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Motivation:
This lecture covors a special case of graphical models for dynamic processes, where the graph
is roughly a chain. Such models are called Markov processes, or hidden Markov model when
the random variable of the dynamic process is not observable. These models are a
cornerstone of time series analysis, as well as for temporal models for language, for instance.
A special case of inference in the continuous case is the Kalman filter, which can be use to
tracking objects or the state of controlled system.
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Markov processes (Markov chains)
Markov assumption: Xt depends on bounded subset of X0:t−1

First-order Markov process: P (Xt |X0:t−1) = P (Xt |Xt−1)

Second-order Markov process: P (Xt |X0:t−1) = P (Xt |Xt−2, Xt−1)

Sensor Markov assumption: P (Yt |X0:t, Y0:t−1) = P (Yt |Xt)

Stationary process: transition model P (Xt |Xt−1) and
sensor model P (Yt |Xt) fixed for all t
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Hidden Markov Models

• We assume we have
– observed (discrete or continuous) variables Yt in each time slice
– a discrete latent variable Xt in each time slice
– some observation model P (Yt |Xt; θ)

– some transition model P (Xt |Xt-1; θ)

• A Hidden Markov Model (HMM) is defined as the joint distribution

P (X0:T , Y0:T ) = P (X0) ·
T∏
t=1

P (Xt|Xt-1) ·
T∏
t=0

P (Yt|Xt) .

X0 X1 X2 X3

Y0 Y1 Y2 Y3 YT

XT
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Different inference problems in Markov Models

• P (xt | y0:T ) marginal posterior

• P (xt | y0:t) filtering

• P (xt | y0:a), t > a prediction

• P (xt | y0:b), t < b smoothing

• P (y0:T ) likelihood calculation

• Viterbi alignment: Find sequence x∗0:T that maximizes P (x0:T | y0:T )
(This is done using max-product, instead of sum-product message passing.)
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Inference in an HMM – a tree!

X0 X1 X2 X3

Y0 Y1 Y2 Y3 YT

XT

Fnow(X2, Y2)

Ffuture(X2:T , Y3:T )Fpast(X0:2, Y0:1)

• The marginal posterior P (Xt |Y1:T ) is the product of three messages

P (Xt |Y1:T ) ∝ P (Xt, Y1:T ) = µpast︸︷︷︸
α

(Xt) µnow︸︷︷︸
%

(Xt) µfuture︸ ︷︷ ︸
β

(Xt)

• For all a < t and b > t

– Xa conditionally independent from Xb given Xt

– Ya conditionally independent from Yb given Xt

“The future is independent of the past given the present”
Markov property

(conditioning on Yt does not yield any conditional independences)
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Inference in HMMs

X0 X1 X2 X3

Y0 Y1 Y2 Y3 YT

XT

Fnow(X2, Y2)

Ffuture(X2:T , Y3:T )Fpast(X0:2, Y0:1)

Applying the general message passing equations:

forward msg. µXt-1→Xt (xt) =: αt(xt) =
∑
xt-1

P (xt|xt-1) αt-1(xt-1) %t-1(xt-1)

α0(x0) = P (x0)

backward msg. µXt+1→Xt (xt) =: βt(xt) =
∑
xt+1

P (xt+1|xt) βt+1(xt+1) %t+1(xt+1)

βT (x0) = 1

observation msg. µYt→Xt (xt) =: %t(xt) = P (yt |xt)
posterior marginal q(xt) ∝ αt(xt) %t(xt) βt(xt)

posterior marginal q(xt, xt+1) ∝ αt(xt) %t(xt) P (xt+1|xt) %t+1(xt+1) βt+1(xt+1)
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Inference in HMMs – implementation notes

• The message passing equations can be implemented by reinterpreting them
as matrix equations: Let αt,βt,%t be the vectors corresponding to the
probability tables αt(xt), βt(xt), %t(xt); and let P be the matrix with enties
P (xt |xt-1). Then

1: α0 = π, βT = 1

2: fort=1:T -1 : αt = P (αt-1 ◦ %t-1)
3: fort=T -1:0 : βt = P

> (βt+1 ◦ %t+1)

4: fort=0:T : qt = αt ◦ %t ◦ βt

5: fort=0:T -1 : Qt = P ◦ [(βt+1 ◦ %t+1) (αt ◦ %t)>]

where ◦ is the element-wise product! Here, qt is the vector with entries q(xt),
and Qt the matrix with entries q(xt+1, xt). Note that the equation for Qt

describes Qt(x
′, x) = P (x′|x)[(βt+1(x

′)%t+1(x
′))(αt(x)%t(x))].
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Inference in HMMs: classical derivation*
Given our knowledge of Belief propagation, inference in HMMs is simple. For reference,
here is a more classical derivation:

P (xt | y0:T ) =
P (y0:T |xt) P (xt)

P (y0:T )

=
P (y0:t |xt) P (yt+1:T |xt) P (xt)

P (y0:T )

=
P (y0:t, xt) P (yt+1:T |xt)

P (y0:T )

=
αt(xt) βt(xt)

P (y0:T )

αt(xt) := P (y0:t, xt) = P (yt|xt) P (y0:t-1, xt)

= P (yt|xt)
∑
xt-1

P (xt |xt-1) αt-1(xt-1)

βt(xt) := P (yt+1:T |xt) =
∑
xt+1

P (yt+1:T |xt+1) P (xt+1 |xt)

=
∑
xt+1

[
βt+1(xt+1) P (yt+1|xt+1)

]
P (xt+1 |xt)
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HMM remarks

• The computation of forward and backward messages along the Markov
chain is also called forward-backward algorithm

• Sometimes, computing forward and backward messages (in disrete or
continuous context) is also called Bayesian filtering/smoothing

• The EM algorithm to learn the HMM parameters is also called
Baum-Welch algorithm

• If the latent variable xt is continuous xt ∈ Rd instead of discrete, then
such a Markov model is also called state space model.

• If the continuous transitions and observations are linear Gaussian

P (xt+1|xt) = N(xt+1 |Axt + a,Q) , P (yt|xt) = N(yt |Cxt + c,W )

then the forward and backward messages αt and βt are also Gaussian.
→ forward filtering is also called Kalman filtering
→ smoothing is also called Kalman smoothing
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Kalman Filter example

• filtering of a position (x, y) ∈ R2:
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Kalman Filter example

• smoothing of a position (x, y) ∈ R2:
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HMM example: Learning Bach
• A machine “listens” (reads notes of) Bach pieces over and over again
→ It’s supposed to learn how to write Bach pieces itself (or at least
harmonize them).

• Harmonizing Chorales in the Style of J S Bach Moray Allan & Chris
Williams (NIPS 2004)

• use an HMM
– observed sequence Y0:T Soprano melody
– latent sequence X0:T chord & and harmony:
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HMM example: Learning Bach

• results: http://www.anc.inf.ed.ac.uk/demos/hmmbach/

• See also work by Gerhard Widmer
http://www.cp.jku.at/people/widmer/
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Dynamic Bayesian Networks
– Arbitrary BNs in each time slide
– Special case: MDPs, speech, etc
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