ θ

or as Belief MDP
a1 a2 a3y1 y2 y3

b0 b1 b2 b3

P (b′|y, a, b) =

1 if b′ = b′[b,a,y]

0 otherwise
, P (y|a, b) =

∫
θa
b(θa) P (y|θa)

• The Belief MDP describes a different process: the interaction between the
information available to the agent (bt or ht) and its actions, where the agent
uses his current belief to anticipate observations, P (y|a, b).

• The belief (or history ht) is all the information the agent has avaiable; P (y|a, b)
the “best” possible anticipation of observations. If it acts optimally in the Belief
MDP, it acts optimally in the original problem.

Optimality in the Belief MDP ⇒ optimality in the original problemDynamic Programming – Dynamic Programming – 22/30

Optimal policies via Dynamic Programming in
Belief Space

• The Belief MDP:
a1 a2 a3y1 y2 y3

b0 b1 b2 b3

P (b′|y, a, b) =

1 if b′ = b′[b,a,y]

0 otherwise
, P (y|a, b) =

∫
θa
b(θa) P (y|θa)

• Belief Planning: Dynamic Programming on the value function

∀b : Vt-1(b) = max
π
〈
∑T
t=t yt〉

= max
at

∫
yt
P (yt|at, b)

[
yt + Vt(b

′
[b,at,yt]

)
]

Dynamic Programming – Dynamic Programming – 23/30

V ∗t (h) := argmax
π

∫
θ
P (θ|h) V π,θt (h) (1)

= argmax
π

∫
θ
P (θ|h) max

a

[
R(a, h) +

∫
h′
P (h′|h, a, θ) V π,θt+1 (h

′)
]

(2)

V ∗t (b) = argmax
π

∫
θ
b(θ) max

a

[
R(a, b) +

∫
b′
P (b′|b, a, θ) V π,θt+1 (b

′)
]

(3)

= argmax
π

max
a

∫
θ

∫
b′
b(θ) P (b′|b, a, θ)

[
R(a, b) + V π,θt+1 (b

′)
]

(4)

P (b′|b, a, θ) =
∫
y
P (b′, y|b, a, θ) (5)

=

∫
y

P (θ|b, a, b′, y) P (b′, y|b, a)
P (θ|b, a)

(6)

=

∫
y

b′(θ) P (b′, y|b, a)
b(θ)

(7)

V ∗t (b) = argmax
π

max
a

∫
θ

∫
b′

∫
y
b(θ)

b′(θ) P (b′, y|b, a)
b(θ)

[
R(a, b) + V π,θt+1 (b

′)
]

(8)

= argmax
π

max
a

∫
b′

∫
y
P (b′, y|b, a)

[
R(a, b) +

∫
θ
b′(θ) V π,θt+1 (b

′)
]

(9)

= argmax
π

max
a

∫
y
P (y|b, a)

[
R(a, b) +

∫
θ
b′[b,a,y](θ) V

π,θ
t+1 (b

′
[b,a,y])

]
(10)

= max
a

∫
y
P (y|b, a)

[
R(a, b) + V ∗t+1(b

′
[b,a,y])

]
(11)

Dynamic Programming – Dynamic Programming – 24/30

Optimal policies

• The value function assigns a value (maximal achievable expected
return) to a state of knowledge

• While UCB approximates the value of an action by an optimistic
estimate of immediate return; Belief Planning acknowledges that this
really is a sequencial decision problem that requires to plan

• Optimal policies “navigate through belief space”
– This automatically implies/combines “exploration” and “exploitation”
– There is no need to explicitly address “exploration vs. exploitation” or

decide for one against the other. Optimal policies will automatically do this.

• Computationally heavy: bt is a probability distribution, Vt a function
over probability distributions

• The term
∫
yt
P (yt|at, b)

[
yt + Vt(b′[b,at,yt]

)
]

is related to the Gittins Index: it can be
computed for each bandit separately.

Dynamic Programming – Dynamic Programming – 25/30

• The concept of Belief Planning transfers to other uncertain domains:
Whenever decisions influence also the state of knowledge

– Active Learning
– Optimization
– Reinforcement Learning (MDPs with unknown environment)
– POMDPs

Dynamic Programming – Dynamic Programming – 26/30

• The tiger problem: a typical POMDP example:

(from the a “POMDP tutorial”)

Dynamic Programming – Dynamic Programming – 27/30

Solving POMDPs via Dynamic Programming in
Belief Space

a0

s0 s1 s2 s3

a1 a2y1 y2 y3y0

r0 r1 r2

• Again, the value function is a function over the belief

V (b) = max
a

[
R(b, s) + γ

∑
b′ P (b′|a, b) V (b′)

]

• Sondik 1971: V is piece-wise linear and convex: Can be described by
m vectors (α1, .., αm), each αi = αi(s) is a function over discrete s

V (b) = max
i

∑
s αi(s)b(s)

Exact dynamic programming possible, see Pineau et al., 2003

Dynamic Programming – Dynamic Programming – 28/30

Approximations & Heuristics

• Point-based Value Iteration (Pineal et al., 2003)
– Compute V (b) only for a finite set of belief points

• Discard the idea of using belief to “aggregate” history
– Policy directly maps history (window) to actions
– Optimize finite state controllers (Meuleau et al. 1999, Toussaint et al.
2008)

Dynamic Programming – Dynamic Programming – 29/30

Further reading

• Point-based value iteration: An anytime algorithm for POMDPs.
Pineau, Gordon & Thrun, IJCAI 2003.

• The standard references on the “POMDP page”
http://www.cassandra.org/pomdp/

• Bounded finite state controllers. Poupart & Boutilier, NIPS 2003.

• Hierarchical POMDP Controller Optimization by Likelihood
Maximization. Toussaint, Charlin & Poupart, UAI 2008.

Dynamic Programming – Dynamic Programming – 30/30

http://www.cassandra.org/pomdp/

Conclusions

• We covered two basic types of planning methods
– Tree Search: forward, but with backward heuristics
– Dynamic Programming: backward

• Dynamic Programming explicitly describes optimal policies. Exact DP
is computationally heavy in large domains→ approximate DP
Tree Search became very popular in large domains, esp. MCTS using
UCB as heuristic

• Planning in Belief Space is fundamental
– Describes optimal solutions to Bandits, POMDPs, RL, etc
– But computationally heavy
– Silver’s MCTS for POMDPs annotates nodes with history and belief

representatives

Dynamic Programming – Dynamic Programming – 31/30

