
Artificial Intelligence

Propositional Logic

Marc Toussaint
University of Stuttgart
Winter 2016/17

(slides based on Stuart Russell’s AI course)

Motivation:
Most students will have learnt about propositional logic their first classes. It represents the
simplest and most basic kind of logic. The main motivation to teach it really is as a precursor of
first-order logic (FOL), which is covered in the next lecture. The intro of the next lecture
motivates FOL in detail. The main point is that in recent years there were important
developments that unified FOL methods with probabilistic reasoning and learning methods,
which really allows to tackle novel problems.
In this lecture we go quickly over the syntax and semantics of propositional logic. Then we
cover the basic methods for logic inference: fwd & bwd chaining, as well as resolution.

Propositional Logic – – 1/36

Syntax & Semantics

Propositional Logic – Syntax & Semantics – 2/36

Outline

• Example: Knowledge-based agents & Wumpus world

• Logic in general—models and entailment

• Propositional (Boolean) logic

• Equivalence, validity, satisfiability

• Inference rules and theorem proving
– forward chaining
– backward chaining
– resolution

Propositional Logic – Syntax & Semantics – 3/36

Knowledge bases

agent

s0 s1

a0

s2

a1

s3

a2 a3y0 y1 y2 y3

• An agent maintains a knowledge base

Knowledge base = set of sentences of a formal language

Propositional Logic – Syntax & Semantics – 4/36

Wumpus World description
Performance measure

gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
The wumpus kills you if in the same square
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square
Actuators Left turn, Right turn,

Forward, Grab, Release, Shoot, Climb
Sensors Breeze, Glitter, Stench, Bump, Scream

Propositional Logic – Syntax & Semantics – 5/36

Exploring a wumpus world

Propositional Logic – Syntax & Semantics – 6/36

Exploring a wumpus world

Propositional Logic – Syntax & Semantics – 6/36

Exploring a wumpus world

Propositional Logic – Syntax & Semantics – 6/36

Exploring a wumpus world

Propositional Logic – Syntax & Semantics – 6/36

Exploring a wumpus world

Propositional Logic – Syntax & Semantics – 6/36

Exploring a wumpus world

Propositional Logic – Syntax & Semantics – 6/36

Exploring a wumpus world

Propositional Logic – Syntax & Semantics – 6/36

Exploring a wumpus world

Propositional Logic – Syntax & Semantics – 6/36

Other tight spots

Breeze in (1,2) and (2,1)
⇒ no safe actions

Assuming pits uniformly distributed,
(2,2) has pit w/ prob 0.86, vs. 0.31

Smell in (1,1) ⇒ cannot move
Can use a strategy of coercion:

shoot straight ahead
wumpus was there ⇒ dead ⇒

safe
wumpus wasn’t there ⇒ safe

Propositional Logic – Syntax & Semantics – 7/36

Logic in general

• A Logic is a formal languages for representing information such that
conclusions can be drawn

• The Syntax defines the sentences in the language

• The Semantics defines the “meaning” of sentences; i.e., define truth of
a sentence in a world

E.g., the language of arithmetic
x+ 2 ≥ y is a sentence; x2 + y > is not a sentence
x+ 2 ≥ y is true iff the number x+ 2 is no less than the number y
x+ 2 ≥ y is true in a world where x=7, y=1

x+ 2 ≥ y is false in a world where x=0, y=6

Propositional Logic – Syntax & Semantics – 8/36

Notions in general logic

• A logic is a language, elements α are sentences

• A model m is a world/state description that allows us to evaluate
α(m) ∈ {true, false} uniquely for any sentence α
We define M(α) = {m : α(m) = true} as the models for which α holds

• Entailment α |= β: M(α) ⊆M(β), “∀m : α(m)⇒ β(m)” (Folgerung)

• Equivalence α ≡ β: iff (α |= β and β |= α)

• A KB is a set (=conjunction) of sentences

• An inference procedure i can infer α from KB: KB `i α
• soundness of i: KB `i α implies KB |= α (Korrektheit)

• completeness of i: KB |= α implies KB `i α

Propositional Logic – Syntax & Semantics – 9/36

Propositional logic: Syntax
〈sentence〉 → 〈atomic sentence〉 | 〈complex sentence〉
〈atomic sentence〉 → true | false | P | Q | R | . . .

〈complex sentence〉 → ¬ 〈sentence〉
| (〈sentence〉 ∧ 〈sentence〉)
| (〈sentence〉 ∨ 〈sentence〉)
| (〈sentence〉 ⇒ 〈sentence〉)
| (〈sentence〉 ⇔ 〈sentence〉)

Propositional Logic – Syntax & Semantics – 10/36

Propositional logic: Semantics

• Each model specifies true/false for each proposition symbol
E.g. P1,2 P2,2 P3,1

true true false

(With these symbols, 8 possible models, can be enumerated
automatically.)

• Rules for evaluating truth with respect to a model m:
¬S is true iff S is false

S1 ∧ S2 is true iff S1 is true and S2 is true

S1 ∨ S2 is true iff S1 is true or S2 is true

S1 ⇒ S2 is true iff S1 is false or S2 is true

i.e., is false iff S1 is true and S2 is false

S1 ⇔ S2 is true iff S1 ⇒ S2 is true and S2 ⇒ S1 is true

• Simple recursive process evaluates an arbitrary sentence, e.g.,
¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (false ∨ true)= true ∧ true= true

Propositional Logic – Syntax & Semantics – 11/36

Notions in propositional logic – summary

• conjunction: α ∧ β, disjunction: α ∨ β, negation: ¬α

• implication: α⇒ β ≡ ¬α ∨ β

• biconditional: α⇔ β ≡ (α⇒ β) ∧ (β ⇒ α)

Note: |= and ≡ are statements about sentences in a logic; ⇒ and ⇔ are
symbols in the grammar of propositional logic

• α valid: true for any model (allgemeingültig). E.g.,
true; A ∨ ¬A; A⇒ A; (A ∧ (A⇒ B))⇒ B

Note: KB |= α iff [(KB ⇒ α) is valid]

• α unsatisfiable: true for no model. E.g., A ∧ ¬A;
Note: KB |= α iff [(KB ∧ ¬α) is unsatisfiable]

• literal: A or ¬A, clause: disj. of literals, CNF: conj. of clauses

• Horn clause: symbol | (conjunction of symbols ⇒ symbol), Horn form:
conjunction of Horn clauses
Modus Ponens rule: complete for Horn KBs α1,...,αn, α1∧···∧αn ⇒ β

β

Resolution rule: complete for propositional logic in CNF, let “`i = ¬mj”:
`1∨···∨`k, m1∨···∨mn

`1∨···∨`i−1∨`i+1∨···∨`k∨m1∨···∨mj−1∨mj+1∨···∨mn

Propositional Logic – Syntax & Semantics – 12/36

Logical equivalence
• Two sentences are logically equivalent iff true in same models:

α ≡ β if and only if α |= β and β |= α

(α ∧ β) ≡ (β ∧ α) commutativity of ∧

(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧

((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α⇒ β) ≡ (¬α ∨ β) implication elimination

(α⇔ β) ≡ ((α⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨

(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧
Propositional Logic – Syntax & Semantics – 13/36

Example: Entailment in the wumpus world
Situation after detecting nothing in [1,1],
moving right, breeze in [2,1]

Consider possible models for ?s
assuming only pits

3 Boolean choices ⇒ 8 possible models

Propositional Logic – Syntax & Semantics – 14/36

Wumpus models

Propositional Logic – Syntax & Semantics – 15/36

Wumpus models

KB = wumpus-world rules + observations

Propositional Logic – Syntax & Semantics – 16/36

Wumpus models

KB = wumpus-world rules + observations
α1 = “[1,2] is safe”, KB |= α1, proved by model checking

Propositional Logic – Syntax & Semantics – 17/36

Wumpus models

KB = wumpus-world rules + observations
α2 = “[2,2] is safe”, KB 6|= α2

Propositional Logic – Syntax & Semantics – 18/36

Inference Methods

Propositional Logic – Inference Methods – 19/36

Inference

• Inference in the general sense means: Given some pieces of
information (prior, observed variabes, knowledge base) what is the
implication (the implied information, the posterior) on other things
(non-observed variables, sentence)

• KB `i α = sentence α can be derived from KB by procedure i
Consequences of KB are a haystack; α is a needle.
Entailment = needle in haystack; inference = finding it

• Soundness: i is sound if
whenever KB `i α, it is also true that KB |= α

Completeness: i is complete if
whenever KB |= α, it is also true that KB `i α

Preview: we will define a logic (first-order logic) which is expressive enough to say almost
anything of interest, and for which there exists a sound and complete inference
procedure. That is, the procedure will answer any question whose answer follows from
what is known by the KB.

Propositional Logic – Inference Methods – 20/36

Inference by enumeration
B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB

false false false false false false false true true true true false false

false false false false false false true true true false true false false

...
...

...
...

...
...

...
...

...
...

...
...

...

false true false false false false false true true false true true false

false true false false false false true true true true true true true

false true false false false true false true true true true true true

false true false false false true true true true true true true true

false true false false true false false true false false true true false

...
...

...
...

...
...

...
...

...
...

...
...

...

true true true true true true true false true true false true false

Enumerate rows (different assignments to symbols),
if KB is true in row, check that α is too

Propositional Logic – Inference Methods – 21/36

Inference by enumeration
Depth-first enumeration of all models is sound and complete

function TT-Entails?(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

symbols← a list of the proposition symbols in KB and α
return TT-Check-All(KB,α, symbols, [])

function TT-Check-All(KB,α, symbols,model) returns true or false
if Empty?(symbols) then

if PL-True?(KB,model) then return PL-True?(α,model)
else return true

else do
P ←First(symbols); rest←Rest(symbols)
return TT-Check-All(KB,α, rest,Extend(P , true,model)) and

TT-Check-All(KB,α, rest,Extend(P , false,model))

O(2n) for n symbols

Propositional Logic – Inference Methods – 22/36

Proof methods

• Proof methods divide into (roughly) two kinds:

• Application of inference rules
– Legitimate (sound) generation of new sentences from old
– Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.
– Typically require translation of sentences into a normal form

• Model checking
truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis–Putnam–Logemann–Loveland

(see book)
heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

Propositional Logic – Inference Methods – 23/36

Forward and backward chaining

• Applicable when KB is in Horn Form

• Horn Form (restricted)
KB = conjunction of Horn clauses

Horn clause =
– proposition symbol; or
– (conjunction of symbols) ⇒ symbol

E.g., C ∧ (B ⇒ A) ∧ (C ∧D ⇒ B)

• Modus Ponens (for Horn Form): complete for Horn KBs

α1, . . . , αn, α1 ∧ · · · ∧ αn ⇒ β

β

Can be used with forward chaining or backward chaining.

• These algorithms are very natural and run in linear time

Propositional Logic – Inference Methods – 24/36

Forward chaining

• Represent a KB as a graph

• Fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

P ⇒ Q

L ∧M ⇒ P

B ∧ L⇒M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

Propositional Logic – Inference Methods – 25/36

Forward chaining example

Propositional Logic – Inference Methods – 26/36

Forward chaining example

Propositional Logic – Inference Methods – 26/36

Forward chaining example

Propositional Logic – Inference Methods – 26/36

Forward chaining example

Propositional Logic – Inference Methods – 26/36

Forward chaining example

Propositional Logic – Inference Methods – 26/36

Forward chaining example

Propositional Logic – Inference Methods – 26/36

Forward chaining example

Propositional Logic – Inference Methods – 26/36

Forward chaining example

Propositional Logic – Inference Methods – 26/36

Forward chaining algorithm
function PL-FC-Entails?(KB,q) returns true or false

inputs: KB, the knowledge base, a set of propositional Horn clauses
q, the query, a proposition symbol

local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do
p←Pop(agenda)
unless inferred[p] do

inferred[p]← true
for each Horn clause c in whose premise p appears do

decrement count[c]
if count[c] = 0 then do

if Head[c] = q then return true
Push(Head[c],agenda)

return false

Propositional Logic – Inference Methods – 27/36

Proof of completeness
FC derives every atomic sentence that is entailed by KB
1. FC reaches a fixed point where no new atomic sentences are
derived
2. Consider the final state as a model m, assigning true/false to
symbols
3. Every clause in the original KB is true in m

Proof: Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is false in m
Then a1 ∧ . . . ∧ ak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB
5. If KB |= q, q is true in every model of KB, including m
General idea: construct any model of KB by sound inference, check α

Propositional Logic – Inference Methods – 28/36

Backward chaining

• Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

• Avoid loops: check if new subgoal is already on the goal stack

• Avoid repeated work: check if new subgoal
1) has already been proved true, or
2) has already failed

Propositional Logic – Inference Methods – 29/36

Backward chaining example

Propositional Logic – Inference Methods – 30/36

Backward chaining example

Propositional Logic – Inference Methods – 30/36

Backward chaining example

Propositional Logic – Inference Methods – 30/36

Backward chaining example

Propositional Logic – Inference Methods – 30/36

Backward chaining example

Propositional Logic – Inference Methods – 30/36

Backward chaining example

Propositional Logic – Inference Methods – 30/36

Backward chaining example

Propositional Logic – Inference Methods – 30/36

Backward chaining example

Propositional Logic – Inference Methods – 30/36

Backward chaining example

Propositional Logic – Inference Methods – 30/36

Backward chaining example

Propositional Logic – Inference Methods – 30/36

Forward vs. backward chaining
FC is data-driven, cf. automatic, unconscious processing,

e.g., object recognition, routine decisions
May do lots of work that is irrelevant to the goal
BC is goal-driven, appropriate for problem-solving,

e.g., Where are my keys? How do I get into a PhD program?
Complexity of BC can be much less than linear in size of KB

Propositional Logic – Inference Methods – 31/36

Resolution

• Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals︸ ︷︷ ︸

clauses
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF): complete for propositional logic
`1∨···∨`k, m1∨···∨mn

`1∨···∨`i−1∨`i+1∨···∨`k∨m1∨···∨mj−1∨mj+1∨···∨mn

where `i and mj are complementary literals.

• E.g.,
P1,3 ∨ P2,2, ¬P2,2

P1,3

• Resolution is sound and complete for propositional logic

Propositional Logic – Inference Methods – 32/36

Conversion to CNF
B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate⇔, replacing α⇔ β with (α⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

2. Eliminate⇒, replacing α⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨B1,1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨B1,1) ∧ (¬P2,1 ∨B1,1)

Propositional Logic – Inference Methods – 33/36

Resolution algorithm
Proof by contradiction, i.e., show KB ∧ ¬α unsatisfiable

function PL-Resolution(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB ∧ ¬α
new←{}
loop do

for each Ci, Cj in clauses do
resolvents←PL-Resolve(Ci,Cj)
if resolvents contains the empty clause then return true
new←new ∪ resolvents

if new ⊆ clauses then return false
clauses← clauses ∪new

Propositional Logic – Inference Methods – 34/36

Resolution example
KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1 α = ¬P1,2

Propositional Logic – Inference Methods – 35/36

Summary
Logical agents apply inference to a knowledge base

to derive new information and make decisions
Basic concepts of logic:

– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundness: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.
Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic
Propositional logic lacks expressive power

Propositional Logic – Inference Methods – 36/36

