
Optimization Algorithms

Unconstraint Optimization Basics

Descent direction & stepsize, plain gradient descent,
stepsize adaptation & backtracking line search, trust
region, steepest descent, Newton, Gauss-Newton,

Quasi-Newton, BFGS, conjugate gradient, exotic: Rprop

Marc Toussaint
Technical University of Berlin

Winter 2020/21

Gradient descent

• Objective function: f : Rn → R

Gradient vector: ∇f(x) =
[
∂
∂x
f(x)

]>
∈ Rn

• Problem:

min
x
f(x)

where we can evaluate f(x) and ∇f(x) for any x ∈ Rn

• Plain gradient descent: iterative steps in the direction −∇f(x).

Input: initial x ∈ Rn, function ∇f(x), stepsize α, tolerance θ
Output: x

1: repeat
2: x← x− α∇f(x)

3: until |∆x| < θ [perhaps for 10 iterations in sequence]

Unconstraint Optimization Basics – – 2/41

• Plain gradient descent is really not efficient

• Two core issues of unconstrainted optimization:

A. Stepsize

B. Descent direction

Unconstraint Optimization Basics – – 3/41

Stepsize

• Making steps proportional to ∇f(x)?

large gradient
 large step?

small gradient
 small step?

• We need methods that
– robustly adapt stepsize
– exploit convexity, if known
– perhaps be independent of |∇f(x)| (e.g. if non-convex as above)

Unconstraint Optimization Basics – – 4/41

Stepsize Adaptation: Backtracking Line Search

Input: initial x ∈ Rn, functions f(x) and ∇f(x), tolerance θ, parameters
(defaults: %+α = 1.2, %−α = 0.5, δmax =∞, %ls = 0.01)

1: initialize stepsize α = 1

2: repeat
3: δ ← − ∇f(x)|∇f(x)| // (alternative: δ = −∇f(x))

4: while f(x+ αδ) > f(x)+%ls∇f(x)>(αδ) do // line search
5: α← %−αα // decrease stepsize
6: end while
7: x← x+ αδ

8: α← min{%+αα, δmax} // increase stepsize
9: until |αδ| < θ // perhaps for 10 iterations in sequence

• α determines the absolute stepsize

• Guaranteed monotonicity (by construction)
(“Typically” ensures convergence to locally convex minima; see later)

Unconstraint Optimization Basics – – 5/41

Backtracking line search

• Line search in general denotes the problem

min
α≥0

f(x+ αδ)

for some step direction δ.

• The most common line search is backtracking, which decreases α as
long as

f(x+ αδ) > f(x) + %ls∇f(x)>(αδ)

%−α describes the stepsize decrement in case of a rejected step
%ls describes a minimum desired decrease in f(x)

• Boyd at al: typically %ls ∈ [0.01, 0.3] and %−α ∈ [0.1, 0.8]

Unconstraint Optimization Basics – – 6/41

Backtracking line search

Unconstraint Optimization Basics – – 7/41

Wolfe Conditions

• The 1st Wolfe condition (“sufficient decrease condition”)

f(x+ αδ) ≤ f(x) + %ls∇f(x)>(αδ)

requires a decrease of f at least %ls-times “as expected”

• The 2nd (stronger) Wolfe condition (“curvature condition”)

|∇f(x+ αδ)>δ| ≤ %ls2|∇f(x)>δ|

implies a requires an decrease of the slope by a factor %ls2.
%ls2 ∈ (%ls,

1
2) (for conjugate gradient)

• See Nocedal et al., Section 3.1 & 3.2 for more general proofs of
convergence of any method that ensures the Wolfe conditions after
each line search

Unconstraint Optimization Basics – – 8/41

Convergence for (locally) convex functions

• Theorem (Exponential convergence on convex functions)
– Let f : Rn → R be an objective function
– with eigenvalues λ of the Hessian ∇2f(x) bounded by m < λ < M , with
m > 0, ∀x ∈ Rn

– then gradient descent with backtracking line search converges
exponentially with convergence rate (1− 2m

M
%ls%
−
α).

• The exercises guide through the proof

Unconstraint Optimization Basics – – 9/41

Newton Methods & Descent Direction

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 10/41

Steepest Descent Direction

• The gradient −∇f(x) is sometimes called steepest descent direction

Is it really?

• Here is a possible definition:

The steepest descent direction is the one where, when you make a
step of length 1, you get the largest decrease of f in its linear
approximation.

argmin
δ
∇f(x)>δ s.t. ||δ|| = 1

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 11/41

Steepest Descent Direction

• The gradient −∇f(x) is sometimes called steepest descent direction

Is it really?

• Here is a possible definition:

The steepest descent direction is the one where, when you make a
step of length 1, you get the largest decrease of f in its linear
approximation.

argmin
δ
∇f(x)>δ s.t. ||δ|| = 1

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 11/41

Steepest Descent Direction

• But the norm ||δ||2 = δ>Aδ depends on the metric A!

Let A = B>B (Cholesky decomposition) and z = Bδ

δ∗ = argmin
δ
∇f>δ s.t. δ>Aδ = 1

= B-1 argmin
z

(B-1z)>∇f s.t. z>z = 1

= B-1 argmin
z

z>B->∇f s.t. z>z = 1

= B-1[−B->∇f] = −A-1∇f

• The steepest descent direction is δ = −A-1∇f

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 12/41

Behavior under linear coordinate transformations

• Let B be a matrix that describes a linear transformation in coordinates

• A coordinate vector x transforms as z = Bx

• The gradient vector ∇xf(x) transforms as ∇zf(z) = B->∇xf(x)

• The metric A transforms as Az = B->AxB
-1

• The steepest descent transforms as A-1
z ∇zf(z) = BA-1

x∇xf(x)

The steepest descent transforms like a normal coordinate vector
(covariant)

(more details in the Maths script)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 13/41

Newton Step

• For finding roots (zero points) of f(x)

x← x− f(x)

f ′(x)

• For finding optima of f(x) in 1D (which are roots of f ′(x)):

x← x− f ′(x)

f ′′(x)

• For finding optima in higher dimensions x ∈ Rn:

x← x−∇2f(x)-1∇f(x)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 14/41

Newton Step

• For finding roots (zero points) of f(x)

x← x− f(x)

f ′(x)

• For finding optima of f(x) in 1D (which are roots of f ′(x)):

x← x− f ′(x)

f ′′(x)

• For finding optima in higher dimensions x ∈ Rn:

x← x−∇2f(x)-1∇f(x)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 14/41

Newton Step

• Assume we have access to the symmetric Hessian

∇2f(x) =

∂2

∂x1∂x1
f(x) ∂2

∂x1∂x2
f(x) · · · ∂2

∂x1∂xn
f(x)

∂2

∂x1
∂x2

f(x)
...

...
...

∂2

∂xn∂x1
f(x) · · · · · · ∂2

∂xn∂xn
f(x)

∈ Rn×n

• which defines the Taylor expansion:

f(x+ δ) ≈ f(x) +∇f(x)>δ +
1

2
δ>∇2f(x) δ

Note: ∇2f(x) acts like a metric for δ

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 15/41

Notes on the Newton Step

• If f is a 2nd-order polynomial, the Newton step jumps to the optimum
in just one step.

• Unlike the gradient magnitude |∇f(x)|, the magnitude of the Newton
step δ is meaningful and scale invariant!

– If you’d rescale f (trade cents by Euros), δ is unchanged
– |δ| is the distance to the optimum of the 2nd-order Taylor.

• Unlike the gradient ∇f(x), the Newton step δ is truely a vector!
– The Newton step is invariant under coordinate transformations; the

coordinates of δ transforms contra-variant, as it is supposed to for vector
coordinates

– The proof is exactly the same as for the steepest descent with a
non-Euclidean metric – the Hessian acts as a metric

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 16/41

Why 2nd order information is better

• Better direction:

Conjugate Gradient

Plain Gradient

2nd Order

• Better stepsize:
– A full Newton step jumps directly to the minimum of the local squared

approx.
– Robust Newton methods combine this with line search and damping

(Levenberg-Marquardt)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 17/41

Basic Newton method

Input: initial x ∈ Rn, functions f(x),∇f(x),∇2f(x), tolerance θ, parame-
ters (defaults: %+α = 1.2, %−α = 0.5, %ls = 0.01, λ)

1: initialize stepsize α = 1, fixed damping λ
2: repeat
3: compute δ to solve (∇2f(x) + λI) δ = −∇f(x)

4: while f(x+ αδ) > f(x) + %ls∇f(x)>(αδ) do // line search
5: α← %−αα // decrease stepsize
6: end while
7: x← x+ αδ // step is accepted
8: α← min{%+αα, 1} // increase stepsize
9: until ||αδ||∞ < θ

• Notes:

– Line 3 computes the Newton step δ = −∇2f(x)-1∇f(x),
e.g. using a special Lapack routine dposv to solve Ax = b (using Cholesky)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 18/41

Damping, λ, Trust-Region, Levenberg-Marquardt
• δ solves the problem

min
δ

[
∇f(x)>δ + 1

2
δ>∇2f(x)δ +

1

2
λδ2)

]
.

– λ introduces a squared penalty for large steps

• Trust region method:

min
δ

[
∇f(x)>δ + 1

2
δ>∇2f(x)δ

]
s.t. δ2 ≤ β

– β defines the trust region

• Solving this using Lagrange parameters (as we will learn it later):

L(δ, λ) = ∇f(x)>δ + 1

2
δ>∇2f(x)δ + λ(δ2 − β)

∇δL(δ, λ) = ∇f(x)>+ δ>(∇2f(x) + 2λI)

gives the step δ = −(∇2f(x) + 2λI)-1∇f(x), with λ the dual variable

• For λ→∞, δ becomes aligned with −∇f(x) (but |δ| → 0)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 19/41

Damping, λ, Trust-Region, Levenberg-Marquardt
• δ solves the problem

min
δ

[
∇f(x)>δ + 1

2
δ>∇2f(x)δ +

1

2
λδ2)

]
.

– λ introduces a squared penalty for large steps

• Trust region method:

min
δ

[
∇f(x)>δ + 1

2
δ>∇2f(x)δ

]
s.t. δ2 ≤ β

– β defines the trust region

• Solving this using Lagrange parameters (as we will learn it later):

L(δ, λ) = ∇f(x)>δ + 1

2
δ>∇2f(x)δ + λ(δ2 − β)

∇δL(δ, λ) = ∇f(x)>+ δ>(∇2f(x) + 2λI)

gives the step δ = −(∇2f(x) + 2λI)-1∇f(x), with λ the dual variable

• For λ→∞, δ becomes aligned with −∇f(x) (but |δ| → 0)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 19/41

Damping, λ, Trust-Region, Levenberg-Marquardt
• δ solves the problem

min
δ

[
∇f(x)>δ + 1

2
δ>∇2f(x)δ +

1

2
λδ2)

]
.

– λ introduces a squared penalty for large steps

• Trust region method:

min
δ

[
∇f(x)>δ + 1

2
δ>∇2f(x)δ

]
s.t. δ2 ≤ β

– β defines the trust region

• Solving this using Lagrange parameters (as we will learn it later):

L(δ, λ) = ∇f(x)>δ + 1

2
δ>∇2f(x)δ + λ(δ2 − β)

∇δL(δ, λ) = ∇f(x)>+ δ>(∇2f(x) + 2λI)

gives the step δ = −(∇2f(x) + 2λI)-1∇f(x), with λ the dual variable

• For λ→∞, δ becomes aligned with −∇f(x) (but |δ| → 0)
Unconstraint Optimization Basics – Newton Methods & Descent Direction – 19/41

Newton method with non-pos-def fallback

1: initialize stepsize α = 1

2: repeat
3: try to compute δ to solve (∇2f(x) + λI) δ = −∇f(x)

4: if ∇f(x)>δ > 0 (non-descent) or fails (ill-def. linear system) then
5: δ ← − ∇f(x)|∇f(x)| // (gradient direction)
6: (Or: choose λ > [−minimal eigenvalue of ∇2f(x)]+ and repeat)
7: end if
8: while f(x+ αδ) > f(x) + %ls∇f(x)>(αδ) do // line search
9: α← %−αα // decrease stepsize

10: optionally: λ← %+λ λ and recompute d // increase damping
11: end while
12: x← x+ αδ // step is accepted
13: α← min{%+αα, 1} // increase stepsize
14: optionally: λ← %−λ λ // decrease damping
15: until ||αδ||∞ < θ repeatedly

• See comments in exercise e02

• Demo ...

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 20/41

• In the remainder: Extensions of the Newton approach:
– Gauss-Newton
– Quasi-Newton
– BFGS, (L)BFGS
– Conjugate Gradient

• And a crazy method: Rprop

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 21/41

Gauss-Newton method

• Consider a sum-of-squares problem:

min
x
f(x) where f(x) = φ(x)>φ(x) =

d∑
i=1

φi(x)2

with features φ(x) ∈ Rd, and we can evaluate φ(x), ∂
∂xφ(x) for any

x ∈ Rn

• φ(x) ∈ Rd is a vector; each entry contributes a squared cost term to f(x)

• ∂
∂x
φ(x) is the Jacobian (d× n-matrix)

∂

∂x
φ(x) =

∂
∂x1

φ1(x)
∂
∂x2

φ1(x) · · · ∂
∂xn

φ1(x)

∂
∂x1

φ2(x)
...

...
...

∂
∂x1

φd(x) · · · · · · ∂
∂xn

φd(x)

∈ Rd×n

with 1st-order Taylor expansion φ(x+ δ) = φ(x) + ∂
∂x
φ(x) δ

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 22/41

Gauss-Newton method

• The gradient and Hessian of f(x) are

f(x) = φ(x)>φ(x)

∇f(x) = 2
∂

∂x
φ(x)>φ(x) (recall ∇f(x) ≡ ∂

∂x
f(x)>)

∇2f(x) = 2
∂

∂x
φ(x)>

∂

∂x
φ(x) + 2φ(x)>∇2φ(x)

• The Gauss-Newton method is the Newton method for f(x) = φ(x)>φ(x)

while approximating ∇2φ(x) ≈ 0

In the Newton algorithm, replace line 3 by solving

(2
∂

∂x
φ(x)>

∂

∂x
φ(x) + λI) δ = −2

∂

∂x
φ(x)>φ(x)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 23/41

Gauss-Newton method

• The approximate Hessian H = 2 ∂
∂xφ(x)> ∂

∂xφ(x) is always
semi-pos-def!

• H is a sum of rank-1 matrices:

H = 2

d∑
i=1

∇φi(x)>∇φi(x)

(which implies semi-pos-def)

• Computing H requires only first-order derivatives of features φ, no
computationally expensive Hessians

• H can be interpreted as pullback of Euclidean norm φ>φ in feature
space. As it is x-dependent, this is a non-constant metric in x-space –
it defines a Riemannian metric. (See math notes.)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 24/41

Gauss-Newton method

• The approximate Hessian H = 2 ∂
∂xφ(x)> ∂

∂xφ(x) is always
semi-pos-def!

• H is a sum of rank-1 matrices:

H = 2

d∑
i=1

∇φi(x)>∇φi(x)

(which implies semi-pos-def)

• Computing H requires only first-order derivatives of features φ, no
computationally expensive Hessians

• H can be interpreted as pullback of Euclidean norm φ>φ in feature
space. As it is x-dependent, this is a non-constant metric in x-space –
it defines a Riemannian metric. (See math notes.)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 24/41

Gauss-Newton method

• The approximate Hessian H = 2 ∂
∂xφ(x)> ∂

∂xφ(x) is always
semi-pos-def!

• H is a sum of rank-1 matrices:

H = 2

d∑
i=1

∇φi(x)>∇φi(x)

(which implies semi-pos-def)

• Computing H requires only first-order derivatives of features φ, no
computationally expensive Hessians

• H can be interpreted as pullback of Euclidean norm φ>φ in feature
space. As it is x-dependent, this is a non-constant metric in x-space –
it defines a Riemannian metric. (See math notes.)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 24/41

Gauss-Newton method

• The approximate Hessian H = 2 ∂
∂xφ(x)> ∂

∂xφ(x) is always
semi-pos-def!

• H is a sum of rank-1 matrices:

H = 2

d∑
i=1

∇φi(x)>∇φi(x)

(which implies semi-pos-def)

• Computing H requires only first-order derivatives of features φ, no
computationally expensive Hessians

• H can be interpreted as pullback of Euclidean norm φ>φ in feature
space. As it is x-dependent, this is a non-constant metric in x-space –
it defines a Riemannian metric. (See math notes.)

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 24/41

Robotics example

• Sum-of-squares problems appear at many places in AI: “minimize
squared errors”

• Basic robotics example: Trajectory optimization
Let q : {1, .., T} 7→ Rn be a discretized path in Rn

min
q

T∑
t=1

(qt + qt-2 − 2qt-1)2 + φ(qT)2

where q0, q-1 are given, and φ(qT) are some features of the end
configuration qT

Unconstraint Optimization Basics – Newton Methods & Descent Direction – 25/41

Quasi-Newton methods

Unconstraint Optimization Basics – Quasi-Newton methods – 26/41

Quasi-Newton methods

• Assume we cannot evaluate ∇2f(x).
Can we still use 2nd order methods?

• Yes: We can approximate ∇2f(x) from the data {(xi,∇f(xi))}ki=1 of
previous iterations

(General view: We can learn from the data {(xi,∇f(xi))}ki=1 e.g.,
Bayesian optimization or model-based for blackbox optimization)

Unconstraint Optimization Basics – Quasi-Newton methods – 27/41

Basic example
• We’ve seen already two data points (x1,∇f(x1)) and (x2,∇f(x2))

How can we estimate ∇2f(x)?

• In 1D:

∇2f(x) ≈ ∇f(x2)−∇f(x1)

x2 − x1

• In Rn: let y = ∇f(x2)−∇f(x1), δ = x2 − x1

Find “simplest” approximate Hessian matrix H or H -1 to fulfil

H δ
!
= y or δ

!
= H -1y (1)

(The first equation is called secant equation)

• Symmetric rank-1 solutions for H and H -1:

H =
yy>

y>δ
or H -1 =

δδ>

δ>y
(2)

[Left: how to update H. Right: how to update directly H-1.]

Unconstraint Optimization Basics – Quasi-Newton methods – 28/41

Basic example
• We’ve seen already two data points (x1,∇f(x1)) and (x2,∇f(x2))

How can we estimate ∇2f(x)?

• In 1D:

∇2f(x) ≈ ∇f(x2)−∇f(x1)

x2 − x1

• In Rn: let y = ∇f(x2)−∇f(x1), δ = x2 − x1

Find “simplest” approximate Hessian matrix H or H -1 to fulfil

H δ
!
= y or δ

!
= H -1y (1)

(The first equation is called secant equation)

• Symmetric rank-1 solutions for H and H -1:

H =
yy>

y>δ
or H -1 =

δδ>

δ>y
(2)

[Left: how to update H. Right: how to update directly H-1.]Unconstraint Optimization Basics – Quasi-Newton methods – 28/41

BFGS

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) method:

Input: initial x ∈ Rn, functions f(x),∇f(x), tolerance θ
Output: x

1: initialize H-1 = In
2: repeat
3: compute δ = −H-1∇f(x)

4: perform a line search minα f(x+ αδ)

5: δ ← αδ

6: y ← ∇f(x+ δ)−∇f(x)

7: x← x+ δ

8: update H-1 ←
(
I− yδ>

δ>y

)>
H-1

(
I− yδ>

δ>y

)
+ δδ>

δ>y
9: until ||δ||∞ < θ

• Notes:
– The blue term is the H-1-update as on the previous slide
– The red term “deletes” previous H-1-components. Check: H-1y = δ

– equivalent to the Sherman-Morrison formula: H ← H − Hδδ>H>

δTHδ
+ yy>

y>δ

Unconstraint Optimization Basics – Quasi-Newton methods – 29/41

L-BFGS

• In high dimensions, we do not want to explicitly store a dense H -1.
Instead we store vectors {vi} such that H -1 =

∑
i viv

>
i

• L-BFGS (limited memory BFGS) limits the rank of the H -1 and thereby
the used memory (number of vectors vi)

• Some thoughts:
In principle, there are alternative ways to estimate H-1 from the data
{(xi, f(xi),∇f(xi))}ki=1, e.g. using Gaussian Process regression with
derivative observations

– not only the derivatives but also the value f(xi) should give information on
H(x) for non-quadratic functions

– should one weight ‘local’ data stronger than ‘far away’?
(GP covariance function)

– related to model-based search (see Blackbox Optimization lecture)

Unconstraint Optimization Basics – Quasi-Newton methods – 30/41

L-BFGS

• In high dimensions, we do not want to explicitly store a dense H -1.
Instead we store vectors {vi} such that H -1 =

∑
i viv

>
i

• L-BFGS (limited memory BFGS) limits the rank of the H -1 and thereby
the used memory (number of vectors vi)

• Some thoughts:
In principle, there are alternative ways to estimate H-1 from the data
{(xi, f(xi),∇f(xi))}ki=1, e.g. using Gaussian Process regression with
derivative observations

– not only the derivatives but also the value f(xi) should give information on
H(x) for non-quadratic functions

– should one weight ‘local’ data stronger than ‘far away’?
(GP covariance function)

– related to model-based search (see Blackbox Optimization lecture)

Unconstraint Optimization Basics – Quasi-Newton methods – 30/41

(Nonlinear) Conjugate Gradient

Unconstraint Optimization Basics – (Nonlinear) Conjugate Gradient – 31/41

Conjugate Gradient

• The “Conjugate Gradient Method” is a method for solving (large, or
sparse) linear eqn. systems Ax+ b = 0, without inverting or
decomposing A. The steps will be “A-orthogonal” (=conjugate).
We mention its extension for optimizing nonlinear functions f(x)

• As before we evaluted g′ = ∇f(x1) and g = ∇f(x2) at two different
points x1, x2 ∈ Rn

• Additional assumption: exact line-search step to x2:
– x2 = x1 + αδ1 , α = argminα f(x1 + αδ1)

– iso-lines of f(x) at x2 are tangential to δ1

⇒ The next search direction should be “orthogonal” to the previous one,
but orthogonal w.r.t. the Hessian H, i.e., d>2Hd1 = 0, which is called
conjugate

Unconstraint Optimization Basics – (Nonlinear) Conjugate Gradient – 32/41

Conjugate Gradient

Input: initial x ∈ Rn, functions f(x),∇f(x), tolerance θ
Output: x

1: initialize descent direction d = g = −∇f(x)

2: repeat
3: α← argminα f(x+ αd) // line search
4: x← x+ αd

5: g′ ← g, g = −∇f(x) // store and compute grad

6: β ← max

{
g>(g−g′)
g′>g′

, 0

}
7: d← g + βd // conjugate descent direction
8: until |∆x| < θ

• Notes:
– β > 0: The new descent direction always adds a bit of the old direction!
– This momentum essentially provides 2nd order information
– The equation for β is by Polak-Ribière: On a quadratic function
f(x) = x>Ax+ b>x this leads to conjugate search directions, d′>Ad = 0.

Unconstraint Optimization Basics – (Nonlinear) Conjugate Gradient – 33/41

Conjugate Gradient

• For quadratic functions CG converges in n iterations. But each iteration
does line search

Unconstraint Optimization Basics – (Nonlinear) Conjugate Gradient – 34/41

Rprop

Unconstraint Optimization Basics – Rprop – 35/41

Rprop
“Resilient Back Propagation” (outdated name from NN times...)

Input: initial x ∈ Rn, function f(x),∇f(x), initial stepsize α, tolerance θ
Output: x

1: initialize x = x0, all αi = α, all gi = 0

2: repeat
3: g ← ∇f(x)
4: x′ ← x

5: for i = 1 : n do
6: if gig′i > 0 then // same direction as last time
7: αi ← 1.2αi

8: xi ← xi − αi sign(gi)

9: g′i ← gi
10: else if gig′i < 0 then // change of direction
11: αi ← 0.5αi

12: xi ← xi − αi sign(gi)

13: g′i ← 0 // force last case next time
14: else
15: xi ← xi − αi sign(gi)

16: g′i ← gi
17: end if
18: optionally: cap αi ∈ [αmin xi, αmax xi]

19: end for
20: until |x′ − x| < θ for 10 iterations in sequence

Unconstraint Optimization Basics – Rprop – 36/41

Rprop

• Rprop is a bit crazy:
– stepsize adaptation in each dimension separately
– it not only ignores |∇f | but also its exact direction

step directions may differ up to < 90◦ from ∇f
– Often works very robustly
– Guarantees? See work by Ch. Igel

• If you like, have a look at:
Christian Igel, Marc Toussaint, W. Weishui (2005): Rprop using the natural
gradient compared to Levenberg-Marquardt optimization. In Trends and
Applications in Constructive Approximation. International Series of Numerical
Mathematics, volume 151, 259-272.

Unconstraint Optimization Basics – Rprop – 37/41

Bound Constrained Optimization – postponed

• Bound constrained optimization:

min
x
f(x) s.t. li ≤ xi ≤ ui

simple box constraints on the variables (“simple constraints”)

• It might seem straight-forward to extend methods, perhaps by just
clipping steps – but turns out not at all straight-forward
→ we’ll discuss it after constrained optimization

(e.g., Bertsekas: “Projected Newton methods for optimization problems
with simple constraints”)

Unconstraint Optimization Basics – Rprop – 38/41

Appendix

Unconstraint Optimization Basics – Appendix – 39/41

Stopping Criteria

• Standard references (Boyd) define stopping criteria based on the
“change” in f(x), e.g. |∆f(x)| < θ or |∇f(x)| < θ.

• Throughout I will define stopping criteria based on the change in x, e.g.
|∆x| < θ repeatedly. In my experience with certain applications this is
more meaningful, and invariant to the scaling of f . But this is
application dependent.

Unconstraint Optimization Basics – Appendix – 40/41

Evaluating optimization costs

• Standard references (Boyd) assume line search is cheap and measure
optimization costs as the number of iterations (counting 1 per line
search).

• Throughout I will assume that every evaluation of f(x) or (f(x),∇f(x))

or (f(x),∇f(x), ∂∂xφ(x)) is approx. equally expensive—as is the case in
certain applications.

Unconstraint Optimization Basics – Appendix – 41/41

