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Gradient descent

e Objective function: f: R* - R
.
Gradient vector: Vf(x) = {%f(x)} c R

e Problem:
min f(x)

where we can evaluate f(x) and Vf(z) for any z € R"

e Plain gradient descent: iterative steps in the direction —Vf ().

Input: initial x € R™, function Vf(x), stepsize «, tolerance 6
Output: =

1: repeat

2 z  x — aVf(z)

3: until |Az| < 6 [perhaps for 10 iterations in sequence]
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¢ Plain gradient descent is really not efficient

e Two core issues of unconstrainted optimization:

A. Stepsize
B. Descent direction
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Stepsize
e Making steps proportional to Vf(z)?

f(@)

\
\

small gradient

— small step?

" large gradient
— large step?

e We need methods that
— robustly adapt stepsize
— exploit convexity, if known
— perhaps be independent of |Vf(z)| (e.g. if non-convex as above)
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Stepsize Adaptation: Backtracking Line Search

Input: initial x € R™, functions f(z) and Vf(z), tolerance 0, parameters
(defaults: of = 1.2, 05 = 0.5, dmax = o0, g = 0.01)
1: initialize stepsize « = 1

2: repeat

3 S — ‘g;g;;;‘ // (alternative: § = —Vf(z))
4 while f(z + ad) > f(z)+osVf(x) (ad) do // line search
5 Q4 Oq @ // decrease stepsize
6 end while

7 T+ ad

8 a + min{of o, Smax } // increase stepsize
9: until |ad| < 6 // perhaps for 10 iterations in sequence

e « determines the absolute stepsize

e Guaranteed monotonicity (by construction)
(“Typically” ensures convergence to locally convex minima; see later)

Unconstraint Optimization Basics — — 5/41



Backtracking line search

e Line search in general denotes the problem
min f(z 4 ad)

for some step direction §.

e The most common line search is backtracking, which decreases « as
long as

f(z +ad) > f(z) + 0sVf ()" (ad)

o, describes the stepsize decrement in case of a rejected step
ois describes a minimum desired decrease in f(z)

e Boyd at al: typically g5 € [0.01,0.3] and o, € [0.1,0.8]
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Backtracking line search

f@) + V(@) (ad)
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Wolfe Conditions

e The 1st Wolfe condition (“sufficient decrease condition”)
flz+ad) < f(z) + 0sVf () (ad)

requires a decrease of f at least gs-times “as expected”
e The 2nd (stronger) Wolfe condition (“curvature condition”)

IVf (x + ad)'8] < oisa|Vf ()70

implies a requires an decrease of the slope by a factor gso.
ois2 € (0is, 3) (for conjugate gradient)

e See Nocedal et al., Section 3.1 & 3.2 for more general proofs of
convergence of any method that ensures the Wolfe conditions after
each line search
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Convergence for (locally) convex functions

e Theorem (Exponential convergence on convex functions)
— Let f: R™ — R be an objective function
— with eigenvalues X of the Hessian V2 f(z) bounded by m < A < M, with
m > 0,Vr e R"
— then gradient descent with backtracking line search converges
exponentially with convergence rate (1 — 2770504 )-

e The exercises guide through the proof
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Newton Methods & Descent Direction
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Steepest Descent Direction

e The gradient —Vf(x) is sometimes called steepest descent direction

Is it really?
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Steepest Descent Direction

e The gradient —Vf(x) is sometimes called steepest descent direction

Is it really?

e Here is a possible definition:

The steepest descent direction is the one where, when you make a
step of length 1, you get the largest decrease of f in its linear
approximation.

argmin Vf (z)'6 st o] =1
§
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Steepest Descent Direction

e But the norm |§|? = 4" As depends on the metric A!
Let A = B"B (Cholesky decomposition) and »z = B¢
o = arg;nin ViTs st d'As=1
= B argmin(B'2)'Vf st.zlz=1
= Blargminz'BTVf st.zlz=1

z

= B'[-BVf] = —A'Vf
e The steepest descent direction is § = — A Vf
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Behavior under linear coordinate transformations

e Let B be a matrix that describes a linear transformation in coordinates

A coordinate vector z transforms as z = Bx
The gradient vector V, f () transforms as V, f(z) = B''V, f(z)
The metric A transforms as A, = BT A, B
The steepest descent transforms as A7V, f(z) = BAIV, f(z)

The steepest descent transforms like a normal coordinate vector

(covariant)
(more details in the Maths script)
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Newton Step
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Newton Step

e For finding roots (zero points) of f(z)
' »=7(x)

- Tangent &t %

Tangent at x

e For finding optima of f(z) in 1D (which are roots of f'(x)):

f'(x)
f"(x)

e For finding optima in higher dimensions = € R™:

T < T —

x4z — V2f(x) Vf(z)
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Newton Step

e Assume we have access to the symmetric Hessian

azfzzl (z) azfgzz () - azfgzn f(z)
a2 :
V2f(a:) — | 32,04, f(x) . e R™X"
2 ’ n2 '
83::?811 f(x) . . 6zfamn f(2)

¢ which defines the Taylor expansion:
1
fle+0) = f(2) + Vf(2)'6 + 50" V() 6

Note: V2 f(z) acts like a metric for §
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Notes on the Newton Step

e If f is a 2nd-order polynomial, the Newton step jumps to the optimum
in just one step.

e Unlike the gradient magnitude |Vf(z)|, the magnitude of the Newton
step 4 is meaningful and scale invariant!
— If youd rescale f (trade cents by Euros), § is unchanged
— |0] is the distance to the optimum of the 2nd-order Taylor.

e Unlike the gradient Vf(x), the Newton step ¢ is truely a vector!

— The Newton step is invariant under coordinate transformations; the
coordinates of ¢ transforms contra-variant, as it is supposed to for vector
coordinates

— The proof is exactly the same as for the steepest descent with a
non-Euclidean metric — the Hessian acts as a metric
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Why 2nd order information is better

e Better direction:

Zo

Plain Gradient

Caonjugate Gradient

o Better stepsize:

— A full Newton step jumps directly to the minimum of the local squared
approx.

— Robust Newton methods combine this with line search and damping
(Levenberg-Marquardt)
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Basic Newton method

Input: initial z € R, functions f(z), Vf(x), V2 f(x), tolerance 0, parame-
ters (defaults: o = 1.2, o5 = 0.5, g = 0.01, )
initialize stepsize a = 1, fixed damping A

1:

2: repeat

3. compute § to solve (V2 f(x) + M) § = —Vf(x)

4 while f(z + ad) > f(z) + 0sVf(z)"(ad) do // line search
5: Q4 Oq @ // decrease stepsize
6: end while

7: T+ x4+ ad // step is accepted
8: a + min{of o, 1} // increase stepsize
9: until |ad]e < 6

e Notes:

— Line 3 computes the Newton step § = —V?2 f(x)! Vf (z),
e.g. using a special Lapack routine dposv to solve Az = b (using Cholesky)
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Damping, A\, Trust-Region, Levenberg-Marquardt

e ¢ solves the problem

min [V (2)'5 + %va F(2)6 + %)\52)] .

— Xintroduces a squared penalty for large steps
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Damping, A\, Trust-Region, Levenberg-Marquardt

e ¢ solves the problem

min [V (2)'5 + %va F(2)6 + %)\52)] .

— Xintroduces a squared penalty for large steps
e Trust region method:

min [VF (2)'5 + %fv"’ f@)] st 8 <p

— [ defines the trust region
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Damping, A\, Trust-Region, Levenberg-Marquardt

e ¢ solves the problem

min [V (2)'5 + %va F(2)6 + %)\52)] .

— Xintroduces a squared penalty for large steps
e Trust region method:

min [VF (2)'5 + %fv"’ f@)] st 8 <p

— [ defines the trust region
e Solving this using Lagrange parameters (as we will learn it later):

L(6,)) = Vf ()6 + %fv“’ f(@)d+ X0 = B)
VsL(5,\) = Vf(z)" + 8" (V2 f(x) + 2)I)

gives the step § = — (V2 f(z) + 2AI)' Vf(z), with X the dual variable

e Fora— 00,8 becomes aligned I¥>\”th _vl‘ég\’/rv%on( ettL(yd?&Obescent Direction — 19/41
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Newton method with non-pos-def fallback

1: initialize stepsize « = 1
2: repeat
3: try to compute § to solve (V2 f(x) + AI) § = —Vf(x)

4: if V£(z)"6 > 0 (non-descent) or fails (ill-def. linear system) then

5: 6+ —% // (gradient direction)
6: (Or: choose A > [—minimal eigenvalue of V2 f(z)]* and repeat)
7: end if

8: while f(z + ad) > f(z) + 0sVf(2)"(ad) do // line search
9: a4 g // decrease stepsize
10: optionally: A < g;)\ and recompute d // increase damping
11: end while

12: T+ ad // step is accepted
13 a+ min{oda,1} // increase stepsize
14: optionally: A < o3 A // decrease damping

15: until |ad] - < 0 repeatedly

e See comments in exercise €02

e Demo ...

Unconstraint Optimization Basics — Newton Methods & Descent Direction — 20/41



¢ In the remainder: Extensions of the Newton approach:
— Gauss-Newton
— Quasi-Newton
— BFGS, (L)BFGS
— Conjugate Gradient

e And a crazy method: Rprop
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Gauss-Newton method

e Consider a sum-of-squares problem:
d
min f(z)  where f(z) = ¢(2) d(x) = ) ¢i(x)’
i=1

with features ¢(z) € R?, and we can evaluate ¢(x), %¢(m) for any
xzeR”

e ¢(x) € R?is a vector; each entry contributes a squared cost term to f(x)

e 2 ¢(x)is the Jacobian (d x n-matrix)

(@) di(@) o Gt(w)

gqﬁ(m) _ %‘152(5”) c RX"

651 (Z;d(w) e g2 q.bd(x)

Tn

ith 1st-order Taylor expansion 0) = 2 9
w U v xpansi qS(ac + Rlevvt(ggxlg/lggh%ﬁ?g)Descent Direction — 22/41
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Gauss-Newton method

e The gradient and Hessian of f(z) are

f(a) = é(2) ¢()

V(@) = 240 9le)  (recall ) = 2 fa))
V21(0) = 2.2 ol () + 26(2)V0()

e The Gauss-Newton method is the Newton method for f(x) = ¢(z) ¢(x)
while approximating V2¢(x) ~ 0

In the Newton algorithm, replace line 3 by solving

T () + D) 8 = 2.2 () o(a)

R =
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Gauss-Newton method

e The approximate Hessian H = 2.2 ¢(2)" 2 ¢(x) is always
semi-pos-def!
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Gauss-Newton method

e The approximate Hessian H = 2.2 ¢(2)" 2 ¢(x) is always
semi-pos-def!

e H is a sum of rank-1 matrices:
=2 Z Vi () Vi ()

(which implies semi-pos-def)
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Gauss-Newton method

e The approximate Hessian H = 2.2 ¢(2)" 2 ¢(x) is always
semi-pos-def!

e H is a sum of rank-1 matrices:
=2 Z Vi () Vi ()
(which implies semi-pos-def)

e Computing H requires only first-order derivatives of features ¢, no
computationally expensive Hessians
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Gauss-Newton method

e The approximate Hessian H = 2.2 ¢(2)" 2 ¢(x) is always
semi-pos-def!

e H is a sum of rank-1 matrices:
=2 Z Vi () Vi ()
(which implies semi-pos-def)

e Computing H requires only first-order derivatives of features ¢, no
computationally expensive Hessians

e [ can be interpreted as pullback of Euclidean norm ¢'¢ in feature
space. As it is z-dependent, this is a non-constant metric in z-space —

it defm&?cc?nﬁ!ﬁﬂ?%“ﬂrﬁﬁa@o%” %sés —e%g/‘lvtaotrl;1 !\qo esdg& Descent Direction — 24 /41



Robotics example

e Sum-of-squares problems appear at many places in Al:  “minimize
squared errors”

¢ Basic robotics example: Trajectory optimization
Letg: {1,..,T} — R™ be a discretized path in R

T

min Y~ (g + g2 = 20i1)° + lar)?
t=1

where qo, ¢.1 are given, and ¢(qr) are some features of the end
configuration ¢r
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Quasi-Newton methods
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Quasi-Newton methods

e Assume we cannot evaluate V2 f(x).
Can we still use 2nd order methods?

e Yes: We can approximate V2 f(z) from the data {(z;, Vf(z;))}r_, of
previous iterations

(General view: We can learn from the data {(z;, Vf(x;))}r., ~ e.g.,
Bayesian optimization or model-based for blackbox optimization)

Unconstraint Optimization Basics — Quasi-Newton methods — 27 /41



Basic example

e We've seen already two data points (z1, Vf(z1)) and (z2, Vf(z2))
How can we estimate V2 f(z)?

e In1D:
Vf (x2) — Vf (1)

T2 —T1

V2 f(z) ~

e INR™: lety = Vf(z2) — Vf(z1), d = a0 — 21

Find “simplest” approximate Hessian matrix H or H-! to fulfil
Hé=y or 6=Hy (1)

(The first equation is called secant equation)
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Basic example

e We've seen already two data points (z1, Vf(z1)) and (z2, Vf(z2))
How can we estimate V2 f(z)?

e In1D:
Vf (x2) — Vf (1)

T2 —T1

V2 f(z) ~

e INR™: lety = Vf(z2) — Vf(z1), d = a0 — 21

Find “simplest” approximate Hessian matrix H or H-! to fulfil
Hé=y or 6=Hy (1)
(The first equation is called secant equation)
e Symmetric rank-1 solutions for H and H':

L 80T

T
_ Y =29

= ﬁ
[Left: how to update HUﬁ‘&%ﬂ&t!‘a‘?%%&ﬁﬂﬁ&%ﬁ%@éfﬁél—] Quasi-Newton methods — 28/41
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BFGS

e Broyden-Fletcher-Goldfarb-Shanno (BFGS) method:

Input: initial x € R™, functions f(z), Vf(z), tolerance 6
Output: =
1: initialize H! = I,
2: repeat
3. compute § = —H1Vf(x)
4 perform a line search min, f(z + «d)
5 6+ ad
6y Vf(z+d)— Vi)
7: T+ .
T T T
&  update H! « <I - %) H-l( - %) + 2
9: until |§] < 6
e Notes:

— The blue term is the H™-update as on the previous slide
— The red term “deletes” previous H*-components. Check: H'y = §

— equivalent to the Sherman-Morrison formula: H <+ H —

HsS'H' + ny
STHS y's
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L-BFGS

e In high dimensions, we do not want to explicitly store a dense H-'.
Instead we store vectors {v;} such that H =}, v;0]

e L-BFGS (limited memory BFGS) limits the rank of the H-! and thereby
the used memory (number of vectors v;)
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L-BFGS

e In high dimensions, we do not want to explicitly store a dense H-'.
Instead we store vectors {v;} such that H =}, v;0]

e L-BFGS (limited memory BFGS) limits the rank of the H-! and thereby
the used memory (number of vectors v;)

e Some thoughts:
In principle, there are alternative ways to estimate H~! from the data
{(zs, f(2:), Vf(x:))}e_1, e.g. using Gaussian Process regression with
derivative observations

— not only the derivatives but also the value f(z;) should give information on
H (z) for non-quadratic functions

— should one weight ‘local’ data stronger than ‘far away’?
(GP covariance function)

— related to model-based search (see Blackbox Optimization lecture)
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(Nonlinear) Conjugate Gradient
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Conjugate Gradient

e The “Conjugate Gradient Method” is a method for solving (large, or
sparse) linear eqn. systems Az + b = 0, without inverting or
decomposing A. The steps will be “A-orthogonal” (=conjugate).
We mention its extension for optimizing nonlinear functions f(z)

e As before we evaluted ¢’ = Vf(z1) and g = Vf(z2) at two different
points z1, z2 € R
¢ Additional assumption: exact line-search step to x2:
- zo=x1+ad, o=argmin, f(r1+ adr)
— iso-lines of f(x) at =2 are tangential to d,
= The next search direction should be “orthogonal” to the previous one,
but orthogonal w.r.t. the Hessian H, i.e., dyHd, = 0, which is called
conjugate
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Conjugate Gradient

Input: initial x € R"™, functions f(z), Vf(z), tolerance 0

Output: =
1: initialize descent direction d = g = —Vf(z)
2: repeat
3: o < argming, f(z + ad) // line search
4: T x+ ad
5 g + g, g=—Vf(z) // store and compute grad
T
6: ﬁemax{g;‘?r;‘?l),O}
7: d<« g+ pd // conjugate descent direction

8: until |Az| < 6

e Notes:
— B > 0: The new descent direction always adds a bit of the old direction!
— This momentum essentially provides 2nd order information
— The equation for 3 is by Polak-Ribiere: On a quadratic function
f(z) = x" Az + b’z this leads to conjugate search directions, d" Ad = 0.
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Conjugate Gradient
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e For quadratic functions CG converges in n iterations. But each iteration

does line search
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Rprop
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Rprop

“Resilient Back Propagation” (outdated name from NN times...)

Input: initial z € R™, function f(x), Vf(x), initial stepsize «, tolerance 6

Output: =

1: initialize z = zp, all a; = o, all g; =0

2: repeat

3 g < Vf(x)

4 g —

5: fori =1:ndo

6 if g;g. > 0 then // same direction as last time
7 a; +— 1.2a4

8: z;  x; — a; sign(g;)

9 gi < i
10: else if g;g; < 0 then // change of direction
11: a; +— 0.5
12: z; < x; — o sign(g;)
13: g; ~— 0 // force last case next time
14: else
15: z;  x; — a; sign(g;)
16: gg — gi
17: end if
18: optionally: cap a; € [min i, ¥max 1]

19: end for
20: until |z’ — x| < 0 for 10 iterations in sequence
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Rprop

e Rprop is a bit crazy:
— stepsize adaptation in each dimension separately
— it not only ignores |Vf| but also its exact direction
step directions may differ up to < 90° from Vf
— Often works very robustly
— Guarantees? See work by Ch. Igel

e If you like, have a look at:
Christian Igel, Marc Toussaint, W. Weishui (2005): Rprop using the natural
gradient compared to Levenberg-Marquardt optimization. In Trends and
Applications in Constructive Approximation. International Series of Numerical
Mathematics, volume 151, 259-272.
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Bound Constrained Optimization — postponed

¢ Bound constrained optimization:
min f(LI’) st [ <z <y

simple box constraints on the variables (“simple constraints”)

¢ It might seem straight-forward to extend methods, perhaps by just
clipping steps — but turns out not at all straight-forward
— we’ll discuss it after constrained optimization

(e.g., Bertsekas: “Projected Newton methods for optimization problems
with simple constraints”)
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Appendix
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Stopping Criteria

e Standard references (Boyd) define stopping criteria based on the
“change” in f(z), e.g. |Af(z)| < 8 or |Vf(x)| < 6.

e Throughout | will define stopping criteria based on the change in z, e.g.
|Az| < 6 repeatedly. In my experience with certain applications this is
more meaningful, and invariant to the scaling of f. But this is
application dependent.
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Evaluating optimization costs

e Standard references (Boyd) assume line search is cheap and measure
optimization costs as the number of iterations (counting 1 per line
search).

e Throughout | will assume that every evaluation of f(z) or (f(x), Vf(x))

or (f(z),Vf(z), Z¢(x)) is approx. equally expensive—as is the case in
certain applications.
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