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Motivation:

This lecture covors a special case of graphical models for dynamic processes, where the graph
is roughly a chain. Such models are called Markov processes, or hidden Markov model when
the random variable of the dynamic process is not observable. These models are a
cornerstone of time series analysis, as well as for temporal models for language, for instance.
A special case of inference in the continuous case is the Kalman filter, which can be use to
tracking objects or the state of controlled system.
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Markov processes (Markov chains)

Markov assumption: X; depends on bounded subset of X.;
First-order Markov process: P(X; | Xo.1—1) = P(X; | Xy—1)
Second-order Markov process: P(X, | Xo.,—1) = P(X; | Xy o, Xy )

—

Second-order mm X t @ @

Sensor Markov assumption: P(Y; | Xo.¢, Yo.r 1) = P(Y: | X4)
Stationary process: transition model P(X;| X; ;) and
sensor model P(Y; | X;) fixed for all ¢
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Hidden Markov Models

e We assume we have
— observed (discrete or continuous) variables Y; in each time slice
— a discrete latent variable X; in each time slice
— some observation model P(Y; | X;;6)
— some transition model P(X; | X;.1;6)

¢ A Hidden Markov Model (HMM) is defined as the joint distribution

T T
P(Xo.r, Yor) = P(Xo) - [ [ P(Xe|X1a) H (YilXy) -

0999 S
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Different inference problems in Markov Models

filtering

smoothing e P(z:|yo.r) marginal posterior
= o P(z¢|yo.) filtering
prediction e P(z;|yo.a), t > a prediction
- t e P(z;|yos), t < b smoothing
] denotes the extent of data e P(yo.r) likelihood calculation

available

¢ Viterbi alignment: Find sequence =} ., that maximizes P(zo.7 | yo.1)
(This is done using max-product, instead of sum-product message passing.)
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Inference in an HMM - a tree!

17}7“%[()&]):2. Y01 uture(AXz:T- Y?S'T)
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Inference in an HMM - a tree!

17}7(’1%[ ( ‘X'“Z‘Z b} }/7“: 1 uture (‘XVZT ’ )/';T)

Frow(X2, )/2)

e The marginal posterior P(X;|Yi.r) is the product of three messages

P(Xt ‘ Yl:T) X P(Xt7Y1:T) = ,Upast(Xt) ,Unow(Xt) /f«future(Xt)
B
e o
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Inference in an HMM - a tree!

Frast(Xo:2, Your e (X277, Ya7)

[';10\\' (X’ 5 )/2)

e The marginal posterior P(X;|Yi.r) is the product of three messages

P(Xt ‘ Yl:T) X P(Xt7Y1:T) = ,Upast(Xt) ,Unow(Xt) /Muture(Xt)
N~ N~~~ &ﬂ,_/
e o

e Foralla<tandb > ¢
— X, conditionally independent from X, given X,
— Y, conditionally independent from Y} given X;
“The future is independent of the past given the present”

Markov property
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Inference in HMMs

Foast(Xoi2, Yor M Xour, Yar)

Applying the general message passing equations:

= Z P(zt|ze1) a1 (xe-1) 001 (we-1)

Tt-1

forward msg.  px, ,—x, (@) = c(xe)

ap(xo) = P(xo)

backward msg.  px, ., - x, (wt) =: Be(zs) = Z P(ziy1|ze) Beyr(@i41) 0e41(@i41)

Tii1
Br(zo) =
observation msg. 1y, —x, (T) =: (xt) = P(yt | xt)
posterior marginal q(x¢) < ag(zt) ot(xt) Be(we)
posterior marginal q(ze, wr41) < ae(we) 0t (w) P(Te41|me) 0t41(Te41) Be+1(Te41)
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Inference in HMMs - implementation notes

e The message passing equations can be implemented by reinterpreting them
as matrix equations: Let o, 3,, o, be the vectors corresponding to the
probability tables «:(z+), Bt (z+), ot (x+); and let P be the matrix with enties
P(z¢|x¢1). Then

toag=m, Br=1

2: fory—y1.71 o = P (at_l o Qt—l)

3: fory—7.1.0: B = P (Bit100441)

4: fori—g.7 : gy = @t 0 0,0 B

5: fory—o:11 : Qr = P o[(Byy100i41) (e 0 o))

where o is the element-wise product! Here, q, is the vector with entries ¢(z:),
and Q, the matrix with entries ¢(z:+1, z.). Note that the equation for Q,
describes Qi (z', z) = P(a'|2)[(Brs1 (z") or1(2)) (e () 00 (2))]-
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Inference in HMMs: classical derivation*

Given our knowledge of Belief propagation, inference in HMMs is simple. For reference,
here is a more classical derivation:

P(yor | 2t) P(xe)
P(yor)
_ P(yot | z¢) P(ys+ur [70) P(we)
P(yo:r)
_ PWo:t, x1) P(yesrr | 1)
P(yo.r)
_ ai(@t) Bi(z)
P(yor)

ag(xt) == P(yo:t, xt) = P(ye|re) P(yo:t1, 2t)
= P(yt|z:) ZP(l“t | @41) o1 (@eo1)

Pzt |yor) =

Be(we) := P(yerrr |2) = D Plysprr | e41) Plaega | z0)
Tt41
= Z [5t+1($t+1) P(yt+1‘$t+1)] P(xe41 | t)

Tt+4+1

Note: o, here is the same as «; o g, on all other slideglmic Models - — 8/14



HMM remarks

e The computation of forward and backward messages along the Markov
chain is also called forward-backward algorithm

e Sometimes, computing forward and backward messages (in disrete or
continuous context) is also called Bayesian filtering/smoothing

e The EM algorithm to learn the HMM parameters is also called
Baum-Welch algorithm

e If the latent variable z; is continuous z; € R instead of discrete, then
such a Markov model is also called state space model.

o [f the continuous transitions and observations are linear Gaussian
P(ziy1]ze) = Nz [ Az +a,Q) ,  Plyelae) = N(ye | Coy + ¢, W)

then the forward and backward messages «; and j3; are also Gaussian.
— forward filtering is also called Kalman filtering
— smoothing is also called Kalman smoothing
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Kalman Filter example

e filtering of a position (z,y) € R%:

2D filtering
121
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* observed
11 x filtered
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Kalman Filter example

e smoothing of a position (z,y) € R%:

12r-

2D smoothing

@ @*(3@

true
observed
smoothed

24 26
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HMM example: Learning Bach

¢ A machine “listens” (reads notes of) Bach pieces over and over again
— It's supposed to learn how to write Bach pieces itself (or at least
harmonize them).

e Harmonizing Chorales in the Style of J S Bach Moray Allan & Chris
Williams (NIPS 2004)

e use an HMM
— observed sequence Yj.; Soprano melody
— latent sequence Xg.7 chord & and harmony:
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Figure 1: Hidden state representations (a) for harmonisation, (b) for 0"1991%’5%%"-Mode|s — —12/14



Bach

e results: http://www.anc.inf.ed.ac.uk/demos/hmmbach/
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Figure 2: Most likely harmonisation under our model of chorale K4, BWV 48

e See also work by Gerhard Widmer

http://www.cp. jku.at/people/widmer/
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Dynamic Bayesian Networks

— Arbitrary BNs in each time slide
— Special case: MDPs, speech, etc
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