
Robot Learning

Lecture Script

Marc Toussaint & Wolfgang Hönig

Summer 2024

This is a direct concatenation and reformatting of lecture slides and exercises.

Contents

1 Lectures 4

1.1 Introduction . 4

What is this lecture about?; Organization

1.2 Taxonomy . 9

1.3 Robotics Essentials . 11

Articulated Multibody System; Forward Kinematics; Inverse Dynamics; Stan-

dard Control Stack; Inverse Kinematics; Model-Predictive Control (MPC);
Challenges

1.4 Machine Learning Essentials . 18

Supervised ML; Unsupervised ML

1.5 Dynamics Learning . 22

Parameter Estimation; Dynamics Regression; Residual Dynamics; Observation-

based models (Autoregression, Recurrent, State-Space); Data Quality; Fre-

quency Excitation

1.6 Imitation Learning . 37

Early Work; Behavior Cloning; Trajectory Distribution Learning; Con-

straints & Feature Learning; Distributional Shift; DAgger; Data Collection

(TeleOp, Kinesthetic, MoCap, Video)

1.7 Imitation Learning 2 . 47

1

2 Robot Learning, Marc Toussaint & Wolfgang Hönig

Privileged Teacher; GAN; VAE; Diffusion; Case Studies

1.8 Reinforcement Learning . 58

Markov Decision Process; Value Function, Bellman, Q-Iteration; Proof of

convergence of Q-Iteration; Policy Iteration; Bellman Residual Loss; Policy

Gradient; Deep RL; Data Collection in RL; Reward Engineering

1.9 RL II: Offline RL & Sim2Real . 67

Offline RL; Regularization; Sim2Real; Domain Randomization; Privileged

Training & Imitation Learning; Domain Adaptation

1.10 Inverse RL . 75

Value Alignment; General Approach; Max Margin IRL; Max Entropy IRL;
Adversarial IRL; Preference-based RL

1.11 Safe Learning . 82

Safety Definitions; Safety Certification; Safety Encouraging RL; Safe Dy-

namics Learning; Open Challenges

1.12 Manipulation & Grasp Learning . 92

Manipulation; Contacts & Force Closure; Grasp Learning; Grasp Data

Collection (model- and simulation-based); Manipulation Learning

1.13 TAMP & Language . 100

Task and Motion Planning; Logic-Geometric Program; Learning in TAMP

; Constraints Learning; Learning to predict plans; Language in Robotics;
Language-Image Models (CLIP, CLIPort, SayCan, PaLM-E, RT-2)

1.14 Multi-Robot Learning . 112

Deep Sets; GNNs; MARL; DiNNO

2 Exercises 127

2.1 Weekly Exercise 1 . 127

2.1.1 Basic Inverse Kinematics; 2.1.2 Point mass under PD control; 2.1.3 BONUS:

Fun with Euler-Lagrange; 2.1.4 Logistic Regression

2.2 Weekly Exercise 2 . 129

2.2.1 Work with the Literature; 2.2.2 System Identification of a Simple

Car; 2.2.3 Mountain Car Dynamics Learning

2.3 Weekly Exercise 3 . 131

2.3.1 Literature: DAgger; 2.3.2 Trajectory Distributions, GMMs, ProMPs

; 2.3.3 Mountain Car Imitation Learning

Robot Learning, Marc Toussaint & Wolfgang Hönig 3

2.4 Weekly Exercise 4 . 132

2.4.1 Trajectory Distribution→ Control; 2.4.2 Multi-Modal Distributions

; 2.4.3 Mountain Car Imitation Learning

2.5 Weekly Exercise 5 . 134

2.5.1 Literature: SAC; 2.5.2 The Reparametrization Trick; 2.5.3 Mountain

Car RL using SAC

2.6 Weekly Exercise 6 . 136

2.6.1 Literature: Privileged and Sensorimotor Policy Training; 2.6.2 Episodes

& Terminal States; 2.6.3 Lunar Lander Domain Randomization

2.7 Weekly Exercise 7 . 137

2.7.1 Literature: Adversarial Inverse Reinforcement Learning; 2.7.2 Inverse

RL on a Toy Control Problem; 2.7.3 Practical Exercise: Exploration in RL

2.8 Weekly Exercise 8 . 139

2.8.1 Literature: Neural Lander; 2.8.2 Fun With Definitions; 2.8.3 Working

With Code: safe-control-gym

2.9 Weekly Exercise 9 . 141

2.9.1 Literature: Grasp Data Collection; 2.9.2 Force Closure; 2.9.3 Practical

Exercise: Explore the Graspnet data

2.10 Weekly Exercise 10 . 142

2.10.1 Literature: Learning to Plan in TAMP; 2.10.2 Optimal Sequential

Manipulation in TAMP

2.11 Weekly Exercise 11 . 143

2.11.1 Literature: Neural-Swarm2; 2.11.2 Encodings for Environmental Mon-

itoring

4 Robot Learning, Marc Toussaint

1 Lectures

1.1 Introduction

(slides by Marc Toussaint)

What is this lecture about?

• Related Lectures:

– Guanya Shi (CMU): Robot Learning https://16-831-s24.github.io/lectures

– Erdem Biyik (USC): https://liralab.usc.edu/csci699/

– Jan Peters (TU Darmstadt): https://learn.ki-campus.org/courses/moocrobot-tud2021

– Yisong Yue & Hoang M. Le (CalTech): https://sites.google.com/view/icml2018-imitation-learning/

1.1:1

What is this lecture about?

• Shi’s lecture (referenced below):

1.1:2

What is this lecture about?

• Shi’s lecture (referenced below):

https://16-831-s24.github.io/lectures
https://liralab.usc.edu/csci699/
https://learn.ki-campus.org/courses/moocrobot-tud2021
https://sites.google.com/view/icml2018-imitation-learning/

Robot Learning, Marc Toussaint 5

1.1:3

What is this lecture about?

• In Shi’s view:

– Formalize the problem “making sequential decisions in a physical world” (→
MDPs)

– Focus on Learning in MDPs → Reinforcement Learning

1.1:4

What is this lecture about?

• However, the topic is much wider

• Robotics is a very wide field – Learning can be applied almost anywhere

1.1:5

What is this lecture about?

• Module description (Moses 41016) – Learning Outcomes
– The students have a systematic understanding of the wide variety of contexts and problems

settings in which machine learning methods can be applied within robotics.

– They understand how the learning problems are mathematically formulated in these settings.

– [They also learn about underlying ML methods to tackle these problems.]. . .

• Content
– The term Robot Learning generally denotes the use of learning methods in the context of

robotics, which is ubiquitous in modern robotics research. This course aims to provide a
systematic introduction to the field, in particular to the various contexts and problem setting
where machine learning can be applied and the specific learning methods themselves. This
includes topics such as:

– System identification, model learning, residual model learning

– Imitation learning, behavior cloning, learning from demonstration

– Reinforcement Learning (RL), skill learning, offline RL

– Constraint learning, grasp learning, iterative learning control

6 Robot Learning, Marc Toussaint

– Learning to predict plans, learning to warmstart MPC or optimization

– Inverse RL

– . . .

1.1:6

Motivation

• OpenAI / Figure robot: https://www.youtube.com/watch?v=Sq1QZB5baNw

• Boston Dynamics: https://www.youtube.com/watch?v=tF4DML7FIWk

• CoRL 2023 award/finalist papers:

– https://hshi74.github.io/robocook/

– https://mimic-play.github.io/

– https://robot-parkour.github.io/

1.1:7

The State-of-the-Art in Robot Learning

• Conference on Robot Learning https://www.corl.org/

• Robotics: Science and Systems Conference https://roboticsconference.org/

• ICRA, IROS, L4C conferences

• NeurIPS, ICML conferences

1.1:8

• The meta-goal of this lecture:

Enable you to read & understand papers at these conferences

• Some of the lectures will directly discuss essential research papers

1.1:9

Planned Lectures

• Taxonomy (today)

• Robotics Primer & Machine Learning Primer

• Dynamics Learning / System Identification

• Imitation Learning

• Method Lecture: Diffusion & other policy representations

https://www.youtube.com/watch?v=Sq1QZB5baNw
https://www.youtube.com/watch?v=tF4DML7FIWk
https://hshi74.github.io/robocook/
https://mimic-play.github.io/
https://robot-parkour.github.io/
https://www.corl.org/
https://roboticsconference.org/

Robot Learning, Marc Toussaint 7

• Reinforcement Learning & variants (several lectures)
• Safe Learning, Multi-Robot Learning

• Constraint Learning, Grasping/Manipulation Learning, Affordance Learning

• Method Lecture: Robotics/3D ML: Rotation encodings, PointNet, SE(3)-Equivariant

• Method Lecture: Black-Box Optimization, CMA, CEM

• Plan Prediction Learning (from MPC to Language Models)

• Online adaptation

• Method Lecture: Generative models (PCA, auto encoder, VAE, GANs, diffusion, stochastic outputs
in transformers)

1.1:10

Organization

1.1:11

Organization

• 6 LPs (180h, 12h/w, 15 weeks)

• Lectures, weekly, in person

• Tutorials, weekly:

– Weekly exercise sheets, mix of analytic/coding, to be discussed in the tutorials

• ISIS as central webpage

• Contact:

– Office (grades/etc): Ilaria Cicchetti-Nilsson <office@lis.ut-berlin.de>

Ilaria
Cicchetti-
Nilsson

1.1:12

Assignments & Exam

• Tutorial exercises are a mix of analytic and coding problems. Voting System:

– When attending a tutorial, students mark in an ISIS questionnaire which exer-
cises they have worked on

– Students are randomly selected to present their solutions (no need for correct
solutions – just something to present and discuss)

– When not attending: upload pdf notes/solutions on ISIS

<office@lis.ut-berlin.de>

8 Robot Learning, Marc Toussaint

• Exam prerequisite:

– at least 50% votes in the exercises

• The written exam will be about analytical problems, determines final grade (no
portfolio)

1.1:13

Prerequisites

• Module description:

– Knowledge in Machine Learning

– Fundamentals in AI (esp. Markov Decision Processes)

– Foundations of robotics

– Basic programming skills

• Self-Checks:

– Maths, AI, ML & Robotics lectures:
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-Maths.pdf

https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-AI.pdf

https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-MachineLearning.pdf

https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-Robotics.pdf

– ML: not only pyTorch.. but also Hastie et al: The Elements of Statistical
Learning?
https://hastie.su.domains/Papers/ESLII.pdf

– For reference:
https://www.user.tu-berlin.de/mtoussai/teaching/#reference-material

• Numeric coding in Python (numpy)

1.1:14

Module description (Moses 41016)

• Grading

– graded, written exam, English (90min)

• This module is used in the following module lists:
– Automotive Systems (M. Sc.)

– Computer Engineering (M. Sc.)

– Computer Science (Informatik) (M. Sc.)

– Elektrotechnik (M. Sc.)

1.1:15

https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-Maths.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-AI.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-MachineLearning.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-Robotics.pdf
https://hastie.su.domains/Papers/ESLII.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/#reference-material

Robot Learning, Marc Toussaint 9

1.2 Taxonomy

(slides by Marc Toussaint)

Robot Learning Taxonomy

I. What is learned?

– Which mapping between state, control, rewards/values/constraints, plan, ob-
servation is learned?

II. How is the data generated?

– By robot itself? (online?) By human demonstration? In simulation?

– Optimally? Safe?

– Are labels available? (Supervised vs. RL vs. un-/self-supervised)

1.2:1

I. What is learned?

[Satinder Singh, ∼2005]

1.2:2

I. What is learned?

� State, control → next state: dynamics – System identification

� State → control: policy – Optimal Control, iterative learning control, Rein-
forcement Learning

� State, control → rewards – Reward function. Model-based RL, InvRL

� Observations → control: policy (in partially observable case)

� State → plan: plan prediction – for MPC, but also language models

� Observations → state: state estimation

� State/Observations → value: value function – learnt, also planned/computed
(DDP)

10 Robot Learning, Marc Toussaint

� State/Observations → constraint: – constraint model, success model, affor-
dance

� ...

1.2:3

II. How is the data generated?

• By human demonstration

– Imitation learning (behavior cloning)

– Inverse Reinforcement Learning, human preference learning

• Online, by robot itself

– on-policy/off-policy learning, RL vs. offline RL

• In simulation/domain transfer

– sim2real gap, domain randomization, domain transfer

• “Optimally”: e.g. maximizing information gain

– Active Learning, intrinsic rewards, Bayesian RL & Exploration

– Frequency excitation in system identification

– Pink noise, structured RL exploration

• “Safely”: e.g. subject to chance constraints

– Safe RL, safe exploration, simultaneous risk learning

1.2:4

Robot Learning Taxonomy

• These two dimensions (I. What is learned? II. How is the data generated?) span a
large space of robot learning approaches

– Quite beyond focus on RL only

– Across the fields of robotics and control theory

– Learning is not necessarily replacing “search & planning, classical control, op-
timization”

• Other aspects:

– Direct/Indirect? Is the mapping learned directly? Or are components/models
learned that are input to a classical solver?

– Scenario specific E.g. specific for grasping, or multi-robot systems

1.2:5

Robot Learning, Marc Toussaint 11

1.3 Robotics Essentials

(slides by Marc Toussaint)

Robotics Essentials Outline

• A robot is an articulated multi-body system: kinematics & dynamics

• Standard Control: IK, path finding & traj. opt, PD & MPC

1.3:1

Robot as Articulated Multibody System

• A robot is a multibody system. Each body

– has a pose xi ∈ SE(3)

– has inertia (mi, Ii) with mass mi ∈ R and inertia tensor Ii ∈ R3×3 sym.pos.def.

– has a shape si (formally: any representation that defines a pairwise signed-
distance d(si, sj))

[Useful: “multibody system” on Wikipedia]

1.3:2

Robot as Articulated Multibody System

• Tree structure:

– Every body is linked to a parent body or the world

– We have relative transformations Qi ∈ SE(3) from parent (or world)

[If not tree-structured, we only represent a tree and use additional constraints to describe loops →
more involved, but doable]

• Articulated Degrees of Freedom (dofs):
– Some of the relative transformations Qi may have
articulated (=motorized) dofs q so that Qi(q)

[Different types of joints (hinge, prismatic, universal, ball) have
different # dofs and different mapping from dofs q 7→ Qi(q)]

– We stack all dofs of all relative transformations into
a single
joint vector q ∈ Rn

W

A

A'

B'

C

C'

B eff

link

transf.

joint
transf.

relative
eff.

offset

1.3:3

12 Robot Learning, Marc Toussaint

x ∈ SE(3)m: all body poses, q ∈ Rn: joint vector

– Forward kinematics: q 7→ x, q̇ 7→ ẋ, q̈ 7→ ẍ

– Forward dynamics: u 7→ q̈, inverse dynamics: q̈ 7→ u (u ∈ Rn: joint torques)

1.3:4

Forward Kinematics q 7→ x

• Given q, what is the pose of any body i?

q 7→



x1

x2
...

xm


= ϕ(q) ∈ SE(3)m

– Algorithm: First determine all rel. trans. Qi(q), then forward chain them

– Often one cares only about position/orientation of one particular body xi: the
“endeffector”

1.3:5

Forward Velocities & Jacobian q̇ 7→ ẋ

• Given q̇, what is the linear and angular velocity (vi, wi) of any body i?

q̇ 7→



v1, w1

v2, w2
...

vm, wm


= J(q) q̇ ∈ Rm×6

– with Jacobian J(q) = ∂qϕ(q) ∈ Rm×6×n.

[Since, ϕ is SE(3)-valued, the Jacobian actually has output in its tangent space se(3) ≡ R6.
In practise, code typically provides separate positional Jacobian Jpos ∈ Rm×3×n and angular
Jacobian Jang ∈ Rm×3×n.]

– Since we know how to compute ϕ(q), we can think of J(q) as the “autodiff”
of it

– However, positional/angular Jacobians are really very easy to provide without
expensive autodiff
[In practise, one only needs to figure out the Jpos, Jang for a rotational and translational joint
– all others follow from this.]

1.3:6

Robot Learning, Marc Toussaint 13

Forward Accelerations q̈ 7→ ẍ

• Given q̈, what is the linear and angular acceleration (v̇i, ẇi) of any body i?

ẍ = J̇(q) q̇ + J(q) q̈ ≈ J(q) q̈

– One typically approximates J̇ = 0

1.3:7

The word “kinematics”

[in parts from Wikipedia]

– Mathematical description of possible motions of a (constrainted/multibody)
system/mechanism without considering the forces

– “geometry of [possible] motions”

– Formally: Describe the space (manifold) of possible system poses and all possible
paths in that space

– Read generalized coordinates on wikipedia: Understanding motion in terms
of coordinates and (non-)holonomic constraints:

1.3:8

Inverse dynamics q̈ 7→ u

• Given q̈, what joint torques u do we need to generate this q̈ (accounting for gravity)?

• Coupled Newton-Euler equations: For each body:

from Featherstone’14

Fi =
fi
τi

 =
 miv̇i
Iiẇi + wi × Iiwi



F back
i = Fi − F ext

i +
∑

j=child(i)

F back
j , ui = h⊤iF

back
i

[where F ext
i are external (e.g. gravity) forces; and F back

i is the force “send back through the joint
to the parent of i”; hi is the joint axis (picking up the torque)]

[Can also be written as linear equation system between q̈, F , F back, and u (with sparse matrices
only) – and solved/inverted in O(m).]

14 Robot Learning, Marc Toussaint

1.3:9

solved! We can accelerate the thing as we like

the rest is planning: How should I accelerate to reach some future goals?

1.3:10

Standard Template: Waypoint + Reference Motion + Controller

• Standard problem setting: Control motors, so that at t = T seconds the endeffector
xi is at desired position y∗ ∈ R3, i.e., ϕ(qt=T) = y∗

• Problem decomposition:

– Find a final robot pose qT that fulfills constraint ϕ(qt=T) = y∗ – inverse
kinematics

– Find a nice reference motion from current robot pose q0 to qT – path finding,
trajectory optimization, or trivial interpolation/PD

– Find a control policy π : xt 7→ ut that reactively sends motor commands to
follow the reference motion – inverse dynamics, PD control, Riccati

[You could think of this as three different time scales: rough future waypoint(s)/goal(s), continuous
motion to next waypoint, short-term controls.]

[There are other ways to approach this: You could remove step (1) and shift that issue into (2),
or remove (1 & 2) and shift all issues into (3) - morphing this into other approaches. E.g. directly
defining a desired force/acceleration behavior in “task space” (=operational space control).]

[continuous replanning/re-estimation can also make (1) and (2) reactive.]

1.3:11

Inverse Kinematics

• Find q to fulfill ϕ(q) = y∗ for differentiable fwd kinematics ϕ.

min
q∈Rn

||q − q0||2 s.t. ϕ(q) = y∗

or min
q∈Rn

||q − q0||2 + µ||ϕ(q)− y∗||2 for large µ

• Solution for linearized ϕ:

q∗ = q0 + J⊤(JJ⊤+ 1
µI)

-1(y∗ − ϕ(q0))

Python Package: https://marctoussaint.github.io/robotic/

https://marctoussaint.github.io/robotic/

Robot Learning, Marc Toussaint 15

1.3:12

Path Finding & Trajectory Optimization

• Given current q0 and future q∗, find a collision free path

– Wolfgang Hönig’s & Andreas Orthey’s lecture

– RRTs, PRMs, under constraints (kinodynamic)

• Trajectory opimization
– Time continuous formulation:

min
q(t)

∫ T

0
c(q(t), q̇(t), q̈(t)) dt s.t. q(0) = q0, q(T) = q∗, q̇(0) = q̇(T) = 0 , ∀t∈[0,T] : ϕ̄(q(t), q̇(t), q̈(t)) ≤ 0 .

– Time-discretized, assuming k-order Markov coupling terms (KOMO):

A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM,
Gaussian Process smoothing, optimal control, and probabilistic inference: Marc Toussaint.
Springer 2017

1.3:13

Control around a Reference

• Use Inverse Dynamics directly

– We have q̈∗(t) → map it to controls u directly

– But what if you’re off the reference a bit? How to steer back?

• Use PD law to accelerate back to reference:

– Define a PD law q̈desired = q̈∗(t) + kp(q
∗(t) − q) + kd(q̇

∗(t) − q̇) with desired
PD behavior back to reference

– Then use Inv dynamics q̈desired 7→ u

– (Also ok, but needs severe tuning: directly define a PD controller ü = Mq̈∗(t)+
Kp(q

∗(t)− q) +Kd(q̇
∗(t)− q̇).)

• Use Riccati to get an Optimal Linear Regulator around reference

– Define optimal control problem, e.g., minπ:q,q̇ 7→u

∫ T

0
c(q(t), q̇(t), u(t)) dt +

ϕ(x(T))

– We can linearize dynamics around reference → has an analytic solution (Alge-
braic Riccati eq.)

– Resulting controller is a “linear regulator”, i.e., a PD law where matrices Kp,Kd

depend on t and are chosen optimally.

1.3:14

Model-Predictive Control (MPC)

16 Robot Learning, Marc Toussaint

• When getting far away from the reference, linearization of Riccati might break, and
PD is too simple

• Continuously replan (∼ 10-1000Hz): re-solve the optimal control problem

– Optimal Control problem can also include task constraints directly, not only
following a reference

– As a compromise: typically limit horizon

This is a default way of “thinking control” in robotics

1.3:15

Summary

• A robot is an articulated multi-body system

– Fwd kinematics: q 7→ x, q̇ 7→ ẋ, q̈ 7→ ẍ

– Fwd dynamics: u 7→ q̈, inv dynamics: q̈ 7→ u

• Standard Control Template:

– IK (or constraint solving) to estimate future goal/waypoints

– Path Finding & Trajectory Optimization to estimate Reference Motion

– PD, Linear Regulator, or MPC to control (around the reference)

1.3:16

How far can we get with this approach?

• What did we assume to know?

– Structure of multi-body system, all shapes, inertias

– All goals/objectives modelled (=programmed) as differentiable costs/constraints

1.3:17

Challenge 1: Interacting with the environment

• If we only care about the robot itself (all goals/objectives/models concern the
robot directly) – the above it totally fine

• Things get challenging when we care about interacting with the environment

– Models/goals/objectives of interaction (contact, grasp) are more complicated

Robot Learning, Marc Toussaint 17

1.3:18

Challenge 1: Interacting with the environment

• Example: Locomotion

– Interaction: Making contact with the ground to generate ground forces

– Robot root is not attached to world, but free floating (complicates dynamics a
bit)

– Dynamics heavily influenced by ground forces, which are contact complementary
hard on-off switching of forces at contact → hybrid/discrete structure, makes
dynamics and solvers much much more complicated (hybrid control)

... more complicated than “vanilla robot”, but still doable

1.3:19

Challenge 1: Interacting with the environment

• Example: Manipulation

– Objects in the environment (part of the “multibody system”) have their own
DOFs, but are NOT “articulated” with motors: if not grasped or touched, they
cannot move → their Jacobian ∂qxi = 0

– Hard on-off switching of manipulability; hybrid dynamics & problem

– Dynamics of object motions can be much more complicated than (also free-
floating) robot dynamics: friction, stiction, slip, non-point contacts

– Waypoint constraints ϕ(xt) much more complicated (correct grasping of com-
plex shape, pushing, throwing)

– If objects are deformable, their form becomes DOF (e.g. neural latent code) –
becomes much much more complicated in above approach

• In essence, things become much more complicated, but one still can write down
essential physics equations of object interaction, and use these equations in above
approach

1.3:20

Challenge 2: State Estimation

• All of the above requires to estimate states

– q0 (includes pose of a mobile robot)

– xi (poses of objects in environment)

– shapes and inertias in the environment, dynamics parameters (e.g. friction)

18 Robot Learning, Marc Toussaint

[Basic state estimation can often also be formulated as optimization problem (e.g. graph-SLAM)
– similar to motion optimization: Find estimates (also of past motion) that is most consistent
with sensor readings; minimze error between real readings and model-predicted readings. (Or as
probabilistic inference.)]

1.3:21

Relation to Robot Learning

• On the formal/theory side, they share foundations:

– Optimal Control formulation ↔ Markov Decision Processes & Reinforcement
Learning

– More generally: optimality formulations → learning/black-box opt. approaches

• Components can be replaced or shortcut by learning:

– Dynamic modelling ↔ system identification

– Optimal Control (e.g., MPC, Riccati) can be shortcut by learning V - or Q-
function

– Need of inverse dynamics can be shortcut by learning Q-function instead of
V -function

– Constraint solving (also IK) can be shortcut by directly learning a policy or
sampler that fulfills constraint

– Shortcut state estimation: Avoid all state-based models, learn direct sensor-
based models (policies, value functions, planners, dynamics, etc)

– End-to-end: Shortcut the whole approach by learning images 7→ torques

1.3:22

1.4 Machine Learning Essentials

(slides by Marc Toussaint)

Machine Learning Essentials

• Supervised ML fθ : x 7→ y

• Unsupervised ML pθ(x) (and conditional pθ(x|z))
[Neglected here: Optimal embeddings, clustering]

1.4:1

Robot Learning, Marc Toussaint 19

Supervised ML

• Given data D = {(xi, yi)}ni=1 and a parameterized fθ : x 7→ y, find θ

min
θ

n∑
i=1

ℓ(yi, fθ(xi))︸ ︷︷ ︸
(data) loss

+ R(θ)︸︷︷︸
regularization

done! That’s (supervised) ML

1.4:2

Loss Functions

• Regularizations:

– L2 (Ridge): R(θ) = ||θ||22
– L1 (Lasso): R(θ) = ||θ||1

• Regression y ∈ Rm: Squared error: ℓ(y, ŷ) = (y − ŷ)2

[Robust variants: Huber loss, Forsyth]

• Classification y ∈ {0, ..,M} (where f : x 7→ f(x) ∈ RM discriminative values)

– Neg-Log-Likelihood: ℓ(y, f(x)) = − log p(y|x) with p(y|x) = efy(x)∑
y′ e

f
y′ (x)

– Hinge: ℓ(y, f(x)) =
∑

y′ ̸=y[1− (fy∗(x)− fy′(x))]+

– Cross-Entropy: ℓ(y, f(x)) = −
∑

z hy(z) log p(z|x) same as NLL for one-hot-
encoding hy(z) = [y = z]

1.4:3

Parameterized Functions

• Linear fθ(x) = θ0 +
∑d

j=1 θjxj = x̄⊤θ

• Linear in features: fθ(x) = ϕ(x)⊤θ (or Hilbert space..)

– Linear: ϕ(x) = (1, x1, .., xd) ∈ R1+d

– Quadratic: ϕ(x) = (1, x1, .., xd, x
2
1, x1x2, x1x3, .., x

2
d) ∈ R1+d+

d(d+1)
2

– Cubic: ϕ(x) = (.., x3
1, x

2
1x2, x

2
1x3, .., x

3
d) ∈ R1+d+

d(d+1)
2 +

d(d+1)(d+2)
6

– Also: Radial-Basis Functions (RBF), piece-wise linear

20 Robot Learning, Marc Toussaint

-2

-1

 0

 1

 2

 3

-2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

train
p=0.5

 0.9
 0.5
 0.1
 0.9
 0.5
 0.1
 0.9
 0.5
 0.1

-2
-1

 0
 1

 2
 3 -2

-1
 0

 1
 2

 3

 0

 0.2

 0.4

 0.6

 0.8

 1

-2

-1

 0

 1

 2

 3

-2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

train
decision boundary

 1
 0
 -1

-2
-1

 0
 1

 2
 3 -2

-1
 0

 1
 2

 3

-3
-2
-1
 0
 1
 2
 3

1.4:4

Parameterized Functions

• Neural Nets: Repeating non-linear and linear parts: (this is a 3-layer NN):

fθ(x) = W3

←
lin

ϕ

←
n
lin

[
W2

←
lin

ϕ

←
n
lin

[W1
←

lin
x+ b1] + b2

]
+ b3

– Non-linear parts:

– rectified linear unit (ReLU): ϕ(x) = [x]+ = max{0, x}
– leaky ReLU: ϕ(x) = max{0.01x, x}
– sigmoid, logistic: ϕ(x) = 1/(1 + e−x)

– max-pooling, soft-max, layer-norm

– Linear parts:

– Fully connected (Wi is a full matrix)

– Convolutional

– Transformer-like (cross-attentions)

1.4:5

• In essense

– You define the parameterized function fθ

– You define the loss ℓ and regularization R

– You provide the data set D

– An optimizer (analytic for linear models, stochastic gradient otherwise) finds
good parameters θ

• And you cross-validate to check your hyper-parameter choices

1.4:6

Unsupervised ML

Robot Learning, Marc Toussaint 21

• Given data D = {xi}ni=1, learn “something” about p(x)

• Important setting: parameterized autoencoder fθ : x 7→ z 7→ x′, find θ

min
θ

n∑
i=1

ℓ(xi, fθ(xi))︸ ︷︷ ︸
autoencoding loss

+ R(θ)︸︷︷︸
regularization

– You learn to reproduce x through a compact latent code z ∈ Rh (while
x ∈ Rd is high-dimensional)

– z has high entropy (typically Gaussian) distribution → you can generate x′ ∼
p(x) by sampling z and decoding

– If f is linear, this is called Principle Component Analysis

– Better: Variational Autoencoder (VAC): Enforces p(z) to have proper distribu-
tion.

1.4:7

Example: Digits

1.4:8

• There are other ideas in unsupervised learning, but the autoencoding objective is a
major breakthrough

– You “understand” the structure of data if you can compress and de-compress it

– Autoencoders do this with powerful NN architectures

22 Robot Learning, Marc Toussaint & Wolfgang Hönig

1.4:9

Diffusion Denoising Models

• Given data D, you want to learn a “system” that generates samples x ∼ pθ(x)
where pθ(x) models D

• Autoencoders are one approach, Diffusion Denoising Models another:

– Train a stepwise stochastic process (Langevin dynamics) to generate samples
x ∼ pθ(x)

– Has its origin in “energy-based models” and score matching

– The step-wite sample generation process is very powerful

1.4:10

Conditional Generative Models

• Given data D = {(xi, ci)}ni=1 train a conditional distribution pθ(x|c)
– We’re actually back to Supervised ML c 7→ x (where c is the input)

– But if x is high-dimensional (and c low-dim.), the generative model aspect is
important:

– The reconstruction objective enforces the system to find a good latent repre-
sentation to generate high-dim. x

– this is complemented by making conditional to c

fθ :
x 7→ z 7→ x′

7→

c

A loss ℓ(xi, fθ(xi, ci)) jointly trains autoencoding x 7→ z 7→ x′ and conditional
generation c 7→ z 7→ x′

1.4:11

1.5 Dynamics Learning

(slides by Marc Toussaint & Wolfgang Hönig)

Outline

• I. What is learned?

– Incl. which mapping exactly, model assumption, parameterization, loss function

Robot Learning, Marc Toussaint & Wolfgang Hönig 23

• II. How is the data generated?

• III. Multirotor Examples

1.5:1

I. What is learned?

environment/task parameters

plans/anticipationstate evaluations
xt

state
ut

controls

observations
value V (x)

Q-valueQ(x, u)

constraint φ(x)

rewards rt

yt
action plan a1:K

waypoints/subgoals xt1:K

physics parameters Θ

trajectory x[t,t+H]

instructions/lang./goal info g

1.5:2

Dynamics Learning – State-based view

• Learning the state-based dynamics:

xt = f(xt-1, ut-1) or p(xt |xt-1, ut-1)

• Distinguish three cases:

– Parameter Estimation: f is assumed physics with unknown physics parameters
Θ

– Full Regression: f is learned as regression model

– Residual Dynamics: learn the difference to a nominal physics model

1.5:3

Dynamics Learning – Observation-based view

• xt is the system state

[Markov Property: We call a variable state if the future is conditionally independent on the past
when conditioned on state; I(future, past | state) = 0.]

• Sometimes the true state is not observed (or unknown), only observations yt are
available (yt: sensor readings, or state estimates from sensors)

y0 y1 y2

u0 u1 u2

x0 x1 x2

24 Robot Learning, Marc Toussaint & Wolfgang Hönig

• We need to use the history of observed yt, ut to predict next yt!

• Distinguish three cases:

– Autoregression: Learn a direct history-based model yt = f(yt−H:t, ut−H:t)

– Recurrent Model: Learn a recurrent model with latent state ht (e.g. LSTM)

– State-space Model: Jointly learn embedding/decoding x 7→ y and latent
dynamics x, u 7→ x′ (is also a recurrent model)

1.5:4

• In summary, six cases we’ll discuss more concretely:

– state-based dynamics

– physical parameter estimation

– full regression

– residual dynamics

– observation-based dynamics

– autoregression (NARX)

– observation-based dynamics – recurrent model

– observation-based dynamics – state-space model

1.5:5

• Why learn the dynamics?
– Given learned dynamics, we can use planning (MPC) or RL against the learned model to

generate controllers

– Examples in literature: Schaal’02, Deisenroth’15 (PILCO!), Finn’17, Driess’23, Schubert’23

• Quick terminology:
– Dynamics Learning ↔ System Identification (in control theory), Model Learning (in model-

based RL)

– In control theory ut are called inputs and the observations/measurements yt are called outputs

1.5:6

State Dynamics – Parameter Estimation

• Assume that dynamics xt = fΘ(xt-1, ut-1) has unknown physical parameters Θ,e.g.:

Robot Learning, Marc Toussaint & Wolfgang Hönig 25

Claudio Gaz, Marco Cognetti, Alexander Oliva, Paolo Robuffo Giordano, and Alessandro De Luca, (2019). Dynamic identification of the franka emika panda
robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robotics and Automation Letters, 4(4):4147–4154

1.5:7

State Dynamics – Parameter Estimation

• Given data D = {(xt, xt-1, ut-1)}Tt=1, find parameters

min
Θ

∑
t

||xt − fΘ(xt-1, ut-1)||2

• Sometimes, it is possible to describe fΘ as linear in Θ. See Gaz’19!

– Then finding optimal Θ leads to a linear least squares problem.

– Otherwise: Black-box optimization (CMA-ES) or gradient-based (SGD, Gauss-
Newton)

1.5:8

State Dynamics – Full Regression

• Learn fθ directly, using some ML regression, e.g. (old-fashioned LWR):

Stefan Schaal, Christopher G. Atkeson, and Sethu Vijayakumar, (2002). Scalable techniques from nonparametric statistics for real time robot learning. Applied
Intelligence, 17(1):49–60

1.5:9

https://ieeexplore.ieee.org/abstract/document/8772145/
https://ieeexplore.ieee.org/abstract/document/8772145/
http://link.springer.com/10.1023/A:1015727715131

26 Robot Learning, Marc Toussaint & Wolfgang Hönig

State Dynamics – Full Regression

• Given data D = {(xt, xt-1, ut-1)}i=1:n,t=1:Ti
, find parameters

min
θ

∑
t

||xt − fθ(xt-1, ut-1)||2

→ same formulation as parameter estimation, really.

• Use supervised ML to minimize regression error

1.5:10

State Dynamics – Full Regression (probabilistic)

• Given data D = {(xt, xt-1, ut-1)}i=1:n,t=1:Ti
, find parameters

min
θ

−
∑
t

log pθ(xt |xt-1, ut-1)

where pt(xt |xt-1, ut-1) is a probabilistic regression, e.g. Gaussian Process:

(from Rasmussen & Williams)

[Marc Deisenroth’s PICLO paper had huge impact: Using learned GP dynamics to derive optimal
controls.]

1.5:11

State Dynamics – Residual Dynamics

• Given a nominal dynamics fM (e.g., assumed physics), learn a residual model fθ to
minimze

min
θ

∑
t

||xt − [fM (xt-1, ut-1) + fθ(xt-1, ut-1)]||2

• Examples: Gaz’19, Multirotor Examples

1.5:12

Robot Learning, Marc Toussaint & Wolfgang Hönig 27

Observation-based Dynamics – Autoregression (NARX)

Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, (1997). Computational capabilities of recurrent NARX neural networks. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 27(2):208–215

– NARX=“Autoregression with controls” our notation: yt = fθ(yt-H:t-1, ut-H:t-1)

– developed in time-series modelling, sequence modelling

• How long does the history H have to be?

• What’s the modern version of autoregression?

1.5:13

Observation-based Dynamics – Autoregression (Transformers)

Ingmar Schubert, Jingwei Zhang, Jake Bruce, Sarah Bechtle, Emilio Parisotto, Martin Riedmiller, Jost Tobias Springenberg, Arunkumar Byravan, Leonard
Hasenclever, and Nicolas Heess, (2023). A generalist dynamics model for control

1.5:14

Observation-based Dynamics – Recurrent Model

• Rather than giving the model a history as input, it should learn to memorize relevant
information, i.e., learn a latent representation for relevant information → recurrent
NN

• Train a latent representation ht to consume history information and predict yt

x

h

o

Unfold

xt-1

ht-1

ot-1

xt

ht

ot

xt+1

ht+1

ot+1

..

https://ieeexplore.ieee.org/abstract/document/558801/
http://arxiv.org/abs/2305.10912 [cs]

28 Robot Learning, Marc Toussaint & Wolfgang Hönig

(Wikipedia; change in notation: x⇝ (y, u), o⇝ y)

• The most common NN architecture is LSTM (better: Gated Recurrent Units):

(Hochreiter, Schmidthuber, 1997)

1.5:15

Observation-based Dynamics – State-Space Model

• Also a recurrent model, but explicitly assumes latent state xt ∈ Rd

Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc Toussaint, and Trimpe Sebastian, (2018). Probabilistic recurrent
state-space models. In International conference on machine learning, pages 1280–1289

1.5:16

Observation-based Dynamics – State-Space Model

• Jointly train an embedding/decoding g : x 7→ y and latent dynamics f : x, u 7→ x′:

x ,u
f7→ x′

g

7→

g

7→

y y′

• Only u1:T , y1:T are observed! Train model to maximize data likelihood,

log p(y1:T |u1:T) ≥ Evidence Lower Bound (ELBO)

– This method trains both, g and f , and implicitly infers a notion of state xt

– Technically, use SGD to maximize ELBO

1.5:17

• More Literature for the six cases provided at the end of these slides...

1.5:18

http://proceedings.mlr.press/v80/doerr18a.html
http://proceedings.mlr.press/v80/doerr18a.html

Robot Learning, Marc Toussaint & Wolfgang Hönig 29

II. How is the data generated?

• Importance of data generation is (mostly) under-acknowledged in papers!

• Ideas to generate good data may be more important than ML method details

• What is good data?

1.5:19

Good Data – in Linear Regression

• Reconsider regression with linear model fθ(x) = x̄⊤θ, loss

L(θ) =
∑
i

(yi − fθ(xi))
2 + λ||θ||2

and solution
θ∗ = (X⊤X + λI)-1X⊤y .

• What is good data?

• What is the estimator variance Var{θ∗}?
– Assume data with variance Var{y} = σ2In

– Then Var{θ∗} = (X⊤X + λI)-1σ2

– Smaller variance via larger λ (but then larger bias), or larger det(X⊤X)!

• Good data means reducing variance (=randomness) of estimated model!

– large det(X⊤X) ↔ cover input space!
[Large estimator variance ↔ “Overfitting”: Reducing variance prevents overfitting. Hastie

has great section on shrinkage methods (=regularization)]

1.5:20

Good Data – in Linear System Identification

https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Signals-and-Systems/
Lectures/Fall2018/Lecture11_sigsys.pdf

https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Signals-and-Systems/Lectures/Fall2018/Lecture11_sigsys.pdf
https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Signals-and-Systems/Lectures/Fall2018/Lecture11_sigsys.pdf

30 Robot Learning, Marc Toussaint & Wolfgang Hönig

1.5:21

Good Data – in Linear System Identification

• Cover the input space → cover frequency space

– Linear dynamics can be Laplace transformed into frequency domain:

Y (s) = H(s) U(s)

– U(s) are controls; Y observations; H(s) is called transfer function (complex)

– H(s) can be probed by sending a single control frequence (U(s) = δss′)

• In essence: stimulate the system with control frequencies u(t) = cos(kt/τ0) for
k = 0, 1, ..

• Franka SystemId paper [Gaz’19]: Sinusoidal reference motions (Eq. 31):

q̇i,des(t) = Ai sin
(

2π
Ti

t
)

, i ∈ {1, .., n}

1.5:22

Good Data – in general

• Think about good state space coverage! (in all variants of Robot Learning)

– Frequency coverage in control systems

– Exploration in RL beyond ϵ-greedy

– Long-term structured variation (at least pink noise, Ornstein-Uhlenbeck) instead
of Brownian motion

– Explicit exploration: Novelty seeking, information seeking, exploration bonus,
Bayesian RL

1.5:23

Robot Learning, Marc Toussaint & Wolfgang Hönig 31

III. Background: Multirotors

• State x = (p,q,v, ω)⊤

• Control uΩ = (Ω1, . . . ,Ωn)
⊤

• Forces f =
∑

i cfiΩizΩi
= FuΩ,

• Torques τ =
∑

i(cfipΩi × zΩi + cτizΩi)Ωi = MuΩ

• Dynamics

ṗ = v, mv̇ = mg +R(q)FuΩ + fa,

q̇ =
1

2
q ◦

[
0
ω

]
,Jω̇ = −ω × Jω +MuΩ + τ a, [Mahony, ∼2012]

[Propellers create forces and torques, rest is Newton-Euler]

[fa, τa can model drag, wind, aerodynamic interactions etc.]

1.5:24

Multirotors: What is learned?

• Parameters that are hard to measure: inertia J, motor params (cfi , cτi , delay)

• Residuals fa, τ a

[potentially as a function of the state (e.g., drag) or environment (e.g., downwash)]

[potentially non-Markovian, i.e., a function of a history of states]

• Full dynamics model not so much — Why?

[Impossible to gather data from all states safely]

[Rotational symmetries are surprisingly difficult to learn]

1.5:25

Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

• Inertia: Swing body in different positions and record motion; solve an optimization
problem

32 Robot Learning, Marc Toussaint & Wolfgang Hönig

1.5:26

Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

• Motors: Use thrust stand (often for a single motor + propeller) + curve fitting

1.5:27

Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

• Drag: Use wind tunnel + curve fitting with “guessed” models

Julian Förster, (2015). System identification of the crazyflie 2.0 nano quadrocopter

1.5:28

https://www.research-collection.ethz.ch/handle/20.500.11850/214143

Robot Learning, Marc Toussaint & Wolfgang Hönig 33

Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

• Is this learning?

[Yes, since curve fitting is extensively used]

• Advantages and Disadvantages?

[Pros: Physics intuition (explainability); can improve “important” parameters if needed; no need
to have a flying system]

[Cons: Labor and equipment intensive; does not capture unmodeled terms; does not capture the
robot as a system]

1.5:29

Multirotors: How is it learned? (Parameter Estimation)

• Assumption: we have a system that can already fly; Can we do better?

[Strong assumption, since controllers need models, too]

• Direct (analytical) optimization
Jonas Eschmann, Dario Albani, and Giuseppe Loianno, (2024). Data-driven system identification of quadrotors subject to motor delays

[Will skip the discussion here]

• Probabilistic formulation (Gaussian noise)
Michael Burri, Janosch Nikolic, Helen Oleynikova, Markus W. Achtelik, and Roland Siegwart, (2016). Maximum likelihood parameter identification for MAVs.
In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 4297–4303

1.5:30

Multirotors: How is it learned? (Maximum Likelihood)

• Given: Dataset with trajectory (position, orientation, motor speed), Z; measure-
ments (IMU data, motor commands), U

• Goal:

X̂ML, θ̂ML = argmax
X̂,θ̂

p(Z,U, X̂, θ̂)

(parameters to estimate θ̂; state estimates X̂; probability p)

1.5:31

Multirotors: How is it learned? (Maximum Likelihood)

• Assumptions to simplify p(Z,U, X̂, θ̂)

� White noise (IMU, motors)

http://arxiv.org/abs/2404.07837 [cs, eess]
http://ieeexplore.ieee.org/document/7487627/

34 Robot Learning, Marc Toussaint & Wolfgang Hönig

� Access to a prior trajectory → linearize around it and reason about “residuals”
instead

• p(·) becomes a mixture of Gaussians→ can be maximized by minimizing the negative
log-likelihood

[essentially a least square problem]

1.5:32

Multirotors: How is it learned? (Maximum Likelihood)

where ȳ = (X̂, θ̂)⊤ from before
Michael Burri, Janosch Nikolic, Helen Oleynikova, Markus W. Achtelik, and Roland Siegwart, (2016). Maximum likelihood parameter identification for MAVs.
In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 4297–4303

Michael Burri, Michael Bloesch, Zachary Taylor, Roland Siegwart, and Juan Nieto, (2018). A framework for maximum likelihood parameter identification
applied on MAVs. Journal of Field Robotics, 35(1):5–22

1.5:33

Multirotors: How is it learned? (Supervised Deep NN)

• Basic models do not capture “complicated” aerodynamic effects

• Blade Element Momentum (BEM) work for single rotors (but high computational
effort)

• Can we use (more) data to use function approximation instead?
Challenges:

� Training/Data efficiency

� Inference speed

1.5:34

Multirotors: How is it learned? (Supervised Deep NN)

• Key idea: learn the “residual physics”, only

[Input: past h states and motor commands → not Markovian!]

[Output: forces and torques that cannot be explained by the basic model(s) (fa, τa)]

http://ieeexplore.ieee.org/document/7487627/
https://onlinelibrary.wiley.com/delete_delete_delete_doi/abs/10.1002/rob.21729
https://onlinelibrary.wiley.com/delete_delete_delete_doi/abs/10.1002/rob.21729

Robot Learning, Marc Toussaint & Wolfgang Hönig 35

1.5:35

Multirotors: How is it learned? (Supervised Deep NN)

• ML method: Supervised training — Where do the labels come frome?

[Solve dynamics for fa, τa]

• Architecture

� Input h = 20 (past 50 ms)

� temporal convolutional (TCN) with 25k parameters (MLP and other parame-
ters in ablation)

• Main takeaway: strong model/physics priors are better
Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide Scaramuzza, (2021). NeuroBEM: Hybrid aerodynamic quadrotor model. In
Robotics: Science and Systems XVII, volume 17

[Video: https://youtu.be/Nze1wlfmzTQ]

1.5:36

Multirotors: Data Collection

• Motion capture system for accurate position/orientation state estimates

[Sampling at 500 Hz, submillimeter accuracy]

[Very costly: EUR 20k – 100k]

• On-board data logging of IMU

[Sampling at 1000 Hz, very noisy]

1.5:37

Multirotors: Data Preprocessing

• Two data sources → Synchronization needed (incl. clock skew)

https://www.roboticsproceedings.org/rss17/p042.html
https://youtu.be/Nze1wlfmzTQ

36 Robot Learning, Marc Toussaint & Wolfgang Hönig

� Online Option: Send data to one computer using a low-latency link (and ac-
count for link delay)

� Offline Option: Solve optimization problem for clock skew and bias

• Some derivatives (e.g., v) are not directly observable

� Online Option: Use data from an online filter (e.g., Extended Kalman Filter)

� Offline Option: Interpolate data (e.g., using splines), use analytical solution of
fitted spline

• Motor delays (“easy” to measure)

� Option 1: Include it in model explicitly

� Option 2: Shift/filter data accordingly

1.5:38

Multirotors: Data Quantity

• Maximum Likelihood: 45 sec flight data “The pilot was careful to excite all axes,
especially in yaw direction.”

• NeuroBEM: 96 flights, 75 min flight data (1.8M data points) (up to 18 m/s and
47 m/s2)

1.5:39

Literature

• State Dynamics – Parameter Estimation:
Julian Förster, (2015). System identification of the crazyflie 2.0 nano quadrocopter

Jonas Eschmann, Dario Albani, and Giuseppe Loianno, (2024). Data-driven system identification of quadrotors subject to motor delays

Michael Burri, Michael Bloesch, Zachary Taylor, Roland Siegwart, and Juan Nieto, (2018). A framework for maximum likelihood parameter identification
applied on MAVs. Journal of Field Robotics, 35(1):5–22

Claudio Gaz, Marco Cognetti, Alexander Oliva, Paolo Robuffo Giordano, and Alessandro De Luca, (2019). Dynamic identification of the franka emika panda
robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robotics and Automation Letters, 4(4):4147–4154

• State Dynamics – Full Regression:
Stefan Schaal, Christopher G. Atkeson, and Sethu Vijayakumar, (2002). Scalable techniques from nonparametric statistics for real time robot learning. Applied
Intelligence, 17(1):49–60

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen, (2015). Gaussian processes for data-efficient learning in robotics and control. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–423

1.5:40

Literature

• Observation-based Dynamics – Autoregression (NARX):
S. Chen, S. A. Billings, and P. M. Grant, (1990). Non-linear system identification using neural networks. International Journal of Control, 51(6):1191–1214

Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, (1997). Computational capabilities of recurrent NARX neural networks. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 27(2):208–215

https://www.research-collection.ethz.ch/handle/20.500.11850/214143
http://arxiv.org/abs/2404.07837 [cs, eess]
https://onlinelibrary.wiley.com/delete_delete_delete_doi/abs/10.1002/rob.21729
https://onlinelibrary.wiley.com/delete_delete_delete_doi/abs/10.1002/rob.21729
https://ieeexplore.ieee.org/abstract/document/8772145/
https://ieeexplore.ieee.org/abstract/document/8772145/
http://link.springer.com/10.1023/A:1015727715131
http://ieeexplore.ieee.org/document/6654139/
https://www.tandfonline.com/delete_delete_delete_doi/full/10.1080/00207179008934126
https://ieeexplore.ieee.org/abstract/document/558801/

Robot Learning, Marc Toussaint 37

• Observation-based Dynamics – Recurrent Model (also visual!):
Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide Scaramuzza, (2021). NeuroBEM: Hybrid aerodynamic quadrotor model. In
Robotics: Science and Systems XVII, volume 17

Chelsea Finn and Sergey Levine, (2017). Deep visual foresight for planning robot motion. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 2786–2793

Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint, (2023). Learning multi-object dynamics with compositional neural radiance fields.
In Conference on robot learning, pages 1755–1768

Ingmar Schubert, Jingwei Zhang, Jake Bruce, Sarah Bechtle, Emilio Parisotto, Martin Riedmiller, Jost Tobias Springenberg, Arunkumar Byravan, Leonard
Hasenclever, and Nicolas Heess, (2023). A generalist dynamics model for control

1.5:41

Literature

• State-Space Models (learning a state dynamics based on only observations):
Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc Toussaint, and Trimpe Sebastian, (2018). Probabilistic recurrent
state-space models. In International conference on machine learning, pages 1280–1289

1.5:42

not mentioned...

– Constrained ML models (Geist)

– Embed to Control

– Koopman embedding

– Dual control

– Safe Exploration

1.5:43

1.6 Imitation Learning

(slides by Marc Toussaint)

General Idea

• Given expert demonstration data D = {(xi1:Ti
, ui1:Ti

)}ni=1

i : episode/demonstration

xi1:Ti
: ith state trajectory

ui1:Ti
: ith control trajectory

without external rewards/objectives/costs defined

→ extract the “relevant information/model/policy” to reproduce demonstrations

• Reproducing could mean various things

– Move along similar trajectories (e.g. imitate a gesture)

– Reproduce the effect of the demonstration (manipulation, flight maneuver, no traffic collisions)

1.6:1

https://www.roboticsproceedings.org/rss17/p042.html
https://ieeexplore.ieee.org/abstract/document/7989324/
https://proceedings.mlr.press/v205/driess23a.html
http://arxiv.org/abs/2305.10912 [cs]
http://proceedings.mlr.press/v80/doerr18a.html
http://proceedings.mlr.press/v80/doerr18a.html

38 Robot Learning, Marc Toussaint

Early Work

Deep Imitation Learning in 1989
q A CMU paper!
• CMU has incubated many self-driving companies

(Shi’s lecture 5)

https://www.youtube.com/watch?v=ntIczNQKfjQ

1.6:2

Early Work

• Behavior Cloning (later called so):
Dean A. Pomerleau, (1988). Alvinn: An autonomous land vehicle in a neural network. Advances in neural information processing systems, 1

• Early review paper:
Stefan Schaal, Auke Ijspeert, and Aude Billard, (2003). Computational approaches to motor learning by imitation. Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, 358(1431):537–547

[clarifies direct policy learning (BC) vs. trajectory imitation (and auto-control); mentiones work
from the 60ies, but esp. 90ies]

• Early work named Learning from Demonstration (or Programming by Demonstration)
Christopher G. Atkeson and Stefan Schaal, (1997). Robot learning from demonstration. In ICML, volume 97, pages 12–20

[Idea: Avoid explicit programming → teach by demonstration. See also entries in “Handbook of
Robotics”...]

• Another early survey:
Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning, (2009). A survey of robot learning from demonstration. Robotics and autonomous
systems, 57(5):469–483

[Distinguishes 3 kinds: behavior cloning, use data to learn dynamics (system identification), learn
plans (nowadays uncommon)]

1.6:3

Outline

• Types of Imitation Learning

– Behavior Cloning

– Trajectory Distribution Learning (& Constraint Learning)

– Direct (Interactive) Policy Learning

– Inverse Reinforcement Learning (not covered today)

• Data Generation

https://www.youtube.com/watch?v=ntIczNQKfjQ
https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html
https://royalsocietypublishing.org/delete_delete_delete_doi/10.1098/rstb.2002.1258
https://mcgovern-fagg.org/amy_html/courses/cs5973_fall2005/lfd.pdf
https://www.sciencedirect.com/science/article/pii/S0921889008001772?casa_token=23LVhxWg4jgAAAAA:GehDaKG7uEQPK4tGHZvaYo9YPFM63lvQpXoH7LjTu46LEo4YSRpe2UtyEMGEaxrvrjkq7P_1mw

Robot Learning, Marc Toussaint 39

– Distributional (domain) shift, “compound errors” in imitation, on-/off-policy

– Data augmentation or interactive data aggregation

– Collection techniques: Tele-Operation, Kinesthetic Teaching, Human Demonstrations

1.6:4

Behavior Cloning

• Formulate Imitation Learning literally as Supervised ML

• Given data D = {(xi1:Ti
, ui1:Ti

)}ni=1, find

min
θ

∑
i,t

ℓ(uit, πθ(x
i
t)) , (1)

where πθ : x 7→ u is a deterministic policy (e.g. NN) mapping states to controls

1.6:5

Behavior Cloning

Deep Imitation Learning in 1989
q A CMU paper!
• CMU has incubated many self-driving companies

(Shi’s lecture 5)

1.6:6

Behavior Cloning

• Behavior Cloning literally imitates the demonstrated mapping x 7→ u

• Issues:

– But does that also imitate the long term behavior or eventual effect of the demonstrations?
(Ignores distributional shift.)

– Does it capture the “essence” of what is demonstrated?

– Can it deal with multi-modal demonstrations? (→ next week: multi-modal policies)

1.6:7

40 Robot Learning, Marc Toussaint

Trajectory Distribution Learning

[This is not common terminology, and seemingly skipped in other Imitation Learning lectures –
unfortunately. I think this captures an essence of the problem.]

• What does it mean to capture the “essence” of data?

– Learn a distribution model pθ(x1:T) of demonstrated trajectories!

max
θ

∏
i

pθ(x
i
1:Ti

) (likelihood maximization (LM)) , (2)

where pθ is some model class powerful enough to represent “essence”

• What are “powerful” models?

– Transformer models, diffusion models

– But we’ll start with very basic Gaussian models

– ...and discuss models specifically for robotic manipulation

1.6:8

Trajectory Distribution Learning: GMMs

Sylvain Calinon and Aude Billard, (2007). Incremental learning of gestures by imitation in a humanoid robot. In Proceedings of the ACM/IEEE International
Conference on Human-robot Interaction, pages 255–262

– Embed trajectories x1:T in “space-time” {(t, xt)}Tt=1

– Fit a density estimator to p(t, xt) (easiest: Gaussian Mixture Model (GMM), LM well studied)

– Can be translated to control policy by reading out conditional p(x|t) and using inverse dynamics

1.6:9

Trajectory Distribution Learning: GMMs

– A simple way to describe the distribution of demonstrated trajectories

– Variance of learned p(x|t) captures “consistent bottlenecks” in demonstrations

[Is that a key structure in demonstrations? Search also “Calinon constraints”]

– Can be combined with Dynamic Time Warping to temporally align demonstrations

– GMM approach is around for ∼ 20 years

1.6:10

Trajectory Distribution Learning: ProMPs

https://dl.acm.org/delete_delete_delete_doi/10.1145/1228716.1228751

Robot Learning, Marc Toussaint 41

Alexandros Paraschos, Christian Daniel, Jan R. Peters, and Gerhard Neumann, (2013). Probabilistic movement primitives. Advances in neural information
processing systems, 26

– Nothing but (prob.) linear regression t 7→ xt with basis function features (LM↔regression)

– Very simple distribution model over trajectories [could use GPs to kernelize]

– Related to Inference Control (AICO, ICML’09), Path Integral methods (RSS’12)

– Great flexibility to condition, compose, and blend

– Somewhat superseeds earlier work on learning movement primitives from demonstration

[typically Dynamic Movement Primitives (DMPs, Schaal et al’03)]

1.6:11

Trajectory Distribution Learning: Features & Constraints

• Think about Manipulation!

Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake, (2022). KPAM: KeyPoint Affordances for Category-Level Robotic Manipulation. In Tamim Asfour,
Eiichi Yoshida, Jaeheung Park, Henrik Christensen, and Oussama Khatib, editors, Robotics Research, volume 20, pages 132–157

1.6:12

Trajectory Distribution Learning: Features & Constraints

• Think about Manipulation!

Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann, (2022). Neural descriptor
fields: Se (3)-equivariant object representations for manipulation. In 2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400

https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
https://link.springer.com/10.1007/978-3-030-95459-8_9
https://ieeexplore.ieee.org/abstract/document/9812146/
https://ieeexplore.ieee.org/abstract/document/9812146/

42 Robot Learning, Marc Toussaint

1.6:13

Trajectory Distribution Learning: Features & Constraints

• Think about Manipulation!

Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022). Deep visual constraints: Neural implicit models for manipulation planning from visual input. IEEE
Robotics and Automation Letters, 7(4):10857–10864

1.6:14

Trajectory Distribution Learning: Features & Constraints

• Connects to large body of literature:

– More examples: FlowBot3D, UMPNet, Bi-KVIL, ”Waypoint-based imitation learning”, ..

– Human Activity Modelling, Action Segmentation:

• What really is the essence to extract from demonstrations?

1.6:15

• Back to Behavior Cloning...

• Issues:

– But does that also imitate the long term behavior or eventual effect of the demonstrations?
(Ignores distributional shift.)

– Does it capture the “essence” of what is demonstrated?

1.6:16

https://ieeexplore.ieee.org/abstract/document/9844753/

Robot Learning, Marc Toussaint 43

Distributional (Domain) Shift

• Standard ML: x, y ∼ p(x, y) i.i.d.; same p for trains & test

• Sequential Decision Processes: own policy π influences test distrib. pπ(xt)!

– Fundamental difference between learning in sequential decision processes and Supervised ML!

– Also in off-policy & offline RL: We train a policy (or Q,V -function) with losses relative to
pπβ (xt) with behavior policy (πβ)

– Generally called distributional shift, or Out-of-Distribution (OOD) testing

1.6:17

Distributional Shift in Behavior Cloning

• When we train policy πθ in BC, we minimize

min
θ

∑
i,t

ℓ(uit, πθ(x
i
t)) ↔ min

θ
Eπ∗{ℓ(u, πθ(x))} (3)

but when using the policy, we generate fully different distribution

Also called Compound Error (Shi’s lecture 5)

• What we should train is this:!

min
θ

Eπθ{ℓ(π
∗(x), πθ(x))} (4)

1.6:18

Distributional Shift in Behavior Cloning

• BC formulates a supervised ML problem, but in view of testing, it is not:

(Shi’s lecture 5)

1.6:19

44 Robot Learning, Marc Toussaint

How address the Distributional Shift?

• Ensure the data better covers the eventual pπ(xt) of trained π

– Enforce the expert to demonstrate also for non-optimal states (cover also non-expert situations)

– Collect data interactively at exactly the states visited by π (DAgger)

1.6:20

Enforcing wider expert demonstrations

• Occasionally perturb the expert! Add noise!

(Shi’s lecture 5)

1.6:21

DAgger

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell, (2011). A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

https://www.youtube.com/watch?v=V00npNnWzSU

• This repeatedly collects data from the current π, to approximate minθ Eπ{ℓ(π∗(xt), πθ(xt))}

1.6:22

• From Yue’s ICML’18 tutorial:

http://arxiv.org/abs/1011.0686
https://www.youtube.com/watch?v=V00npNnWzSU

Robot Learning, Marc Toussaint 45

• Crucial point: For DAgger we have a very different setting: Access to the environment (testing
rollouts), interactively querying the expert.

1.6:23

Data Collection

1.6:24

Data Collection

• We’ve covered the theoretical aspect concerning distributional shift

• Data source:

– Tele-Operation

– Kinesthetic Teaching

– Human Demonstrations & Motion Capture

– Videos Only

1.6:25

Tele-Operation: Aloha

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn, (2023). Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

https://tonyzhaozh.github.io/aloha/

1.6:26

http://arxiv.org/abs/2304.13705
https://tonyzhaozh.github.io/aloha/

46 Robot Learning, Marc Toussaint

Kinesthetic Teaching

Learning movement primitives for force interaction tasks (Kober et al’15)

1.6:27

Human Demonstrations & Motion Capture

Martin Do, Pedram Azad, Tamim Asfour, and Rudiger Dillmann, (2008). Imitation
of human motion on a humanoid robot using non-linear optimization. In Humanoids
2008-8th IEEE-RAS International Conference on Humanoid Robots, pages 545–552

1.6:28

Human Demonstrations From Video Only

https://ieeexplore.ieee.org/abstract/document/4756029/
https://ieeexplore.ieee.org/abstract/document/4756029/

Robot Learning, Wolfgang Hönig 47

Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine, (2020). AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human
Videos

1.6:29

• This whole lecture talked about states! Same for observations yt only!

– History-input policies (analogous to autoregressive dynamics)

– Recursive (RNN) policies (analogous to recursive dynamics)

– Transformer policies (sequence models)

1.6:30

1.7 Imitation Learning 2

(slides by Wolfgang Hönig)

Recap

• Imitation Learning

� Given: expert demonstration data D = {(xi1:Ti
, ui1:Ti

)}ni=1

� Goal: reproduce demonstrations

• Main Challenges:

� Distributional Domain Shift Solutions:

– Behavior Cloning: add noise

– DAgger: interactively add additional expert data

– Trajectory Distribution Learning: rely on controller

� Data Collection Solutions:

– Humans: teleoperation, kinesthetic teaching, motion capture, videos

– high-effort computations (w.r.t. to computation or observation), e.g., Privileged Teacher

1.7:1

Outline Today

• Data Collection: Privileged Teacher

• Generative Models

• Case Studies

� Quadrotor Acrobatics

� Learning from ALOHA data

� Transfer Learning

1.7:2

http://arxiv.org/abs/1912.04443
http://arxiv.org/abs/1912.04443

48 Robot Learning, Wolfgang Hönig

Privileged Teacher

• So far we considered to directly learn πθ : x 7→ u (or πθ : y 7→ u)

• y might be high-dimensional or unstructured (e.g., RGBD sequences)

• Key insight: First learn privileged policy (“teacher”); use it to generate data for the “student”

(i) Learn πθ1 : z 7→ u (where z contains some “ground truth” data, e.g., states, traffic lights,
neighbor behavior)

(ii) Use πθ1 to generate data D = {(xi1:Ti
, ui1:Ti

)}ni=1

(iii) Learn πθ2 : x 7→ u

1.7:3

Privileged Teacher

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl, (2020). Learning by cheating. In Conference on Robot Learning, pages 66–75

https://youtu.be/u9ZCxxD-UUw

1.7:4

Privileged Teacher

• Pros and Cons compared to one-stage IL?

Pros:

� Second stage can be easily trained with DAg-
ger

� Data augmentation simple

Cons

� Simulation-focused

� Hierarchical approach (requires domain
knowledge)

1.7:5

Generative Models

• Generative Model:

� Input: Data D = {di}ni=1

� Learning: find distribution pθ such that di ∼ pθ
� Inference: generate novel data d∗ ∼ pθ

http://proceedings.mlr.press/v100/chen20a.html
https://youtu.be/u9ZCxxD-UUw

Robot Learning, Wolfgang Hönig 49

• What generative models do you know? [GAN, VAE, Diffusion, for details see:]

Christopher M. Bishop and Hugh Bishop, (2024). Deep Learning: Foundations and Concepts

• Relationship to IL

� If D = {(xi1:Ti
, ui1:Ti

)}ni=1, we can learn conditional distribution pθ(ut|xt)

� Can also generate solution trajectories (esp. in combination with “classic” methods)

1.7:6

Generative Adverserial Network (GAN)

• Train two networks (generator and discriminator)

Christopher M. Bishop and Hugh Bishop, (2024). Deep Learning:
Foundations and Concepts
Lilian Weng, (2017-08-20T00:00:00+00:00). From GAN to WGAN

• Loss function (dϕ should be 1 for real data):

max
ω

min
ϕ
−

1

Ndata

∑
n∈data

ln dϕ(xn)−
1

Ngen

∑
n∈gen

ln(1− dϕ(gω(zn)))

1.7:7

GAN + Imitation Learning = (GAIL)

• Generator is a policy x 7→ u

• Discriminator has x, u as input
• Steps:

(i) Rollout/Sample trajec-
tories using generator
(=policy)

(ii) Update discriminator

(iii) Update policy

Jonathan Ho and Stefano Ermon, (2016). Generative Adversarial Imitation Learning. In Advances in Neural Information Processing Systems, volume 29

1.7:8

https://link.springer.com/10.1007/978-3-031-45468-4
https://link.springer.com/10.1007/978-3-031-45468-4
https://link.springer.com/10.1007/978-3-031-45468-4
https://lilianweng.github.io/posts/2017-08-20-gan/
https://proceedings.neurips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html

50 Robot Learning, Wolfgang Hönig

Variational Autoencoder (VAE)

• Train two networks (encoder and decoder)

Christopher M. Bishop and Hugh Bishop, (2024).
Deep Learning: Foundations and Concepts
Lilian Weng, (2018-08-12T00:00:00+00:00).
From Autoencoder to Beta-VAE
Stanley H. Chan, (2024). Tutorial on Diffusion
Models for Imaging and Vision

ML Lecture, slides 8 and 9

• Loss function:

min
θ,ϕ
−Ez∼qϕ(z|x) log pθ(x|z) +DKL(qϕ(z|x) | pθ(z))

1.7:9

Variational Autoencoder (VAE)

• Training: SGD Updates for both networks

[There is an error in the Bishop book (Alg. 19.1): µ and σ are swapped at the highlighted line]

• Inference: Sample from Normal distribution and execute decoder

1.7:10

Variational Autoencoder (VAE) + Imitation Learning

https://link.springer.com/10.1007/978-3-031-45468-4
https://lilianweng.github.io/posts/2018-08-12-vae/
http://arxiv.org/abs/2403.18103
http://arxiv.org/abs/2403.18103

Robot Learning, Wolfgang Hönig 51

Brian Ichter, James Harrison, and Marco Pavone, (2018). Learning Sampling Distributions for Robot Motion Planning. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 7087–7094

1.7:11

Diffusion

• Train one network that “removes” noise

Forward diffusion process: sample x0 and add iid Gaussian
noise

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1)

q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI)

Christopher M. Bishop and Hugh Bishop, (2024).
Deep Learning: Foundations and Concepts
Lilian Weng, (2021-07-11T00:00:00+00:00).
What are Diffusion Models?
Stanley H. Chan, (2024). Tutorial on Diffusion
Models for Imaging and Vision
Jonathan Ho, Ajay Jain, and Pieter Abbeel,
(2020). Denoising Diffusion Probabilistic Mod-
els. In Advances in Neural Information Processing
Systems, volume 33, pages 6840–6851

ML Lecture, slide 11

1.7:12

Diffusion

• Train one network that “removes” noise

Reverse process: learn pθ(xt−1|xt)

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) = N(xt−1;µθ(xt, t),Σθ(xt, t))

Christopher M. Bishop and Hugh Bishop, (2024).
Deep Learning: Foundations and Concepts
Lilian Weng, (2021-07-11T00:00:00+00:00).
What are Diffusion Models?
Stanley H. Chan, (2024). Tutorial on Diffusion
Models for Imaging and Vision
Jonathan Ho, Ajay Jain, and Pieter Abbeel,
(2020). Denoising Diffusion Probabilistic Mod-
els. In Advances in Neural Information Processing
Systems, volume 33, pages 6840–6851

ML Lecture, slide 11

1.7:13

https://link.springer.com/10.1007/978-3-031-45468-4
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
http://arxiv.org/abs/2403.18103
http://arxiv.org/abs/2403.18103
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://link.springer.com/10.1007/978-3-031-45468-4
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
http://arxiv.org/abs/2403.18103
http://arxiv.org/abs/2403.18103
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

52 Robot Learning, Wolfgang Hönig

Diffusion: Training

1.7:14

Diffusion: Sampling

1.7:15

Diffusion + Imitation Learning

Robot Learning, Wolfgang Hönig 53

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran Song, (2023). Diffusion Policy: Visuomotor Policy Learning
via Action Diffusion. In Robotics: Science and Systems XIX

1.7:16

Comparison of Generative Models

• What are advantages / disadvantages? (e.g., sample quality, sample efficiency, distribution “cover-
age”, ease of training)

1.7:17

Case Study: Deep Drone Acrobatics

Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Matthias Müller, Vladlen Koltun, and Davide Scaramuzza, (2020). Deep Drone Acrobatics. In Robotics:
Science and Systems XVI

https://youtu.be/2N_wKXQ6MXA

1.7:18

Case Study: Deep Drone Acrobatics

• Input

http://www.roboticsproceedings.org/rss19/p026.pdf
http://www.roboticsproceedings.org/rss19/p026.pdf
http://www.roboticsproceedings.org/rss16/p040.pdf
https://youtu.be/2N_wKXQ6MXA

54 Robot Learning, Wolfgang Hönig

(i) Abstraction of sequence of last camera images (feature tracks)

(ii) Preprocessed sequence of IMU data

(iii) Reference trajectory

• Output

� Desired body rates and thrust (to be tracked by attitude controller)

• Data

� Purely from simulation (privileged expert = optimization-based MPC controller)

• Learning

� Privileged Teacher (here: given, not learned from human demonstrations)

� DAgger

1.7:19

Case Study: Deep Drone Acrobatics

1.7:20

Case Study: Deep Drone Acrobatics

Unique design choices:

� Pre-processing of input for sim-to-real transfer

� Asynchronous network branch inference

� Custom DAgger rollout for sim-to-real transfer: only use policy if similar to expert; also
include random actions

1.7:21

Robot Learning, Wolfgang Hönig 55

Case Study: Using ALOHA Data

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn, (2023). Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

https://tonyzhaozh.github.io/aloha/

1.7:22

Case Study: Using ALOHA Data

1.7:23

Case Study: Using ALOHA Data

• Conditional Variational Autoencoder (CVAE)

� Encoder: joint positions, expert action sequence (k >> 1)

� Latent space: z “style” (dim=32)

� Decoder: observations (4 RGB images), joint positions, “style” z; output: planned action
sequence

http://arxiv.org/abs/2304.13705
https://tonyzhaozh.github.io/aloha/

56 Robot Learning, Wolfgang Hönig

1.7:24

Case Study: Using ALOHA Data

• Inference: z is always set to 0 (deterministic generator)
• Key insights: transformer architectures for encoder and de-
coder; MPC-style encoding (action chunks + temporal ensem-
ble)
• Fun statistics:

� 80 M parameters; 5h training (RTX 2080 Ti); 10ms
inference

� 50 demonstrations per task (about 20min of data)

1.7:25

Case Study: Domain Adaptive Imitation Learning (DAIL)

• How to perform a task, given demonstrations from a different domain (viewpoint, embodiment,
and/or dynamics mismatch)?

https://youtu.be/l0tc1JCN_1M

Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon, (2020). Domain Adaptive Imitation Learning. In Proceedings of the 37th International
Conference on Machine Learning, pages 5286–5295

1.7:26

Case Study: Domain Adaptive Imitation Learning (DAIL)

• Given: unprocessed examples for the same tasks for robots x and y

� Dx,y = {(DMx,Ti
, DMy,Ti

)}Ni=1 for N tasks {Ti}Ni=1

� Data is not paired/aligned, i.e., s
(t)
x does not “match” s

(t)
y

https://youtu.be/l0tc1JCN_1M
https://proceedings.mlr.press/v119/kim20c.html

Robot Learning, Wolfgang Hönig 57

• Goal: Given a new demonstration of unseen task Tj for y, transfer/execute directly (“zero-shot”)
on robot x

1.7:27

Case Study: Domain Adaptive Imitation Learning (DAIL)

• Learning Alignment from Dx,y = {(DMx,Ti
, DMy,Ti

)}Ni=1:

(i) Learn π∗
y,Ti

for all Ti (Behavior Cloning)

(ii) Learn mapping of states from x to y: fθf : xx 7→ xy

(iii) Learn mapping of actions from y to x: gθguy 7→ ux

(iv) Learn dynamics/step function of x: PxθP
: xx, ux 7→ xx

1.7:28

Case Study: Domain Adaptive Imitation Learning (DAIL)

• Adaption

(i) Learn π∗
y,Tj

for new task Tj (Behavior Cloning)

(ii) π∗
y,Ti

(xx) = gθg (π
∗
y,Tj

(fθf (xx)))

1.7:29

Case Study: Domain Adaptive Imitation Learning (DAIL)

• Alignment Approach: Generative Adversarial MDP Alignment (GAMA)

� Discriminator tries to separate real transitions ((x, u)→ x′) from aligned transitions

� “Generator” are f and g (deterministic)

58 Robot Learning, Marc Toussaint

1.7:30

Conclusion

• Imitation Learning works well for robotics

� Efficient, effective, stable training

� Fast inference

� State-of-the-art real-robot results (mobile robots, manipulation, planning)

• Main challenge: acquire labeled data

� Simulation possible (e.g., make slow algorithms fast) ⇒ Use DAgger and/or privileged
teacher paradigm

� Only real data⇒ intuitive data collection interfaces, powerful generative and sequence models,
transfer learning

• Details can be tricky (what to learn [policy, trajectory, value function], how to represent inputs,
network architectures)

• Not discussed (yet): How to become better than the “expert” (notion of reward)

1.7:31

1.8 Reinforcement Learning

(slides by Marc Toussaint)

I. What is learned?

environment/task parameters

plans/anticipationstate evaluations
xt

state
ut

controls

observations
value V (x)

Q-valueQ(x, u)

constraint φ(x)

rewards rt

yt
action plan a1:K

waypoints/subgoals xt1:K

physics parameters Θ

trajectory x[t,t+H]

instructions/lang./goal info g

• So far we discussed dynamics and imitation learning

– The mappings we learned concerned x, y, u (including also dynamics parameters Θ and con-
straints ϕ(x))

– Demonstration data was given, or dynamics data well-collected

– There is no external task/cost evaluation

Robot Learning, Marc Toussaint 59

• In RL, we assume rewards r given, which opens a new dimension

– We will learn state values (V -, Q-function) and a policy maximizing expected discounted rewards

– RL is more autonomous in that it explores the world and generates its own data

– But it relies on an externally given reward function

1.8:1

Outline

• First essentials towards modern Deep RL methods

• Then a discussion of challenges

1.8:2

Markov Decision Process

• The world: An MDP (S,A, P,R, P0, γ) with state space S, action space A, transition probabilities
P (st+1 | st, at), reward fct rt = R(st, at), initial state distribution P0(s0), and discounting factor
γ ∈ [0, 1].

• The agent: A parameterized policy πθ(at|st).

• Together they define the path distribution (ξ = (s0:T+1, a0:T))
a0

s0

r0

a1

s1

r1

a2

s2

r2

Pθ(ξ) = P (s0)

T∏
t=0

πθ(at|st) P (st+1|st, at)

and the expected discounted return (with discounting factor γ ∈ [0, 1))

J(θ) = Eξ∼Pθ

{∑∞
t=0 γ

trt︸ ︷︷ ︸
R(ξ)

}
=

∫
ξ
Pθ(ξ) R(ξ) dξ

1.8:3

Value functions

[The following assumes a deterministic policy a = π(s); stochastic π(a|s) is handled with expecta-
tions over a.]

• The value function of a policy πθ gives the return when started in state s:

V π(s) = E
{∑

t γ
trt | s0=s

}
V π(s) = R(s, π(s)) + γEs′|s,π(s)

{
V π(s′)

}
(Bellman Equation)

• The Q-function gives the return when starting in state s and taking first action a:

Qπ(s, a) = E
{∑

t γ
trt | s0=s, a0=a

}
Qπ(s, a) = R(s, a) + γEs′|s,a

{
Qπ(s′, π(s′))

}
(Bellman Equation)

1.8:4

60 Robot Learning, Marc Toussaint

Bellman Optimality Equation

• Bellman equations (↔ Policy Evaluation):

V π(s) = R(s, π(s)) + γEs′|s,π(s)
{
V π(s′)

}
Qπ(s, a) = R(s, a) + γEs′|s,a

{
Qπ(s′, π(s′))

}
• Bellman optimality equations: (↔ Q-Iteration/Value Iteration)

V ∗(s) = maxa
[
R(s, a) + γEs′|s,a

{
V ∗(s′)

}]
= maxaQ∗(s, a)

Q∗(s, a) = R(s, a) + γEs′|s,a
{
maxa′Q

∗(s′, a′)
}

π∗(s) = argmaxaQ
∗(s, a)

A

B

A opt ⇒ B opt Richard E. Bellman (1920–1984)

[Sketch of proof: If π∗ would be other than argmaxa[·], then π′ = π everywhere except π′(s) =
argmaxa[·] would be better.]

1.8:5

• The core question is how to actually compute them

• Model-based: (if we know or estimated the models P (s′|s, a), R(s, a), P (s0))

– Q-Iteration, Policy Iteration

• Data-based: (if we directly use data D = {(si, ai, ri, si+1)}ni=0)

– “Reinforcement Learning”

– TD-Learning, Q-learning, Actor-Critic

– Modern: DDPG, TC3, SAC, etc

1.8:6

Model-based: Q-Iteration

• Bellman Optimality equation for Q∗:

Q∗(s, a) = R(s, a) + γEs′ | s,a
{
max
a′

Q∗(s′, a′)︸ ︷︷ ︸
V ∗(s′)

}

• Q-Iteration: initialize Qk=0(s, a) = 0, then iterate:

∀s : Vk+1(s) = max
a′

Qk(s, a
′)

∀s,a : Qk+1(s, a) = R(s, a) + γEs′|s,a
{
Vk+1(s

′)
}

stopping criterion: maxs,a |Qk+1(s, a)−Qk(s, a)| ≤ ϵ

[Note: Using Vk+1 in this iteration is like a buffer – cf. the “target network” in neural RL.]

• Theorem: Q-Iteration converges to the optimal state-action value function Q∗

1.8:7

Robot Learning, Marc Toussaint 61

Q-Iteration – Proof of convergence

• Let ∆k = ||Q∗ −Qk||∞ = maxs,a |Q∗(s, a)−Qk(s, a)|

Qk+1(s, a) = R(s, a) + γEs′|s,a{maxa′ Qk(s
′, a′)}

≤ R(s, a) + γEs′|s,a
{
maxa′

[
Q∗(s′, a′) + ∆k

]}
=

[
R(s, a) + γEs′|s,a{maxa′ Q

∗(s′, a′)}
]
+ γ∆k

= Q∗(s, a) + γ∆k

similarly: Qk+1 ≥ Q∗ − γ∆k

• The proof translates directly also to value iteration

1.8:8

Model-based: Policy Iteration

• Policy Evaluation: Dynamic Programming for Qπ instead of Q∗: Iterate:

∀s : Vk+1(s) = Qk(s, π(s))

∀s,a : Qk+1(s, a) = R(s, a) + γEs′|s,a
{
Vk+1(s

′)
}

stopping criterion: maxs,a |Qk+1(s, a)−Qk(s, a)| ≤ ϵ

• Policy Improvement: Then update the policy to become better:

π(s)← argmax
a

Q(s, a)

• Iterating the two steps above is guaranteed to converge

• This is also called actor-critic (with π=actor, and Qπ=critic)

1.8:9

• The two discussed methods (Q-Iteration and Policy Iteration) can compute optimal policies, but
require a known (or estimated) model

• To approximately do the same from data, we follow two strategies

– Whenever there was an expectation E{·} in these equations, we replace it by sample data

– Whenever there was a full function update (e.g. ∀s,a : Q(s, a) ← · · · or policy improvement)
we need to replace it by a data-based loss functions and do gradient steps.

• For simplicity, the following focusses on Policy Iteration (or actor-critic) approaches

[Similar strategies can be applied for “Deep Q-Learning”:
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland,
and Georg Ostrovski, (2015). Human-level control through deep reinforcement learning. nature, 518(7540):529–533

But major RL methods nowadays follow actor-critic approaches]

1.8:10

Data-based: Bellman Loss for the Q-function

• Recall
Qπ(s, a) = R(s, a) + γEs′|s,a

{
Qπ(s′, π(s′))

}

https://www.nature.com/articles/nature14236

62 Robot Learning, Marc Toussaint

• Given data D = {(si, ai, ri, si+1)}Ti=0, define the Bellman residual:

Bπ(Qθ, Q̄) = E(s,a,r,s′)∼D
{
[Qθ(s, a)− r − γQ̄(s′, π(s′))]2

}
• This defines a supervised ML problem for Qθ! We have Q-gradients and can do standard SGD.

– Actually we want Q̄ ≡ Qθ, and could compute gradients also accounting for γQ̄(s′, π(s′)). This
is called Bellman residual minimization, and known since the 80ies, but has challenges [74, 45]

– So instead, during training we fix Q̄ to some “old version” of Qθ: We set Q̄ = Qθ̄ where θ̄ is
a low-pass filter of θ (a delayed version of the current parameters θ). This stabilizes training.

1.8:11

• So, for a given policy π, Bπ(Qθ, Q̄) defines a loss for Qθ
• How can we also define a loss function for the policy?

1.8:12

Data-based: Return Maximization for the Policy

• To train the policy, we choose to directly maximize expected return:

J(θ) = Eξ∼Pθ

{∑∞
t=0 γ

tR(st, at)︸ ︷︷ ︸
R(ξ)

}
=

∫
ξ Pθ(ξ) R(ξ) dξ

– This is not really an error, but exactly what we aim to maximize

– All we need is the gradient ∂
∂θ
J(θ)

1.8:13

Policy Gradient ∂
∂θJ(θ)

[The word “policy gradient” means gradient of J(θ) w.r.t. the policy parameters θ.]

• For a deterministic policy a = πθ(s) ∈ Rd:

∂
∂θ
J(θ) = Es∼Pθ

{
∂
∂a
Qπθ (s, a)

∣∣
a=πθ(s)

∂
∂θ
πθ(s)

}
[Derived here: [103], and led to the Deep Deterministic Policy Gradient (DDPG) method [70]. Is
the foundation of many followups. This gradient is somewhat noisy, D4PG is an improvement.]

• For a stochastic policy πθ(a|s): (standard “Policy Gradient Theorem”):

∂
∂θ
J(θ) = ∂

∂θ

∫
Pθ(ξ) R(ξ) dξ =

∫
Pθ(ξ)

∂
∂θ

logPθ(ξ)R(ξ)dξ

= Eξ∼Pθ

{
∂
∂θ

logPθ(ξ)R(ξ)
}

= Eξ∼Pθ

{∑H
t=0 γ

t [∂
∂θ

log πθ(at|st)]
∑H
t′=t γ

t′−trt′︸ ︷︷ ︸
Qπθ (st,at)

}

1.8:14

Robot Learning, Marc Toussaint 63

RL: Interleaving training with data collection

• Actor-Critic style Deep RL:
– ∂
∂θ

B(Qθ, Q̄) provides gradient steps for
Qθ

– ∂
∂θ
J(θ) provides gradient steps for πθ

– gradually training both is interleaved with
collecting more data

Scott Fujimoto, Herke Hoof, and David Meger, (2018). Addressing function
approximation error in actor-critic methods. In International Conference on
Machine Learning, pages 1587–1596

1.8:15

Techniques to improve methods

• Papers on techniques in state-of-the-art methods:

– In Deep Q-Learning (DQN) approaches: [54] (Rainbow paper)

– In Actor-Critic approaches: [40] (TD3 paper)

– A state-of-the-art actor-critic method: [49] (SAC paper)

• Many ideas:

– Replay buffers (“experience replay”): Limited buffer of experiences to train on (approximates
Pθ(s, a, r, s

′))

– Double Q-Learning: maintain 2 indep. Q-functions Q1,2(s, a) (and use min in policy update)

– Delayed targets: low pass filter Q̄ of Q as target

– Smoothed policy samples: add (clipped) noise when sampling policy in Bellman loss

– Prioritized Replay: (pick replay data where Bellman error is largest)

– Dueling Networks: (decompose Q in value and advantage)

– Multi-Step Learning: (n-step updates)

– Distributional RL: (let Q-function predict return distribution, not mean)

– Noisy Nets: (replace ϵ-greedy exploration by “learnt noise”)

1.8:16

Discussion

• The previous material should enable you to read about modern Deep RL methods (TD3, D4PG,
SAC)

• Rest of this lecture is discussion

– Why do we actually learn Q and not V ?

– What if we have partial observability?

– How is the data collected?

– How are reward functions engineered?

– Why not just use black-box optimization?

https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html

64 Robot Learning, Marc Toussaint

1.8:17

Why do we actually learn Q and not V ?

• Q(s, a) tells us what is the best action a = argmaxaQ

• In control, value functions are also estimated, but never Q (I think). Why?

[E.g. the Hamilton-Jacobi-Bellman Eq: − ∂
∂t
V (x, t) = minu

[
c(x, u) + ∂V

∂x
f(x, u)

]
.]

• Without Q-function, we’d somehow have to learn how to walk up-hill on V :

– Learn an inverse model (s,∆s) 7→ a

– Learn a “flow” policy π : s 7→ ∆s ≈ ∂
∂s
V (s)

1.8:18

What if we have partial observability?

• Policy has only access to observations y0:t

→ Make the Q function a recursive NN

Matthew Hausknecht and Peter Stone, (2015). Deep recurrent q-learning for par-
tially observable mdps. In 2015 Aaai Fall Symposium Series

1.8:19

How is the data collected?

• A core challenge in modern RL!

• Many modern methods require that the data is collected from the current πθ!

– So that E{·} can be replaced by the data in the Bellman equations

– This is called on-policy – we’ll discuss off-policy next time

– But π is so uninformed! So non-exploring! So iid. in each step (∼ Brownian noise)

– Check pseudo codes of mentioned methods (SAC, DDPG, TD3, etc)

• In old RL (discrete state-action spaces), things were much better!

– Explicit Exploit or Explore [61] – a must read!

– R-max [9], Optimistic value initialization, Bayesian RL

– These methods design policies to systematically explore, typically by systematically rewarding
exploration

– Optimism in the face of uncertainty: Rewarding decisions with uncertain outcomes!

https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf

Robot Learning, Marc Toussaint 65

1.8:20

How is the data collected?

• In Deep RL: Structured noise instead of Brownian:
Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius, (2022). Pink noise is all you need: Colored noise exploration in deep reinforcement
learning. In The Eleventh International Conference on Learning Representations

• Parameter-space noise: (add noise to θ instead of a)
Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz,
(2018). Parameter Space Noise for Exploration

• Guided Policy Search
Sergey Levine and Vladlen Koltun, (2013). Guided policy search. In International Conference on Machine Learning, pages 1–9

– Use model-based trajectory optimization to generate data

• Demonstration Guided [83]

• Or just give up:

– Offline Reinforcement Learning: Assume the data was generated somehow externally

– Imitation Learning & Inverse RL: Learn from demonstrations

1.8:21

How are reward functions engineered?

• Reward shaping theory: You can add potentials without changing optimal policy
Andrew Y. Ng, Daishi Harada, and Stuart Russell, (1999). Policy invariance under reward transformations: Theory and application to reward shaping. In Icml,
volume 99, pages 278–287

• Reward engineering:

Jens Kober and Jan Peters, (2009). Learning motor primitives for robotics. In 2009 IEEE International Conference on Robotics and Automation, pages
2112–2118

https://www.youtube.com/watch?v=qtqubguikMk

1.8:22

Why not just use black-box optimization?

• Eventually, maxθ J(θ) is an optimization problem

– Instead of deriving gradients (via Bellman, and Q-functions), why not treat as black-box or
derivative-free optimization problem?

1.8:23

https://openreview.net/forum?id=hQ9V5QN27eS
https://openreview.net/forum?id=hQ9V5QN27eS
http://arxiv.org/abs/1706.01905
https://proceedings.mlr.press/v28/levine13.html
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
https://ieeexplore.ieee.org/abstract/document/5152577/
https://www.youtube.com/watch?v=qtqubguikMk

66 Robot Learning, Marc Toussaint

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever, (2017). Evolution Strategies as a Scalable Alternative to Reinforcement Learning

1.8:24

• Ratio of ES timesteps to TRPO timesteps needed to reach various percentages of TRPO’s learning
progress at 5 million timesteps:

1.8:25

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff Clune, (2018). Deep Neuroevolution: Genetic Algorithms
Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning

• Roughly: “Do you spend your time training nets, or simulating?”

1.8:26

http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567

Robot Learning, Marc Toussaint 67

• Conclusion: It varies from problem to problem what is better.

And it is suprising that “naive” black-box ES can beat elaborate RL-methods

1.8:27

1.8:28

1.9 RL II: Offline RL & Sim2Real

(slides by Marc Toussaint)

Outline

• Some RL application papers

• Offline RL (on-policy vs. off-policy)

• Sim2Real

– Domain Randomization

– Privileged Training & Imitation Learning

– Domain Adaptation

1.9:1

Outline

• Some RL application papers

• Offline RL (on-policy vs. off-policy)

• Sim2Real

– Domain Randomization

– Privileged Training & Imitation Learning

– Domain Adaptation

1.9:2

68 Robot Learning, Marc Toussaint

Pieter Abbeel, Adam Coates, and Andrew Y. Ng, (2010). Autonomous
Helicopter Aerobatics through Apprenticeship Learning. The International
Journal of Robotics Research, 29(13):1608–1639

http://heli.stanford.edu/

1.9:3

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan,
Kaushik Subramanian, Thomas J. Walsh, Roberto Capobianco, Alisa De-
vlic, Franziska Eckert, Florian Fuchs, Leilani Gilpin, Piyush Khandelwal,
Varun Kompella, HaoChih Lin, Patrick MacAlpine, Declan Oller, Takuma
Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon
Barrett, Rory Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael
Spranger, and Hiroaki Kitano, (2022). Outracing champion Gran Turismo
drivers with deep reinforcement learning. Nature, 602(7896):223–228

https://sonyresearch.github.io/gt_sophy_public/

1.9:4

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller,
Vladlen Koltun, and Davide Scaramuzza, (2023). Champion-level drone
racing using deep reinforcement learning. Nature, 620(7976):982–987

https://www.youtube.com/watch?v=fBiataDpGIo

1.9:5

https://delete_delete_delete_doi.org/10.1177/0278364910371999
https://delete_delete_delete_doi.org/10.1177/0278364910371999
http://heli.stanford.edu/
https://www.nature.com/articles/s41586-021-04357-7
https://www.nature.com/articles/s41586-021-04357-7
https://sonyresearch.github.io/gt_sophy_public/
https://www.nature.com/articles/s41586-023-06419-4
https://www.nature.com/articles/s41586-023-06419-4
https://www.youtube.com/watch?v=fBiataDpGIo

Robot Learning, Marc Toussaint 69

Outline

• Some RL application papers

• Offline RL (on-policy vs. off-policy)

• Sim2Real

– Domain Randomization

– Privileged Training & Imitation Learning

– Domain Adaptation

1.9:6

On-Policy vs. Off-Policy Methods

• On-policy: estimate V π or Qπ while executing π (e.g., Policy Evaluation)

– The value-function updates directly depend on the policy π

• Off-policy: estimate Q∗ while executing π (e.g., Q-learning)

– The actually executed (data-collecting) policy π is also called “behavioral policy”

– In contrast, values Q∗ are estimated for the optimal policy π∗

• Off-policy is considered more efficient, as it can use off-policy-distribution data

[More technically: Consider you have data D = {(si, ai, ri, si+1, ai+1)}ni=0 collected with behavior
policy π. When you make Q- or V -updates, do you take only expectations w.r.t. D? Or do you
take conditional expectations ai+1 ∼ π∗(a|si+1) w.r.t. another policy? (E.g. greedy policy.)]

[SAC is called off-policy, because when training V it takes expectations w.r.t. at ∼ πθ (instead of
w.r.t. data collected previously).]

1.9:7

Offline RL

• Motivation:

– Separation of Concerns!

– Separate thinking about Data Collection, and thinking about what best to make of given data

– Real-world data is expensive!

– Data collection (exploration) in RL is an issue anyway

– No matter how RL collects data, it makes sense to study what best to make of given data

– The data could come from anywhere: huge data sets of other observed agents, of human
behavior, perhaps extracted from abundant video

– The data is not collected by “our AI agent” itself – but can still be used to learn a Q∗-function
and train our agent for optimal behavior

1.9:8

Offline RL

• Naive problem formulation: Given data D = {(si, ai, ri, si+1)}ni=0, find θ to

min
θ

E(s,a,r,s′)∼D
{
[Qθ(s, a)− r − γQθ̄(s

′, π(s′))]2
}

s.t. θ̄ ≈ θ
π ≈ argmax

π
E(s,a)∼D{Qθ(s, a)}

70 Robot Learning, Marc Toussaint

In words:

– minimize the empirical Bellman residual, with delayed Qθ̄-target

– ...where eventually π becomes optimal and θ̄ converges

• That’s a well-defined problem

– We have gradients for everything: Bellman gradient, deterministic policy gradient – let’s go!

1.9:9

Offline RL

• Resulting policy fails badly, due to distribution shift, just as in imitation learning:

Also called Compound Error (Shi’s lecture 5)

• In the naive problem formulation

– there is no penalty for “dreaming” crazy Q-values outside the data distribution

– the trained policy is likely to exploit these arbitrary Q-values

• We don’t have the DAgger option: Can’t collect more data to cover reached states!

→ We need to add a penalty for leaving the data distribution!

1.9:10

Offline RL

• We need to add a penalty for leaving the data distribution...

– Many different ideas, incl. literally penalizing “distribution distance” (divergence regularization)

– Modern versions found simple approaches:

1.9:11

TD3+BC

Scott Fujimoto and Shixiang Shane Gu, (2021). A minimalist ap-
proach to offline reinforcement learning. Advances in neural infor-
mation processing systems, 34:20132–20145

• Use TD3 (twin delayed deep deterministic..)
• Simply add a BC term to the policy objective!

π ≈ argmax
π

E(s,a)∼D
{
λQθ(s, a) + (π(s)− a)2

}

https://proceedings.neurips.cc/paper_files/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html

Robot Learning, Marc Toussaint 71

1.9:12

S4RL

Samarth Sinha, Ajay Mandlekar, and Animesh Garg, (2022). S4rl:
Surprisingly simple self-supervision for offline reinforcement learn-
ing in robotics. In Conference on Robot Learning, pages 907–917

• Include a strong data augmentation in the Q-
function loss

minθ E(s,a,r,s′)∼D
{
[1
I

∑
iQθ(Ti(s̃|s), a)− r − γ

1
I

∑
iQθ̄(Ti(s̃

′|s′), π(s′))]2
}

where Ti generates a variant of s (they propose 7
alternative, including spatial smoothing and adver-
sarial)

1.9:13

Offline RL Application

Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai
Yang, Chelsea Finn, and Sergey Levine, (2023). Pre-Training for Robots:
Offline RL Enables Learning New Tasks from a Handful of Trials

https://sites.google.com/view/ptr-final/

1.9:14

Offline RL Conclusions

• Scientifically important (separation of concerns)

• Opens new dimension: Train optimal behaviors from any data

• Promising future applications (leverage massive data, reward re-labelled data)

1.9:15

Outline

• Some RL application papers

• Offline RL (on-policy vs. off-policy)

• Sim2Real (slides based on Shi’s lecture)

– Domain Randomization

– Privileged Training & Imitation Learning

https://proceedings.mlr.press/v164/sinha22a.html
https://proceedings.mlr.press/v164/sinha22a.html
https://proceedings.mlr.press/v164/sinha22a.html
http://arxiv.org/abs/2210.05178
http://arxiv.org/abs/2210.05178
https://sites.google.com/view/ptr-final/

72 Robot Learning, Marc Toussaint

– Domain Adaptation

1.9:16

• Why train in Simulation?

– Real-world data is expensive!

– Many RL methods require millions of samples

– Simulation is fast

– Simulation is safe, can be fully explored

– Simulation provides ground truth labels (e.g. train priviledged policy)

– Simulations get better and better, including simulating sensors (image rendering)

1.9:17

from Shi’s lecture

1.9:18

• What are Sim2Real issues?

– Simulation never matches real world exactly; policies overfit to simulation and fail in real

– Parameteric mismatches: Other dynamics parameters, e.g. friction, inertias

– Non-parameteric mismatches: Physical effects not simulated: Wind, exact fluids, sand/dust

• Approaches to tackle this:

– Domain Randomization

– Privileged Training & Imitation Learning

– Domain Adaptation

1.9:19

Robot Learning, Marc Toussaint 73

Domain Randomization

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel, (2017). Domain randomization for transferring deep
neural networks from simulation to the real world. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
23–30

• Train a single policy to perform well in many
domain variants
• Original paper focussed on perception, but
works equally for any other parameter Θ

1.9:20

Domain Randomization

• Let Θ be a simulation parameter: xt+1 = f(xt, ut; Θ)

• Randomly sample Θ ∼ p(Θ) at the start of each episode

• Otherwise, use standard RL

– But since the world is “more uncertain”, the RL problem becomes harder

1.9:21

• What if we train a policy π̂(st,Θ) that get’s Θ as input?

Is that cheating? [16]

1.9:22

Privileged Training & Imitation Learning

• Priviledged RL Training:

– We first train π̂(st,Θ) using standard RL

– Much easier than without access to Θ

• Sensorimotor Imitation using DAgger:

– Then we train a policy π(st) to imitate π̂(st,Θ)

– As we can query π̂(st,Θ), we can use DAgger! Much more efficient than plain BC

• This approach is a core paradigm beyond RL:

– First develop a method to solve a problem using full information (could be a planner)

– Then train a policy to imitate that method with only available (sensor) information

1.9:23

Privileged Training & Imitation Learning

https://ieeexplore.ieee.org/abstract/document/8202133/
https://ieeexplore.ieee.org/abstract/document/8202133/

74 Robot Learning, Marc Toussaint

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and
Marco Hutter, (2020). Learning quadrupedal locomotion over challeng-
ing terrain. Science Robotics, 5(47):eabc5986

https://youtu.be/txjqn8h6pjU

https://youtu.be/Xnn4sVSpSh0

1.9:24

Privileged Training & Imitation Learning

• The privileged policy gets full information as input:
Exact Θ and state st, including terrain model
• The sensorimotor policy only sensor obs. yt
→ the sensorimotor policy needs to use the sequence
y0:t, e.g. recursive or transformer

1.9:25

• The sensorimotor policy uses full observation sequence y0:t to output controls ut...

– What else could it predict based on y0:t?

The unobserved physics parameters Θ!

1.9:26

Adaptive Control

• Large area within Control Theory

• Assumes environment has varying parameters Θ (not directly observed)

• One approach: Estimate Θ from past observations and use for control

• Robust control: Estimate posterior belief p(Θ|y0:T) over possible Θ and use control robust to all
possibilities

1.9:27

Domain Adaptation

• In the Robot Learning community, the word Domain Adaptation is used for any controller that
adapts (to varying unobserved Θ) based on past observations y0:t.

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/448343/1/2020_science_robotics_lee_locomotion.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/448343/1/2020_science_robotics_lee_locomotion.pdf
https://youtu.be/txjqn8h6pjU
https://youtu.be/Xnn4sVSpSh0

Robot Learning, Marc Toussaint 75

• Explicit approach:

– Train an estimator ψ : y0:t 7→ Θ̂

– Then train a policy π(y0:t, ψ(y0:t)) for fixed ψ

• Implicit approach:

– As in Lee et al’20

– Just train π(y0:t), but potentially imposing a representation that is also predictive for Θ

1.9:28

Sim2Real Conclusions

• (Pre-)Training in Sim became a standard in modern Robot Learning

• Sim2Real is not considered a blocker anymore:

– Domain Randomization, Privileged Training & Sensorimotor are powerful approaches

– Even if policies do not directly transfer → Real-World finetuning requires much less data

1.9:29

Side note: Privileged Training for Imitation Learning

• The paper below used same approach, but in the context of Imitation Learning:

– The privileged policy imitated a human demonstrator using full access to the driving simulation

– The sensorimotor policy imitated the privileged policy
Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl, (2020). Learning by cheating. In Conference on Robot Learning, pages 66–75

1.9:30

1.10 Inverse RL

(slides by Marc Toussaint)

Outline

• Value Alignment

• Inverse RL

• Preference-based RL

1.10:1

http://proceedings.mlr.press/v100/chen20a.html

76 Robot Learning, Marc Toussaint

• Stuart Russell
– Russell & Norvig: Artificial Intelligence: A
Modern Approach (1995)

– Decision & Game Theory

Stuart Russell, (2019). Human compatible: AI and the problem of control

1.10:2

Russell: Value Alignment

• “Standard model of AI”

– Define fixed objective; maximize

• Difficulty in defining objectives

– Consequences (aspects of optimal behavior) unclear

– Humans are bad at defining objectives

• Russell’s proposal:

– Systems should infer human preferences from behavior

– Avoid overfitting

– Large apriori uncertainty (incl. noise assumption in human behavior) to avoid overfitting

1.10:3

Dylan Hadfield-Menell, Stuart J. Russell, Pieter Abbeel, and Anca Dragan,
(2016). Cooperative inverse reinforcement learning. Advances in neural
information processing systems, 29

• Game-theoretic formalization of Value Align-
ment
– ..is just one possible formulation

– example for efforts to make “Value Align-
ment” more rigorous

1.10:4

https://books.google.com/books?hl=en&lr=&id=Gg-TDwAAQBAJ&oi=fnd&pg=PT8&dq=human+compatible+russell&ots=qoZKXK7gQ0&sig=p4x57HjxfMAVCpQ4O_XcE7J4ECY
https://proceedings.neurips.cc/paper_files/paper/2016/hash/c3395dd46c34fa7fd8d729d8cf88b7a8-Abstract.html

Robot Learning, Marc Toussaint 77

Outline

• Value Alignment

• Inverse RL

• Preference-based RL

1.10:5

Inverse Reinforcement Learning

• Instance of Imitation Learning; recall:

– Given expert demonstration data D = {(si1:Ti
, ai1:Ti

)}ni=1 without external rewards, objectives,

costs defined

– Extract the “relevant information/model/policy” to reproduce demonstrations

• Recap: Types of Imitation Learning

– Behavior Cloning

– Trajectory Distribution Learning (& Constraint Learning)

– Direct (Interactive) Policy Learning (DAgger)

– Inverse Reinforcement Learning
– Builds on the full formalism of RL

1.10:6

Inverse Reinforcement Learning

• General Idea:

– Given expert demonstration data D = {(si1:Ti
, ai1:Ti

)}ni=1

– infer the reward function assuming the demonstrated behavior is (approx.) optimal

• Benefits of understanding the reward function behind demonstrations:

– Can apply and generalize to fully different domains, leading to different policy

– Can be better than demonstrator

1.10:7

Inverse Reinforcement Learning

• Methods we discuss:

– Max Margin IRL (Apprenticeship Learning)

– Max Entropy IRL

– Adversarial IRL

1.10:8

IRL: General Approach

• Recall the value of a policy π

J(π) = Eξ∼Pπ

{∑∞
t=0 γ

tR(st, at)
}

• Given a demonstration policy π∗, we want to find R such that for any other policy π:

J(π∗) ≥ J(π) ⇔ Eξ∼Pπ∗
{∑∞

t=0 γ
tR(st, at)

}
≥ Eξ∼Pπ

{∑∞
t=0 γ

tR(st, at)
}

78 Robot Learning, Marc Toussaint

• To simplify this, let’s assume R(s, a) is linear in features ϕ(s, a):

R(s, a) = w⊤ϕ(s, a) =
∑
i

wiϕi(s, a) (5)

⇒ J(π) = w⊤Eπ
{∑∞

t=0 γ
tϕ(st, at)

} ∆
= w⊤µ(π) (6)

and we want
∀π ̸=π∗ : w⊤µ(π∗) ≥ w⊤µ(π)

1.10:9

Apprenticeship Learning

Pieter Abbeel and Andrew Y. Ng, (2004). Apprenticeship learning via inverse reinforcement learning. In Twenty-first international conference, page 1

1.10:10

Apprenticeship Learning

• First, π∗ is not really given but

– we estimate µ(π∗) = Eπ∗
{∑∞

t=0 γ
tϕ(st, at)

}
from the demonstration data D

– This µ(π∗) is the only information used from the demonstrations

• Second, we generate a series of other policies πi against which we discriminate π∗

• Third, formulate “discrimination” as a max margin problem:

1: initialize π0
2: for i = 0, 1, 2, . . . do
3: w, t← argmaxw,t∈R t s.t. ||w|| ≤ 1 , ∀j∈{0,..,i} : w⊤µ(π∗) ≥ w⊤µ(πj) + t
4: πi+1 ← argmaxπ J(π) RL problem!
5: end for

1.10:11

Maximum Entropy IRL

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse reinforcement learning

1.10:12

Maximum Entropy IRL

[skipping details]

http://portal.acm.org/citation.cfm?delete_delete_delete_doid=1015330.1015430

Robot Learning, Marc Toussaint 79

• First, the expert might be noisy, demonstrations ξ are assumed

P (ξ;w) =
exp{w⊤µ(ξ)}∫

exp{w⊤µ(ξ′)} dξ′

• Second, find w that leads to max entropy P (·;w) but matches demonstrations:

min
w

∫
P (ξ;w) logP (ξ;w) dξ

s.t. Eξ∼P (ξ;w){µ(ξ)} = µ(π∗)

1.10:13

Adversarial IRL

• Recall idea of GANs:

min
G

max
D

Ex∼pdata{logD(x)}+ Ey=G(z),z∼pz{log[1−D(y)]}

– Train a discriminator D to label data positive, and generator’s samples negative

– Train a generator G to maximize likelihood of being classified data
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, (2014). Generative
adversarial nets. Advances in neural information processing systems, 27

• The max margin idea is very similar:

– Find a reward function that discriminates π∗ optimal from all others

– Find other policies πi iteratively to discriminate against

1.10:14

Adversarial IRL

Justin Fu, Katie Luo, and Sergey Levine, (2018). Learning robust rewards
with adversarial inverse reinforcement learning

Earlier similar work: [37]

1.10:15

https://proceedings.neurips.cc/paper/5423-generative-adversarial-nets
https://proceedings.neurips.cc/paper/5423-generative-adversarial-nets
http://arxiv.org/abs/1710.11248 [cs]
http://arxiv.org/abs/1710.11248 [cs]

80 Robot Learning, Marc Toussaint

Adversarial IRL

• The discriminator Dθ,ϕ(s, a, s
′) operates on triplets and is parameterized as

Dθ,ϕ(s, a, s
′) =

exp{fθ,ϕ(s, a, s′)}
exp{fθ,ϕ(s, a, s′)}+ π(a|s)

fθ,ϕ(s, a, s
′) = gθ(s, a) + γhϕ(s

′)− hϕ(s)
≈ r(s, a) + γV (s′)︸ ︷︷ ︸

Q(s,a)

−V (s) = A(s, a)

– This particular decomposition is crucial!

– Training this way gθ(s, a) automatically gets “reward semantics”, and hϕ “value semantics”

– A(s, a) is called advantage function

1.10:16

Inverse RL Summary

• Conceptually highly interesting

• The max-margin/discrimination/adversarial idea is core to many approaches

– Max entropy is alternative way of thinking

1.10:17

Outline

• Value Alignment

• Inverse RL

• Preference-based RL

1.10:18

Preference-based Learning

• In ML:

– Given data of preference tuples D = {(xi1 ≻ xi2)}ni=1 (each tuple means a user preference)

– learn a mapping f : X 7→ R to minimize, e.g.

n∑
i=1

[f(xi2)− f(xi1)]+

– Read about label ranking, instance ranking, object ranking

1.10:19

Robot Learning, Marc Toussaint 81

Preference-based RL

• Given trajectory segment data D = {(si1:Ti
, ai1:Ti

)}ni=1 = {ξi}ni=1 and preferences ξi ≻ ξj for

some pairs (i, j), find a reward function s.t.

ξi ≻ ξj ⇒
T∑
t=1

R(sit, a
i
t) >

T∑
t=1

R(sjt , a
j
t)

• Long history, e.g.
Riad Akrour, Marc Schoenauer, and Michèle Sebag, (2012). APRIL: Active preference learning-based reinforcement learning. In Peter A. Flach, Tijl De Bie,
and Nello Cristianini, editors, Machine Learning and Knowledge Discovery in Databases, volume 7524, pages 116–131

1.10:20

Deep RL from Human Preferences

Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and
Dario Amodei, (2017). Deep reinforcement learning from human prefer-
ences. Advances in neural information processing systems, 30

1.10:21

Deep RL from Human Preferences

• Iteratively update a policy π and reward function Rψ :

– Run RL algorithm to update π with R; collect episodes

– Select segments ξi from these episodes; let a human specify preferences ξi ≻ ξj

– Update R to minimize “preference loss”

• Assume human preferences are noisy (Bradley-Terry model)

P (ξi ≻ ξj ;R) =
exp{

∑T
t=1R(sit, a

i
t)}

exp{
∑T
t=1R(sit, a

i
t)}+ exp{

∑T
t=1R(sjt , a

j
t)}

– Maximize likelihood maxψ
∑
ξi≻ξj logP (ξi ≻ ξj ;Rψ) for all human provided preferences

1.10:22

Robotics Application

Donald Joseph Hejna III and Dorsa Sadigh, (2023). Few-shot preference
learning for human-in-the-loop rl. In Conference on Robot Learning, pages
2014–2025

https://sites.google.com/view/
few-shot-preference-rl/home

http://link.springer.com/10.1007/978-3-642-33486-3_8
https://proceedings.neurips.cc/paper/7017-deep-reinforcement-learning-from-
https://proceedings.neurips.cc/paper/7017-deep-reinforcement-learning-from-
https://proceedings.mlr.press/v205/iii23a.html
https://proceedings.mlr.press/v205/iii23a.html
https://sites.google.com/view/few-shot-preference-rl/home
https://sites.google.com/view/few-shot-preference-rl/home

82 Robot Learning, Wolfgang Hönig

1.10:23

1.11 Safe Learning

(slides by Wolfgang Hönig)

Safety

What might “safety” refer to in safe learning?

1.11:1

Motivation

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and Angela P. Schoellig, (2022). Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411–444

1.11:2

Outline

• Definitions of Safety and Safe Learning

• Overview of Existing Solutions (& Case Studies)

• Discussion / Open Challenges

1.11:3

What is learned?

environment/task parameters

plans/anticipationstate evaluations
xt

state
ut

controls

observations
value V (x)

Q-valueQ(x, u)

constraint φ(x)

rewards rt

yt
action plan a1:K

waypoints/subgoals xt1:K

physics parameters Θ

trajectory x[t,t+H]

instructions/lang./goal info g

https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211

Robot Learning, Wolfgang Hönig 83

• Consider policy π : xt 7→ ut

� Safety means (intuitively) that if we rollout π (xt+1 = f(xt, π(xt)) ∀t), we never end up
in a “bad” state (e.g., collision, crash, stability/tracking) for “valid” start states x0

� In some cases, safety should apply while learning as well

1.11:4

Definition of Safety (1)

• Dynamics xk+1 = fk(xk, uk, wk)

� xk ∈ X (state)

� uk ∈ U (action)

� wk ∼W (process noise)

� Why fk and not f?

• Objective J(x0:N , u0:N−1) = lN (xN) +
∑N−1
k=0 lk(xk, uk)

• Safety constraints

� State constraints (e.g., no collisions)

� Input constraints (e.g., actuation limits)

� Stability guarantees (e.g., robot converging to desired reference path)

1.11:5

Definition of Safety (2)

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and Angela P. Schoellig, (2022). Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411–444

1.11:6

Definition of Safety (3)

• Hard constraints (safety level 3)

cjk(xk, uk, wk) ≤ 0 ∀k ∀j

https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211

84 Robot Learning, Wolfgang Hönig

• Chance constraints (safety level 2)

Pr(cjk(xk, uk, wk) ≤ 0) ≥ pj ∀k ∀j pj ∈ [0, 1]

• Soft constraints (safety level 1)

cjk(xk, uk, wk) ≤ ϵj ∀k ∀j
lϵ(ϵ) ≥ 0 (Cost function term)

1.11:7

Definition of Safe (Control) Learning

1.11:8

Relationship to (Classic) Controls

• Robust control

� Assume disturbance bounds known

� Find fixed controller that works even in the worst-case

• Adaptive controls

� Assume environment has varying parameters Θ (not directly observed)

� Controller changes online (e.g., by estimating Θ)

• Tube-based Model Predictive Control (MPC)

� Robust control in MPC framework: use tighter constraints to account for unmodeled dynamics

1.11:9

Robot Learning, Wolfgang Hönig 85

Relationship to (Classic) Controls

1.11:10

Relationship to (Classic) RL

1.11:11

Outline

• Definitions of Safety and Safe Learning

• Overview of Existing Solutions (& Case Studies)

• Discussion / Open Challenges

1.11:12

86 Robot Learning, Wolfgang Hönig

Existing Solution Strategies

(i) Safely Learn Uncertain Dynamics

(ii) RL that Encourages Safety and Robustness

(iii) Safety Certification

[Online Adaption/Learning (dynamics, cost function, constraints, control parameters) vs Offline
(update in batches)]

1.11:13

Existing Solution Strategies

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and Angela P. Schoellig, (2022). Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411–444

1.11:14

Strategy III: Safety Certification: Constraint Set

• Key idea

� Learn policy “as usual”

� At runtime, apply a safe action usafe = argminu ||u− ulearned||2 such that xk+1 is safe

• Safe states can be computed by

� Control Barrier Functions (CBFs)

� Hamilton-Jacobi Reachability Analysis

� Predictive safety filters
[keep track of safe control inputs that could steer back to a known safe state]

1.11:15

https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211

Robot Learning, Wolfgang Hönig 87

Strategy III: Safety Certification: Constraint Set

• More Advanced

� If safety layer is differentiable → end-to-end training (e.g. [90])

� Learn safety filters directly

Kim P. Wabersich, Andrew J. Taylor, Jason J. Choi, Koushil Sreenath, Claire J. Tomlin, Aaron D. Ames, and Melanie N. Zeilinger, (2023). Data-Driven Safety
Filters: Hamilton-Jacobi Reachability, Control Barrier Functions, and Predictive Methods for Uncertain Systems. IEEE Control Systems, 43(5):137–177

1.11:16

Strategy III: Safety Certification: Stability

• Stability: (informal) Can the robot track the reference, even with (small) disturbances? [Formal

proofs via Lyapanov functions or contraction theory]

• Typical assumptions:

� Bounded disturbance

� Bounded change in disturbance (Lipschitz continuous with known Lipschitz bound)

� Unbounded control authority

• Lipschitz-based: Treat neural network as “disturbance”; limit magnitude and Lipschitz bound during
training (Spectral Normalization) (e.g., [100])

• Region of Attraction: Lyapunov Neural Networks [88]

1.11:17

Case Study: Neural Lander (based on slides from Shi)

Video: https://youtu.be/FLLsG0S78ik

1.11:18

https://ieeexplore.ieee.org/document/10266799/
https://ieeexplore.ieee.org/document/10266799/
https://youtu.be/FLLsG0S78ik

88 Robot Learning, Wolfgang Hönig

Case Study: Neural Lander (based on slides from Shi)

1.11:19

Strategy II: RL that Encourages Safety and Robustness

• 1. Safe Exploration and Optimization

• 2. Risk-averse RL and uncertainty-aware RL

• 3. RL for Constrained MDPs (CMDPs)

• 4. RL for Robust MDPs

1.11:20

Strategy II: RL that Encourages Safety: Safe Exploration

• Safe Exploration: only allow the policy to explore safe states

Teodor Mihai Moldovan and Pieter Abbeel, (2012). Safe exploration in Markov decision processes. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, ICML’12, pages 1451–1458

1.11:21

Robot Learning, Wolfgang Hönig 89

Strategy II: RL that Encourages Safety: Safe Exploration

• Safe Exploration: only allow the policy to explore safe states

Teodor Mihai Moldovan and Pieter Abbeel, (2012). Safe exploration in Markov decision processes. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, ICML’12, pages 1451–1458

1.11:22

Strategy II: RL that Encourages Safety: Safe Exploration

• Safe Optimization: Minimize cost function without sampling inputs that violate safety constraints,
e.g., SafeOpt [7]

Safe set Sn (red): Could be potential maximizers Mn (green) or expanders Gn (magenta)

1.11:23

Case Study: SafeOpt

� Update sets using GPs

� From the union of safe potential maxi-
mizers or expanders, measure where the
uncertainty is highest

1.11:24

Case Study: SafeOpt

Application: Safe controller gain tuning

90 Robot Learning, Wolfgang Hönig

Video: https://youtu.be/GiqNQdzc5TI

1.11:25

Strategy II: RL that Encourages Safety: Safe Exploration

• Learning a safety critic: learn a Q-function that predicts “safety”, e.g., [114]

1.11:26

Strategy II: RL that Encourages Safety: Risk-averse RL

• Learn/estimate risks (e.g., probability of a collision)

• At runtime, prefer actions with low risk (e.g., MPC planner)

1.11:27

https://youtu.be/GiqNQdzc5TI

Robot Learning, Wolfgang Hönig 91

Case Study: Agile But Safe [52]

Web: https://agile-but-safe.github.io/

1.11:28

Strategy II: RL that Encourages Safety: RL for CMDPs

“However, most of the work in this area remains confined to naive simulated tasks, motivating
further research on their applicability in real-world control.”

1.11:29

Strategy II: RL that Encourages Safety: RL for Robust MDPs

• Robust Adversarial RL [84]

� Train two policies: a robust policy and a
destabilizing adversary (that can apply
random forces on the robot)

� Trained iteratively

• Domain Randomization

1.11:30

Strategy I: Safely Learn Uncertain Dynamics

• 1. Learning Adapative Control

• 2. Learning Robust Control

• 3. Learning Robust MPC

• 4. Safe Model-based RL

1.11:31

https://agile-but-safe.github.io/

92 Robot Learning, Marc Toussaint

Outline

• Definitions of Safety and Safe Learning

• Overview of Existing Solutions (& Case Studies)

• Discussion / Open Challenges

1.11:32

Open Challenges

• Broader class of robots (hybrid dynamics, multi-robot, soft-robot, ...)

• Scalability & Sampling/Computational Efficiency

• Imperfect State Measurements

• Verification of Safety-Related Assumptions

• Automatic Inference about What is Safe

1.11:33

Discussion

• What about other learning problems?

� Learning planners that output waypoints/trajectories (rather than a policy that outputs one
action)?

� Using humans as input (e.g., through language)?

� Including perception (e.g., y 7→ u)

� We discussed Safe RL and safe dynamics learning; What would Safe Imitation Learning be?
What would Safe Inverse RL be?

• How would you safely learn how to fly from scratch?

1.11:34

Conclusion

• Three Safety Levels: soft constraints, chance constraints, hard constraints

• Safety filters can be easily used, but are difficult to design for uncertain dynamics

• Encouraging safety has other advantages (e.g., sim-to-real transfer)

• Many practical challenges remain, especially for full robotic solutions

1.11:35

1.12 Manipulation & Grasp Learning

(slides by Marc Toussaint)

Robot Learning, Marc Toussaint 93

Outline

• Manipulation Intro

• Background on Grasping

• Grasp Learning Methods

• Briefly: Other Manipulation Learning

1.12:1

Manipulation is a Core Challenge in Robotics!

• Recall the “Robotics Essentials Lecture”

– Robotics is about Articulated Multibody Systems

– Objects in the environment are part of the “multibody system” (slide 21); have their own DOFs,
but are not articulated

– hybrid dynamics: on-off switching of manipulability; friction, stiction, slip, non-point contacts

• Think back about the last 5 lectures & exercises

– dynamics learning, imitation learning, RL, InvRL, safe learning

– Most work: state space↔ robot configuration (Hopper, Walker, helicopter, UAVs, quadropeds)

– Few works involved game environments: SpaceInvaders, Pong

– Some works about image-based manipulation of single object: image ↔ state

1.12:2

Manipulation – Definition

• Matt Mason:
Manipulation is when an agent moves things other than itself.

Matthew T. Mason, (2018). Toward Robotic Manipulation. Annual Review of Control, Robotics, and Autonomous Systems, 1(1):1–28

• My view: General-purpose Manipulation ↔ Ability to reach any physically possible environment
configuration

• Earlier work/definitions was fully focussed on grasping; now includes pushing, throwing, sticking,
tools, ropes, any means...

• Great Lecture:
Russ Tedrake, (2023). Robotic Manipulation - Lecture Website

1.12:3

Manipulation Learning

• What is learned?

environment/task parameters

plans/anticipationstate evaluations
xt

state
ut

controls

observations
value V (x)

Q-valueQ(x, u)

constraint φ(x)

rewards rt

yt
action plan a1:K

waypoints/subgoals xt1:K

physics parameters Θ

trajectory x[t,t+H]

instructions/lang./goal info g

• Policy: Image → Controls

– Grounded in MDP formalism: xt, ut 7→ rt, xt+1

– is about the control process in fine time resolution

• Solutions/Constraints: Image → grasp pose, push pose

– Not about the control process; no MDP formalism; no rewards, but x 7→success/no-success

– The learned model predicts successful grasps, push poses, throw parameters, etc

https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-060117-104848
https://manipulation.csail.mit.edu/index.html

94 Robot Learning, Marc Toussaint

– These are then executed using standard control theory

1.12:4

Outline

• Manipulation Intro

• Background on Grasping

• Grasp Learning Methods

• Briefly: Other Manipulation Learning

1.12:5

Grasping Background

See also Chapter 12 of
Kevin M. Lynch and Frank C. Park, (2017). Modern Robotics

1.12:6

Contacts

• Contact between two bodies – definitions:

– configuration q = (q1, q2) (with qi ∈ SE(3) pose of ith body)

– Their shapes define the pairwise signed-distance d12(q1, q2) (and its gradient)

– Two nearest points p1, p2 are called witness points

d12
1 2

p1 p2

– We also have the contact normal n ∈ R3

• Multiple contact forces on one body:

– One body, C contact points at position pi, each creates wrench (fi, τi) ∈ R6 at pi, totals:

f total =
C∑
i=1

fi , τ total =

C∑
i=1

τi + fi × (pi − c)

– Newton-Euler equation describes the resulting acceleration: f total
τ total

 =

 mv̇
Iẇ + w × Iw



1.12:7

Since “Manipulation is when an agent moves things other than itself” these equations “fully de-
scribe” what manipulation is about: Creating contact forces to appropriately accelerate objects.

1.12:8

Contacts

• Contact Friction:

– Point finger can not transmit torque ⇒ τi = 0 (better: patch models)

– Point finger sticks only when tangentil force f= ≤ µf⊥ (f⊥ = nn⊤f, f= = f − f⊥)

https://books.google.com/books?hl=en&lr=&id=5NzFDgAAQBAJ&oi=fnd&pg=PR11&dq=modern+robotics+book&ots=qsJmY4kXPh&sig=o1uhr6h_eJKF33_HBe2xZaT32Ow

Robot Learning, Marc Toussaint 95

– The set Fi = {fi : f=i ≤ µf⊥i } is called the friction cone

• Force closure:

– A contact configuration {(pi, ni)}Ci=1 with friction coeff µ creates force closure

⇔ we can generate (counter-act) arbitrary f total and τ total by choosing fi ∈ Fi appropriately.
⇔ The positive linear span of the fiction cones covers the whole space of (f total, τ total) ∈ R6

1.12:9

Force Closure & Force Closure Metric & Form Closure & Caging

• Force closure: The contacts can apply an arbitrary wrench (=force-torque) to the object.

• Force closure metric: Limit finger force |fi| ≤ 1 and compute radius (=origin-distance) of convex
hull

• Form closure: The object is at an isolated point in configuration space. Note: form closure ⇔
frictionless force closure

• Caging: The object is not fixated, but cannot escape

1.12:10

Outline

• Manipulation Intro

• Background on Grasping

• Grasp Learning Methods

• Briefly: Other Manipulation Learning

1.12:11

Grasp Learning

• What is learned?

– Simplified parallel gripper:

– Input: RGB-D image of scene

– Output: Set of grasps (=gripper poses qgripper ∈ SE(3)) in the scene:

– Alternative output: A network that can score any proposed grasp

• Training data: pairs of scene (usually converted to point cloud Ps) and grasps

D =
{ (

Ps, {qs,i}Gs
i=1

) }S
s=1

96 Robot Learning, Marc Toussaint

1.12:12

GraspNet 1

Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu, (2020).
Graspnet-1billion: A large-scale benchmark for general object grasping. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11444–11453

• Focusses on data collection (details later)
D =

{
(P, {(p ∈ P, v,D,R︸ ︷︷ ︸

qgripper∈SE(3)

, w)i})
}

• Given data, they propose architecture
– First PCL → v/success classifier per point
p

– Then predict D,R,w

– with separate loss functions for each part

1.12:13

GraspNet 2

Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao Gou, Jirong Liu,
Hengxu Yan, Wenhai Liu, Yichen Xie, and Cewu Lu, (2023). Anygrasp:
Robust and efficient grasp perception in spatial and temporal domains.
IEEE Transactions on Robotics

• Much more complex architecture
https://youtu.be/dNnLgAGreec

• Also dynamic (temporally stable) predictions:
https://www.youtube.com/watch?v=2O7UoOxeLlk

1.12:14

Other Grasp Learning Work

• Classic: Identifying “antipodal” grasps in point clouds:
Andreas Ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt, (2017). Grasp Pose Detection in Point Clouds. The International Journal of Robotics
Research, 36(13-14):1455–1473

• Classic: DexNet family:
Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg, (2017). Dex-Net 2.0: Deep
Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics

https://www.youtube.com/watch?v=i6K3GI2_EgU

http://openaccess.thecvf.com/content_CVPR_2020/html/Fang_GraspNet-1Billion_A_Large-Scale_Benchmark_for_General_Object_Grasping_CVPR_2020_paper.html
https://ieeexplore.ieee.org/abstract/document/10167687/
https://ieeexplore.ieee.org/abstract/document/10167687/
https://youtu.be/dNnLgAGreec
https://www.youtube.com/watch?v=2O7UoOxeLlk
http://journals.sagepub.com/delete_delete_delete_doi/10.1177/0278364917735594
http://arxiv.org/abs/1703.09312
http://arxiv.org/abs/1703.09312
https://www.youtube.com/watch?v=i6K3GI2_EgU

Robot Learning, Marc Toussaint 97

• More from the “RL” side (“closed loop grasping”):
Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser, (2020). Grasping in the wild: Learning 6dof closed-loop grasping from low-cost demonstrations.
IEEE Robotics and Automation Letters, 5(3):4978–4985

https://www.youtube.com/watch?v=UPJjpIhXpZ8

• Contact-GraspNet
Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox, (2021). Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes. In
2021 IEEE International Conference on Robotics and Automation (ICRA), pages 13438–13444

https://www.youtube.com/watch?v=qRLKYSLXElM

• Using Diffusion Models
Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki, (2023). Se (3)-diffusionfields: Learning smooth cost functions for joint grasp and motion
optimization through diffusion. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 5923–5930

https://www.youtube.com/watch?v=Tk6l3WsPGMY

1.12:15

Grasp Data Collection

• My view:

– All of the above papers show: If we have good data, we have good ideas on how to design ML
architectures to predict grasps

– Data Collection is the key!

• Two approaches:

– Model-based labels (grasp theory, force closure)

– Simulation-based labels

1.12:16

Model-based Grasp Labels

• GraspNet-1Billion and DexNet 2.0 papers:

– For every point in the scene, for every (or sampled) approach direction, every offset/roll/width

– Compute a classical grasp score: Force closure metric

– Requires knowledge of ground truth object poses and shapes → precise object pose estimation

1.12:17

Model-based Grasp Labels

• So, force closure theory is the origin of wisdom here!

• The learning machinery “only” transfers it to the real world – predicting force closure grasps based
on real RGB-D

https://ieeexplore.ieee.org/abstract/document/9126187/
https://www.youtube.com/watch?v=UPJjpIhXpZ8
https://ieeexplore.ieee.org/abstract/document/9561877/
https://www.youtube.com/watch?v=qRLKYSLXElM
https://ieeexplore.ieee.org/abstract/document/10161569/
https://ieeexplore.ieee.org/abstract/document/10161569/
https://www.youtube.com/watch?v=Tk6l3WsPGMY

98 Robot Learning, Marc Toussaint

• Cp. to imitation learning from a privileged expert! Here the privileged expert is the force closure
metric assuming known object shapes.

1.12:18

Simulation-based Grasp Labels
Clemens Eppner, Arsalan Mousavian, and Dieter Fox, (2021). Acronym: A large-scale grasp dataset based on simulation. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 6222–6227

• Use generic rigid body physics simulator:

– Throw random objects (from ShapeNet) into a scene (and render RGB-D image)

– generate random grasps – smartly engineered!

– Close and lift gripper – measure in-hand motion during both phases

– “we simulate 17.744 million grasps, out of which 59.21% (ap- proximately 10.5 million grasps)
succeed.”

• So, the physics simulator (=Newton-Euler equations + contact models) is the origin of wisdom
here!

– Again, cp. to imitation learning from privileged expert (=simulation)

1.12:19

Grasp Learning Summary

• Rather advanced for standard parallel gripper; less for more complex hands

• In my view, proper data generation is key – existing methods still have deficits

• Given proper data, the advances in learning are unstoppable (stronger architectures, diffusion, etc)

1.12:20

Manipulation Learning

• Manipulation is more than “pick-and-place”

– manipulating articulated objects

– pushing, throwing

– rolling, spinning, balancing/stacking, etc.

1.12:21

Recall: Extracting Constraints in Imitation Learning

https://ieeexplore.ieee.org/abstract/document/9560844/

Robot Learning, Marc Toussaint 99

• Extract “constraints of success”, but eventually pick-and-place

1.12:22

Manipulating Learning for Articulated Objects

Ben Eisner, Harry Zhang, and David Held, (2024). Flow-
Bot3D: Learning 3D Articulation Flow to Manipulate Ar-
ticulated Objects

• Assumes “gripper can be attached to any point on sur-
face”
• Learn a mapping P 7→ flow field Fp ∈ R3 for each p ∈ P

https://drive.google.com/file/d/

1jiEHT--WQec5diEJE6a4dMJkBnP3d36B/view

1.12:23

• Similar earlier work:

Zhenjia Xu, Zhanpeng He, and Shuran Song, (2022). Universal manipulation policy network for articulated objects. IEEE robotics and automation letters,
7(2):2447–2454

http://arxiv.org/abs/2205.04382
http://arxiv.org/abs/2205.04382
http://arxiv.org/abs/2205.04382
https://drive.google.com/file/d/1jiEHT--WQec5diEJE6a4dMJkBnP3d36B/view
https://drive.google.com/file/d/1jiEHT--WQec5diEJE6a4dMJkBnP3d36B/view
https://ieeexplore.ieee.org/abstract/document/9681198/

100 Robot Learning, Marc Toussaint

1.12:24

Conclusions

• Manipulation Learning is often beyond the MDP and RL framework!

• We often don’t learn low-level policies, but:

– Predicting grasps in an RGB-D scene

– Predicting manipulability (flow) of articulated objects from RGB-D

– Predicting keypoints/waypoints of interaction

• BUT, I think this is sooo far away from truely understanding/learning General-purpose Manipulation!

1.12:25

1.13 TAMP & Language

(slides by Marc Toussaint)

Remaining Lectures

• June 25: TAMP & Language

• July 2: Multi-Robot Learning

• July 9: Robot Learning Discussion – Lecture Feedback – Exam Info

1.13:1

Outline

• Background on Task and Motion Planning (TAMP)

• Learning in TAMP

• Language in Robotics

• LLMs & TAMP

1.13:2

Robot Learning, Marc Toussaint 101

Task and Motion Planning (TAMP) examples:

◦
Mordatch et al: CIO (SIGGRAPH’12)

◦
Garrett et al: PDDLStream (ICAPS’20)

◦
Toussaint at al: LGP (RSS’18)

◦
Hartmann et al. (IROS 20)

1.13:3

Task and Motion Planning (TAMP)

• What is the right level of “abstraction” to reason about manipulation?

– Low-level motor commands? (Torques?)

– Mid-level kinematic commands? (6D endeff target position/velocity)

– Actions/skills? (Pick, place, push, throw, hit, how long is the list?)

1.13:4

Abstractions

• What does the AI/RL researcher say about abstractions?

– Hierarchical MDPs, Options, Hierarchical RL

– (Classical AI: Landmarks in A* search)

– Abstraction learning is hard:

– Given action primitives → state abstractions clear (Konidaris’ work)

– Given state abstractions → action primitives clear (“skill discovery”)

– Classical ideas for state abstractions: identifying bottlenecks (=doors in configuration space;
McGovern, Barto 2001)

– Modern view: Data-driven: Assume tons of demonstrations and cluster-segment them

• What does the Roboticist say about abstractions?

– Force level, motion level, task level

– Task level: discrete symbolic state and actions (STRIPS/PDDL)

1.13:5

102 Robot Learning, Marc Toussaint

STRIPS/PDDL

– A symbolic state st is a set of grounded literals

– A symbolic action operators defines a precondition and effect

– Eventually, his defines the set of possible successor states st+1 ∈ succ(st)

1.13:6

Task and Motion Planning

• Task-level is defined by

– symbols (predicates), objects (constants), and action operators

– initial state s0, goal sentence, action operators imply succ(st)

• Motion-level is defined by

– world configuration space X, goal configurations Xgoal ⊆ X

– feasible space Xs,θ ⊆ X depending on logic state s and entry point θ (action parameter)

[Xs,θ is called foliation, or multi-modal space → multi-modal motion planning (MMMP)]

• Path-Finding formulation of TAMP:

– Find sequence of (si, τi) of symbolic states and continuous feasible paths τi that lead to goal:

– Paths: τi : [0, 1]→ Xsi,θi

– Continuity: τi(0) = τi-1(1)

– Entry points: θi = τi-1(1) (e.g. action parameter, grasp, lower-dim feature of τi-1(1))

– Goal: sK |= goal, τK(1) ∈ Xgoal

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez, (2021). Integrated Task
and Motion Planning. Annual Review of Control, Robotics, and Autonomous Systems, 4(1):265–293

1.13:7

https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-091420-084139

Robot Learning, Marc Toussaint 103

TAMP as Logic-Geometric Program (LGP)

min
s1:K

x:[0,KT]→X

∫ KT

0
c(x(t)) dt

s.t. x(0) = x0,

∀t∈[0,T] : ϕ̄(x(t), sk(t)) ≤ 0

∀k∈{1,..,K} : ϕ̂(x(tk), sk-1, sk) ≤ 0

sK |= goal, ∀k∈{1,..,K} : sk ∈ succ(sk-1)

• Skeleton s1:K defines schedule of physical modes
• Constraints ϕ̂, ϕ̄ define correct physics differentiable

[inequalities subsume equalities; x = (x, ẋ, ẍ)]

S
ke

le
to

n

Constraints
NLP

PDDL
Logic

feasible
skeletons

feasible
geometry/
kin/physics

infeasible subgraphs -> skeleton parts -> actions
A* heuristics from NLP bounds & geometry

• Solving implies searching over s1:K and
solving the corresponding NLP

Marc Toussaint, (2015). Logic-Geometric Programming: An Optimization-Based Approach to Combined Task and Motion Planning. In IJCAI, pages 1930–1936

Marc A. Toussaint, Kelsey Rebecca Allen, Kevin A. Smith, and Joshua B. Tenenbaum, (2018). Differentiable physics and stable modes for tool-use and
manipulation planning

1.13:8

renderings(!) of example solutions...

◦
(R:SS 18)

◦

◦
(IROS 20)

◦
(IROS 20)

◦
(R:SS 20)

◦

1.13:9

Abstractions

• What does “LGP” say about abstractions?

– There are two levels: the convex level (NLP), and the non-convex (discrete decisions)

1.13:10

Outline

• Intro to Task and Motion Planning (TAMP)

• Learning in TAMP

https://argmin.lis.tu-berlin.de/papers/15-toussaint-IJCAI.pdf
https://dspace.mit.edu/handle/1721.1/126626
https://dspace.mit.edu/handle/1721.1/126626

104 Robot Learning, Marc Toussaint

• Language in Robotics

• LLMs & TAMP

1.13:11

Is model-based TAMP a dead end?

• LGP formulates TAMP as model-based optimization problem

– Assumption of having a world model is unrealistic (state estimation from vision ill-posed...)

– High computation time for large problems – why plan from scratch every time?

• Opportunities for learning:

– Replace exact model by learned constraints ϕ(x)

– The LGP definition actually only needs constraints ϕ(x), no explicit world model

– Instead of hand-defining these from a model → image-conditional neural models ϕθ(x; I)

– Learn to predict plans

– Instead of solving from scratch, learn to predict promising actions a1:K from the scene
image

1.13:12

• Replace exact model by learned constraints ϕ(x):

1.13:13

• Learn ϕ(x, I) with V input images I s.t.:
– ϕ(x; I) = 0 ⇔ x is correct grasp

– ϕ(x; I) = 0 ⇔ x is correct hanging

• Data generating in simulation:
– Collect trial-and-error data on correct
grasps and hanging

Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022). Deep visual constraints: Neural implicit models for manipulation planning from visual input. IEEE
Robotics and Automation Letters, 7(4):10857–10864

1.13:14

https://ieeexplore.ieee.org/abstract/document/9844753/

Robot Learning, Marc Toussaint 105

Deep Visual Constraints: Network Architecture

Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022). Deep
visual constraints: Neural implicit models for manipulation plan-
ning from visual input. IEEE Robotics and Automation Letters,
7(4):10857–10864

• Camera views I = {(I1,K1), ..., (IV ,KV)}
Wanted: image-based constraint model

ϕ(x; I)

• First train a d-dimensional field representation
y(p; I) = 1

V

∑
iMLP(UNet(Ii,Ki(x)),Ki(x))

[p ∈ R3, pre-trained for shape decoding (SDF pre-
diction)]

• Function is queried at finite set of interaction points
p1(x), .., pK(x) to get the feature

ϕ(x; I) = MLP(y(p1(x); I), .., y(pK(x); I))

[fine-tuned for manipulation success (trial & error in
sim)]

1.13:15

Deep Visual Constraints

(No search over skeletons, no reactive MPC, just optimal path for given sequence of constraints.)

◦

1.13:16

Similar: Learn Dynamics Constraints

Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint,
(2023). Learning multi-object dynamics with compositional neural radiance
fields. In Conference on Robot Learning, pages 1755–1768

https://dannydriess.github.io/compnerfdyn/

• Each object has a latent code zti
• learn dynamics zt1:m 7→ zt+1

i !

1.13:17

• Learning to predict plans..

https://ieeexplore.ieee.org/abstract/document/9844753/
https://ieeexplore.ieee.org/abstract/document/9844753/
https://ieeexplore.ieee.org/abstract/document/9844753/
https://proceedings.mlr.press/v205/driess23a.html
https://proceedings.mlr.press/v205/driess23a.html
https://dannydriess.github.io/compnerfdyn/

106 Robot Learning, Marc Toussaint

1.13:18

Danny Driess, Jung-Su Ha, and Marc Toussaint, (2020). Deep
Visual Reasoning: Learning to Predict Action Sequences for Task
and Motion Planning from an Initial Scene Image

• Data collection D = {
(
Si, gi, ai

1:Ki , F
i
)
}ni=1

– with scene Si, goal gi, actions ai
1:Ki , feasibility

F i

– random generated “in simulation”, model-
based TAMP solver used to label feasibility

• Train a sequential policy:
π(ak; g, a1:k-1, S) =
P (∃K>K∃ak+1:K : a1:K feasible | ak, g, a1:k-1, S)
– Similar to language model: Predict next “token”
ak given previous a1:k-1 conditional g, S

1.13:19

Deep Visual Reasoning: Network Architecture

• Uses RNN – modern version would use transformer

• Special encoding of predicates ā, ḡ and references O (as masks)

1.13:20

Deep Visual Reasoning: Results

◦
• Often, the first proposed action sequence is
feasible

http://arxiv.org/abs/2006.05398
http://arxiv.org/abs/2006.05398
http://arxiv.org/abs/2006.05398

Robot Learning, Marc Toussaint 107

1.13:21

Outline

• Intro to Task and Motion Planning (TAMP)

• Learning in TAMP

• Language in Robotics

• LLMs & TAMP

1.13:22

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek,
(2020). Robots That Use Language. Annual Review of Control, Robotics,
and Autonomous Systems, 3(1):25–55

• Great survey on Natural Language Robot In-
teraction
– Using natural language to command
robots, set tasks

– Using natural language to instruct robots,
e.g. as part of demonstrations

– Different to standard NLP or dialog sys-
tems: language needs to be physically
grounded

1.13:23

Natural Language Robot Interaction: Examples

from [112]

• robot asks for help
• human sets task (with language & gesture)
• robot “reads/comprehends” wikihow
• demonstrations via dialog
• human sets task (nagivation)
• ...
• human sets task (object identification)
• human sets task (navigation)
• human sets task (manipulation)

1.13:24

https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-101119-071628

108 Robot Learning, Marc Toussaint

Natural Language Robot Interaction: Datasets

“Data sets typically consist of natu-
ral language paired with some form
of sensor-based context information
about the physical environment”

1.13:25

• Previous survey highlights substantial literature on Natural Language Robot Interaction before rise
of LLMs

Example: https://youtu.be/VqSb-ZZuIwI?t=2523

1.13:26

CLIP (Contrastive Language-Image Pre-training)

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, and Jack
Clark, (2021). Learning transferable visual models from natural language
supervision. In International Conference on Machine Learning, pages 8748–
8763

“We demonstrate that the simple pre-training
task of predict- ing which caption goes with
which image is an efficient and scalable way
to learn SOTA image representations from
scratch on a dataset of 400 million (image,
text) pairs collected from the internet.”

[Contrastive Training: “maximize the cosine similarity of the image and text embeddings of the N
real pairs in the batch while minimizing the cosine similarity of the embeddings of the N2 − N
incorrect pairings.]

1.13:27

CLIPort

https://youtu.be/VqSb-ZZuIwI?t=2523
http://proceedings.mlr.press/v139/radford21a
http://proceedings.mlr.press/v139/radford21a

Robot Learning, Marc Toussaint 109

Mohit Shridhar, Lucas Manuelli, and Dieter Fox, (2022). Cliport: What
and where pathways for robotic manipulation. In Conference on Robot
Learning, pages 894–906

https://cliport.github.io/

“CLIPort: a language-conditioned imitation-
learning agent that combines the broad seman-
tic understanding (what) of CLIP with the spa-
tial precision (where) of Transporter”

• Trains a policy π : (yi, ll) 7→ at

– top-down orthographic RGB-D yt, language instruction lt, pick-n-place 2D coordinates at

1.13:28

SayCan

Do As I Can, Not As I Say: Grounding Lan-
guage in Robotic Affordances

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexan-
der Herzog, Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, and Ryan Julian,
(2023). Do as i can, not as i say: Grounding language in robotic affordances.
In Conference on Robot Learning, pages 287–318

https://say-can.github.io/

• Use a LLM (PaLM) to predict multiple actions (with probabilities)

• Multiply each option with affordance prediction (= probability of success)

1.13:29

PaLM-E

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha
Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong,
Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel
Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Tou-
ssaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence, (2023).
PaLM-E: An Embodied Multimodal Language Model

https://palm-e.github.io/

• Input: Multi-modal sentence:
– Interleaves words, images (with segmenta-
tion), vectors, reference-keywords

– All token-encoded

– Various image encodings (ViT, object-
centric ViT, OSRT, NeRFs pre-trained)

• Output:
– Sequences of action primitives (previously
trained, RT-1)

1.13:30

https://proceedings.mlr.press/v164/shridhar22a.html
https://proceedings.mlr.press/v164/shridhar22a.html
https://cliport.github.io/
https://proceedings.mlr.press/v205/ichter23a.html
https://say-can.github.io/
http://arxiv.org/abs/2303.03378
https://palm-e.github.io/

110 Robot Learning, Marc Toussaint

◦
“Bring me the rice chips from the drawer”

◦
“Bring me the green star”

◦
“Push red blocks to the coffee cup”

◦
“Push green blocks to the turtle”

1.13:31

Example input/output

• Prompt: Given . Q: How to grasp the green object?.

Target: A: First grasp the orange object and place it on the table, then grasp the green

object.

• Prompt: Given . Q: How to stack the white object on top of the red object?.

Target: A: First grasp the green object and place it on the table, then grasp the white

object and place it on the red object.

1.13:32

PaLM-E Evaluations

• Data sets:

– TAMP data (generated by our LGP-TAMP planner)

– Table data (previous RT1 paper)

– SayCan data

– Other visual/language data: WebLI, VQA, COCO, etc.

• Pre-taining:

– LLM backbone: language, VQA (WebLI, VQA, COCO)

– Encodings: reconstruction, auto-encoding

• Ablation studies:

– Varying transformer sizes

– generalization (to unseen object situations, esp. higher number of objects)

– freezing, refining, full-learning of backbone LLM or encodings

– with full/partial choice of data sets & sizes

– various image encodings

1.13:33

Robot Learning, Wolfgang Hönig 111

PaLM-E evaluations

1.13:34

Follow Up: RT-2

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia,
Jialin Wu, Paul Wohlhart, Stefan Welker, and Ayzaan Wahid, (2023). Rt-2:
Vision-language-action models transfer web knowledge to robotic control.
In Conference on Robot Learning, pages 2165–2183

• quasi-continuous actions (trained end-to-end):

1.13:35

Conclusion

• Levels of abstraction: Force, motion, task

• Task and Motion “Planning”: Core problem formulation of robotic AI

– TAMP theory & solvers are fully model-based

– Clear opportunities for learning: constraint learning, learning to predict plans

• Language ↔ task & action level

– Lots of classical literature on language grounding

– Connecting natural language with typical robot task descriptions (STRIPS/PDDL)

• Huge recent focus on marrying LLMs + TAMP + robotics

1.13:36

https://proceedings.mlr.press/v229/zitkovich23a.html
https://proceedings.mlr.press/v229/zitkovich23a.html

112 Robot Learning, Wolfgang Hönig

1.14 Multi-Robot Learning

(slides by Wolfgang Hönig)

Motivation: Multi-Robot Systems

• Multiple robots (typically in a team) with a common goal

• Typical promises:

� Achieve goal faster

� Achieve goal more robustly

� Higher flexibility (esp. heterogeneous systems)

� Cheaper (?)

1.14:1

Motivation: Multi-Robot Systems

• Successful (industrial) solutions

� Warehouse logistics (Amazon Robotics, former Kiva systems)

◦

� Aerial Drone shows (Intel, Verity Studios)

1.14:2

Motivation: Multi-Robot System Challenges

• Controls: additional constraint for inter-robot collision avoidance

• Decision Making: information sharing, task assignment, curse-of-dimensionality for centralized ap-
proaches, safety/robustness for decentralized systems

• Perception: sensing team members, sensor fusion

1.14:3

Outline

• Handling Dynamic Neighbors

� LSTMs

Robot Learning, Wolfgang Hönig 113

� CNNs

� DeepSets

� Graph Neural Networks

• Multi-Agent Reinforcement Learning (MARL)

• Discussion / Open Challenges

1.14:4

Dynamic Neighbors

• Team of robots has time-varying neighbors/observations/communication links

• Often need to learn with time-varying input dimensionality

� Example: (Distributed) collision avoidance maps observation of neighboring robots to actions
f(Y)→ u

• Learned functions need to be permutation-invariant and support dynamic domain cardinality

1.14:5

LSTMs [32]

• Key idea: Feed observations of neighbors into an LSTM (closest neighbor last)

1.14:6

114 Robot Learning, Wolfgang Hönig

CNNs [94]

� Key idea: Encode neighbor information as a picture

� Videos: https://goo.gl/T627XD

1.14:7

Deep Sets [131]

� Any continuous, permutation-invariant function f(X) can be approximated:

f(X) ≈ ρ

 ∑
x∈X

ϕ(x)



� Improvement over Convolutional NN (CNN): continuous space, efficiency

� Example:

+ = 9

+ + = 20

Learns representation of each element

superposition in hidden state

Learns aggregation of hidden state

1.14:8

Case Study: GLAS [90]

• Goal: imitate (slow) centralized controller using only local observations: π : y 7→ u

• Data: Example trajectories by solving many multi-robot motion planning instances with a centralized
planner

• Approach: Behavior Cloning + Privileged Teacher

1.14:9

https://goo.gl/T627XD

Robot Learning, Wolfgang Hönig 115

Case Study: GLAS [90]

1.14:10

Case Study: GLAS [90]

1.14:11

Case Study: GLAS [90]

• Train (5 small feedforward networks trained jointly)

116 Robot Learning, Wolfgang Hönig

Deep Set (Obstacles)

Deep Set (Neighbors)

Input

1.14:12

Case Study: GLAS [90]

• How would one train this in practice in pyTorch? [variable number of neighbors vs. batching]

1.14:13

Case Study: Neural-Swarm2 [98]

• Goal: predict aerodynamic interaction [unmodeled physics, as a function of neighbors’ positions]

• Data: Real flight tests (synchronized trajectories with poses of robots and measured accelerations
and motor commands)

• Approach: Behavior Cloning

1.14:14

Robot Learning, Wolfgang Hönig 117

Case Study: Neural-Swarm2 [98]: Heterogeneous Deep Sets

f̂
(i)
a ≈ ρI(i)

 K∑
k=1

∑
x(ij)∈r

(i)
typek

ϕI(j)(x
(ij))



Learns representation
from type I(j) neighbor

superposition in hidden
state

Learns aggregation for
type I(i)

f
(3)
a ≈ ρlarge

(
ϕsmall(x

(31))+

ϕsmall(x
(32)) + ϕenv(x

(34))

� Expressiveness: can approximate any K-Group permutation-invariant function

� Efficient: only 2K networks need to be trained

1.14:15

118 Robot Learning, Wolfgang Hönig

Case Study: Neural-Swarm2 [98]

1.14:16

Case Study: Neural-Swarm2 [98]

https://youtu.be/Y02juH6BDxo

1.14:17

https://youtu.be/Y02juH6BDxo

Robot Learning, Wolfgang Hönig 119

Graph Neural Networks (GNNs)

• Inspiration: CNNs as graph

Christopher M. Bishop and Hugh Bishop, (2024). Deep Learning: Foundations and Concepts

1.14:18

Graph Neural Networks (GNNs)

• Graph G = (V,E)

• Basic case: learn features for each node n ∈ V

• Use L layers with D-dimensional vector h
(l)
n

1.14:19

Graph Neural Networks (GNNs)

1.14:20

Graph Neural Networks (GNNs)

• Examples for Aggregate/Update:

� Aggregate({h(l)m : m ∈ N(n)}) = MLPρ
(∑

m∈N(n)MLPϕ(h
(l)
m)

)

https://link.springer.com/10.1007/978-3-031-45468-4

120 Robot Learning, Wolfgang Hönig

� Update(h
(l)
n , z

(l)
n) = f(Wselfh

(l)
n +Wneighz

(l)
n + b)

• Extensions to have input/output features per edge and graph [See e.g., [8]]

• Training “as usual” (on whole graphs)

• In practice: PyG https://www.pyg.org/ or DGL https://www.dgl.ai/

1.14:21

Case Study: Learning to Communicate for Multi-Robot Path Finding [68]

• Goal: Learn how to communicate to imitate a centralized Multi-Agent Path Finding expert

• Data: Trajectories computed by a centralized expert

• Approach: IL w/ DAgger

1.14:22

Case Study: Learning to Communicate for Multi-Robot Path Finding [68]

1.14:23

https://www.pyg.org/
https://www.dgl.ai/

Robot Learning, Wolfgang Hönig 121

Case Study: Multi-Robot Perception [134]

• Goal: Learn what to communicate for
depth estimation or segmentation
• Data: Labeled Data mostly from simula-
tor; some from real flights
• Approach: Behavior Cloning

• Video: https://youtu.be/2bdhLI3dqo0

1.14:24

GNN Applications

• Flocking (in simulation) [116, 64, 42]

• Navigation (simulation + RL) [128]

• Graph Control Barrier Function (simulation + IL w/ DAgger) [132]

• Learning to Communicate Variations [69, 42]

1.14:25

Outline

• Handling Dynamic Neighbors

� LSTMs

� CNNs

� DeepSets

� Graph Neural Networks

• Multi-Agent Reinforcement Learning (MARL)

• Discussion / Open Challenges

1.14:26

MARL Definition

• Single Robot: MDP (S,A, P,R, P0, γ) with state space S, action space A, transition probabilities
P (st+1 | st, at), reward fct rt = R(st, at), initial state distribution P0(s0), and discounting factor
γ ∈ [0, 1].

• Multi-Robot: Markov game (N, S,A, P,R, P0, γ) with N robots, S joint state space, A = A1 ×
A2 × . . .×AN joint action space, reward fct r1, . . . , rN = R(s, a)

• Goal: Find policy (or policies) that maximize expected reward

1.14:27

https://youtu.be/2bdhLI3dqo0

122 Robot Learning, Wolfgang Hönig

Rewards

• Fully cooperative: r1 = r2 = . . . = rN [No credit assignment; difficult to train]

• Competitive: zero-sum games (
∑
i ri = 0), prey-predator games (cooperative per team; competi-

tive per game)

• Mixed Cooperative-Competitive: (local) reward shaping, to achieve a common goal

1.14:28

Learning

• Centralized model as stacked robot (centralized training & inference)

• Independent Learning each robot learns own policy (decentralized training & inference)

• Centralized Training Decentralized Execution (CTDE)

1.14:29

Challenges

• Non-Stationarity: if policy of other agents can’t be observed, the Markov assumption is violated
(e.g., distributed Q-Learning)

• Scalability: in standard policy gradient algorithms, the probability of estimating the policy gradient
correctly might decrease exponentially with the number of agents [Concrete example: appendix of

[71]]

1.14:30

Approaches

• Centralized critic, e.g., Multi-Agent deep deterministic policy gradient (MADDPG, [71])

• Factorized value functions, e.g., Value Decomposition Networks (VDN, [110])

• Communication Learning

1.14:31

Practical Considerations

• VMAS (Vectorized Multi-Agent Simulator for Collective Robot Learning) https://github.com/proroklab/

VectorizedMultiAgentSimulator [Simple 2D physics engine build in pyTorch]

• MARLlib https://github.com/Replicable-MARL/MARLlib

• More Details/Overview about MARL:
Yutong Wang, Mehul Damani, Pamela Wang, Yuhong Cao, and Guillaume Sartoretti, (2022). Distributed Reinforcement Learning for Robot Teams: A Review.
Current Robotics Reports, 3(4):239–257

James Orr and Ayan Dutta, (2023). Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey. Sensors, 23(7):3625

1.14:32

https://github.com/proroklab/VectorizedMultiAgentSimulator
https://github.com/proroklab/VectorizedMultiAgentSimulator
https://github.com/Replicable-MARL/MARLlib
https://delete_delete_delete_doi.org/10.1007/s43154-022-00091-8
https://www.mdpi.com/1424-8220/23/7/3625

Robot Learning, Wolfgang Hönig 123

Case Study: Distributed Collision Avoidance (Ground) [33]

1.14:33

Case Study: Distributed Collision Avoidance (Ground) [33]

• Goal: find decentralized policy: π : y, g 7→ u

• Data: Collected in simulation during RL (input LIDAR, relative goal, velocity; output: action)

• Approach: PPO (centralized learning, decentralized execution; shared policy)

• Video: https://sites.google.com/view/hybridmrca

1.14:34

Case Study: Distributed Collision Avoidance (UAVs) [57]

• Goal: find decentralized policy: π : y, g 7→ u

• Data: Collected in simulation during RL (input state, nearby obstacles, nearby neighbors; output:
thrust per rotor)

• Approach: IPPO (centralized learning, decentralized execution; shared policy)

• Video: https://sites.google.com/view/obst-avoid-swarm-rl

1.14:35

Case Study: Neural Tree Expansion [89]

• Goal: find decentralized policies for multi-team games (e.g., reach-target avoid)

https://sites.google.com/view/hybridmrca
https://sites.google.com/view/obst-avoid-swarm-rl

124 Robot Learning, Wolfgang Hönig

� Data: Collected with a neural-
biased “expert” (large Monte-Carlo
Tree Search)

� Approach: MCTS + IL + DAgger (es-
sentially: AlphaZero in continuous state
spaces)

� Video: https://youtu.be/mklbTfWl7DE

1.14:36

Outline

• Handling Dynamic Neighbors

� LSTMs

� CNNs

� DeepSets

� Graph Neural Networks

• Multi-Agent Reinforcement Learning (MARL)

• Discussion / Open Challenges

1.14:37

DiNNO: Distributed Neural Network Optimization [129]

• Collect data locally, local augmented Lagrangian update, share resulting weights via consensus

• Works for IL and RL

• Web: https://msl.stanford.edu/projects/dist_nn_train

1.14:38

https://youtu.be/mklbTfWl7DE
https://msl.stanford.edu/projects/dist_nn_train

Robot Learning, Wolfgang Hönig 125

LLMs and Multi-Robots [18]

• (Arxiv, Jan. 2024)

1.14:39

LLMs and Multi-Robots [18]

1.14:40

Open Challenges

• Deployment to real robots (especially RL)

• Safety (esp. partially unknown dynamics, perception)

• Interpretability (of communication)

1.14:41

126 Robot Learning, Wolfgang Hönig

Conclusion

• Multi-Robot brings new challenges

� Large state space (or violation of Markov assumption)

� Dynamic number of neighbors

� Reasoning about communication

• Deep Sets: permutation invariant architecture that is easy to train and computationally efficient
[useful for π : x,N 7→ u]

• GNN: Generalization of deep sets [useful for learning communication]

• Learning a decentralized policy from a centralized expert works well (IL + DAgger)

• Deployment to real robot teams remains challenging

1.14:42

Robot Learning, Wolfgang Hönig 127

2 Exercises

2.1 Weekly Exercise 1

All 4 exercises are a bit too much for a start. Question 3 is bonus.

2.1.1 Basic Inverse Kinematics

(i) Inverse kinematics (or general constraint solving) can be framed as the optimization problem

min
q∈Rn

||q − q0||2 + µ||ϕ(q)||2 , (7)

for some constraint function ϕ : Rn → Rd. Assuming linear ϕ(q) = ϕ(q0) + J(q − q0) with
Jacobian J , the solution is

q∗ = q0 − (J⊤J + 1
µ
I)-1J⊤ ϕ(q0) . (8)

Verify this by deriving it step by step.

(ii) To enforce a hard constraint, we want to take the limit µ → ∞. But J⊤J is typically not
invertible (e.g., d < n), and you can’t directly take the limit in the above solution. However, the
solution to this limit is

q∗ = q0 − J⊤(JJ⊤)-1ϕ(q0) . (9)

Derive this from the above. Tip: Learn about the Woodbury identity.

2.1.2 Point mass under PD control

Consider a point mass in a 1D space together with a PD control law:

� The point has mass m, and position q(t) ∈ R.

� The PD controller applies linear force

u(t) = −kpq(t)− kdq̇(t)

to the point, where kp, kd ∈ R are positive constants.

� The resulting dynamics is mq̈(t) = u(t).

(i) Given the initial state q(0) = a, q̇(0) = 0, what is q(t)? (Solve the differential equation.)

(ii) The solution describes a damped oscillation around the set-point q∗ = 0. How do you have to
choose kp and kd such that the behavior becomes the exponential approach q(t) = ae−t/τ for
some time scale τ ∈ R? (This is called “critically damped”.)

128 Robot Learning, Marc Toussaint & Wolfgang Hönig

2.1.3 BONUS: Fun with Euler-Lagrange

Consider an inverted pendulum mounted on a wheel in the 2D x-z-plane; similar to a Segway. The
exercise is to derive the Euler-Lagrange equation for this system.

(i) Describe the pose pi ∈ R3 of every body in (x, z, ϕ) coordinates: its position in the x-z-plane,
and its rotation ϕ relative to the world-vertical. Assume fixed parameters r: radius of the wheel,
l: length of the pendulum (height of its COM).

(ii) Describe the (linear and angular) velocity vi = ṗi ∈ R3 of every body.

(iii) Formulate the total kinetic energy T = 1
2

∑
i v

⊤
iMivi, summing over the two bodies i = A,B.

Note that

Mi =


mi 0 0
0 mi 0
0 0 Ii

 (10)

with mi ∈ R the normal mass of body i, and Ii ∈ R the rotational inertia of body i.

(iv) Formulate the potential energy U

(v) Bonus: Compute the Euler-Lagrange Equation

u =
d

dt

∂L

∂q̇
−
∂L

∂q
, (11)

with L = T − U , using the minimal coordinates q = (x, θ), where x is the position of the wheel
and θ the angle of the pendulum relative to the world-vertical.

2.1.4 Logistic Regression

Consider a binary classification problem with data D = {(xi, yi)}ni=1, xi ∈ Rd and yi ∈ {0, 1}. We
define

f(x) = x⊤β (12)

p(x) = σ(f(x)) , σ(z) = 1/(1 + e−z) (13)

Lnll(β) = −
n∑
i=1

[
yi log p(xi) + (1− yi) log[1− p(xi)]

]
(14)

where β ∈ Rd is the model parameter, σ(z) the sigmoidal function, and Lnll(β) the neg-log-likelihood
of the data under the model.

(i) Compute the derivative ∂
∂β
L(β). Tip: use the fact ∂

∂z
σ(z) = σ(z)(1− σ(z)).

(ii) Compute the 2nd derivative ∂2

∂β2L(β).

(iii) How is the neg-log-likelihood related to the cross-entropy? How would the above change when
adding an additional regularization λ||β||2 to the loss?

Robot Learning, Marc Toussaint & Wolfgang Hönig 129

2.2 Weekly Exercise 2

2.2.1 Work with the Literature

[The links to literature sometimes point to journal sites, but they should be accessible from within TU
Berlin.]

(i) Have a look at Eq. (1) of

Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, (1997). Computational capabilities of
recurrent NARX neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 27(2):208–215

This paper describes a classical “NARX” model. Consider the discrete time dynamics

vt+1 = vt + ut−3 (15)

pt+1 = pt + τvt−2 (16)

yt = pt , (17)

with variables (pt, vt), controls ut, and sensor observation yt. τ ∈ R is a fixed constant. (In
words: the control directly adds to the velocities – but with a delay of 3 steps! And the velocities
add to the position – but with a delay of 2 steps! And we only observe position pt, not velocities.)

Could the “NARX” model described in the paper above learn this dynamics? How would you
have to choose nu and ny?

(ii) Also have a look at Eq. (1) of

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen, (2015). Gaussian processes
for data-efficient learning in robotics and control. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(2):408–423

This is also called a state-space model. How can you define xt for our dynamics above so that
it can be represented in that form (1)?

2.2.2 System Identification of a Simple Car

Consider the dynamics model of a first order car with states q =
(x, y, θ)⊤ (position and orientation), actions/controls u = (s, ϕ)⊤

(speed and steering wheel angle), and known dynamics

q̇ = f(q, u) =


s cos θ
s sin θ
s
L
tanϕ

. (18)

Here, L is the distance between the wheels and not known.

(i) Assume you have an example trajectoryD = {(xt, yt, θt, st, ϕt)}nt=1, where individual datapoints
were sampled at 10Hz. Formulate an optimization problem that computes the “best” L for the
given data.

(ii) Find a closed-form solution for your optimization problem in a).

2.2.3 Mountain Car Dynamics Learning

This is a coding exercise. Please bring your laptop and connect to the HDMI in the tutorial to show
your results. (If you upload a pdf, just include a screenshot of results in the pdf.)

Install the mountain car simulation of gymnasium (https://gymnasium.farama.org/) using

pip install gymnasium[classic-control]

https://ieeexplore.ieee.org/abstract/document/558801/
https://ieeexplore.ieee.org/abstract/document/558801/
http://ieeexplore.ieee.org/document/6654139/
http://ieeexplore.ieee.org/document/6654139/
https://gymnasium.farama.org/

130 Robot Learning, Marc Toussaint & Wolfgang Hönig

The following code simulates a few steps and collects data for a dynamics learning problem:

import gymnasium as gym

import numpy as np

env = gym.make(’MountainCarContinuous-v0’, render_mode=’human’)

for this problem observation=state

u_dim = env.action_space.shape[0]

x_dim = env.observation_space.shape[0]

data_input = np.zeros((0,x_dim+u_dim))

data_target = np.zeros((0,x_dim))

n_data = 200

x_state, info = env.reset()

for t in range(n_data):

u_controls = env.action_space.sample() # agent policy that uses the observation and info

u_controls = np.sin([.01*t])

x_prev = x_state

x_state, reward, terminated, truncated, info = env.step(u_controls)

terminated = a terminal state (often goal state, sometimes kill state, typically with pos/neg reward) is reached;

formally: the infinite MPD transitions to a deadlock nirvana state with eternal zero rewards

truncated = the simulation is ’artificially’ truncated by some time limited - that’s actually formally inconsistent to the definition of an infinite MDP

data_input = np.vstack([data_input, np.concatenate([x_prev, u_controls])])

data_target = np.vstack([data_target, x_state])

if terminated or truncated:

if truncated:

print(’-- truncated -- should not happen!’)

else:

print(’-- terminated -- goal state reached’)

x_state, info = env.reset()

env.close()

print(’input data:’, data_input.shape)

print(’output data:’, data_target.shape)

(i) Increase the amount of data you collect (e.g. to n = 1000) and learn a regression from the
input to output. Use whatever ML techniques you learned about in previous courses. Also linear
regression is an option, which should work particularly well if you happen to include cos(3x0) as
a feature (where x0 is the first entry of x: the position; see the domain documentation).

(ii) The above might not work well (in the sense of generalizing to the full state space), because the
controller generating the data (u_controls = np.sin([.01*t])) is not very explorative. Play
around with alternatives that generate much better data for learning.

(iii) Assume that you could only observe the position x0 of the car, not the velocity x1. As the state
is not fully observable, you’ll need to learn an autoregression model with longer input window.
Modify the code above so that the data only contains positions and controls as input, and predicts
the next position.

(iv) [Added for the tutorial session, to show you an easy way of how to make use of a learned model.]
First, since we know this is a physical system with observed position q and velocity q̇, let’s also
treat is like that: The forward dynamics is a mapping q, q̇, u 7→ q̈, while the inverse dynamics is

Robot Learning, Marc Toussaint & Wolfgang Hönig 131

the mapping q, q̇, q̈ 7→ u. Learn the inverse dynamics function (define q̈ as the change in velocity
by a simulation step). Then use the inverse dynamics to impose a PD behavior

q̈∗ = kp(q
∗ − q)− kdq̇

with q∗ = 2 and kp = m/τ2 , kd = 2mξ/τ (exactly as in last exercise solution), and τ = 50,
ξ = 0.9.

2.3 Weekly Exercise 3

2.3.1 Literature: DAgger

The following paper introduces DAgger (short for “Dataset Aggregation”):

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell, (2011). A Reduction of Imitation Learning
and Structured Prediction to No-Regret Online Learning

(i) First have a look at Section 5 (Experiments), and if you like, the youtube video https://www.

youtube.com/watch?v=V00npNnWzSU. Two basic questions about what is mentioned in 5.1:

– The method uses a regression technique to train the policy π : y 7→ u (y are observations).
Which technique is used?

– Fig. 2 mentions βi, which is a parameter of the method that changes with iteration i. How
exactly is it chosen?

(ii) Now look at the pseudo code Alg. 3.1 on page 4. The introduction of Sec. 3 explains the
pseudo code. The lines 4 and 5 (“Let πi...”, and “Sample T -step...”) are perhaps the hardest
to really understand. Your exercise: Write explicit pseudo code of how you generate such
a “T -step trajectory using πi”, where this pseudo code can only call the dynamics function
xt = f(xt-1, ut-1), the expert policy ut = π∗(xt), the trained policy ut = π̂i(xt), and a state
initialization method x0 ∼ p(x0).
Note: Line 4 defines πi to be a probabilistic mixing of policies π∗ and π̂i, with coefficients βi and
1−βi respectively. This notation is typically used when π are stochastic policies, but “implicitly
clear” also when they are deterministic.

2.3.2 Trajectory Distributions, GMMs, ProMPs

Imitation learning can also be formulated as learning the distribution of demonstrated trajectories (rather
than directly the policy), and thereafter use control theory to derive controllers that imitate this distri-
bution. The following paper is a typical representative for using Gaussian Mixture Models (GMMs) to
learn the distribution of demonstrated trajectories:

Sylvain Calinon and Aude Billard, (2007). Incremental learning of gestures by imitation in a humanoid
robot. In Proceedings of the ACM/IEEE International Conference on Human-robot Interaction, pages
255–262

Only have a look at Figures 3 and 6 – they should clarify what it means to use Gaussians to “cover” the
distribution of demonstrated trajectories, and thereby learn the distribution. To enable this, a trajectory
xt ∈ Rn for t = 1, .., T is embedded in n + 1-dimensional space (t, xt), and then standard density
estimation using GMMs applied.

Consider a dataset D = {xit}
i=1,2
t=1,..,T with two 1-dimensional trajectories of length T , namely these

two:

– First demonstrated trajectory x1t = cos(t/3) for t = 1, .., 20

– Second demonstrated trajectory x2t = cos(t/3− 1) for t = 1, .., 20

http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
https://www.youtube.com/watch?v=V00npNnWzSU
https://www.youtube.com/watch?v=V00npNnWzSU
https://dl.acm.org/delete_delete_delete_doi/10.1145/1228716.1228751
https://dl.acm.org/delete_delete_delete_doi/10.1145/1228716.1228751

132 Robot Learning, Marc Toussaint & Wolfgang Hönig

(i) Plot both of these demonstrations

(ii) Assume you would fit a Gaussian Mixture Model with 2 components (2 Gaussians) to this data
(using a time-embedding as above), how might it look like? (Sketch on paper. Where might be
their centers and the ellipse illustrating their covariance matrices?) Conditioning this distribution
on a particular t, e.g. t = 11, what would be the conditional variance over x? (Just argue in
terms of your sketching.)

(iii) Consider a fully different approach: Treat each xi as a vector with 20 entries xit. The two
vectors x1 and x2 form our tiny data set D = {xi}i=1,2. From this data we can estimate
the element-wise mean µt and standard deviation σt for each t. Sketch these analogous to the
above.

[Note: The latter approach is called ProMP (Paraschos et al, NeurIPS’13).]

2.3.3 Mountain Car Imitation Learning

This is a coding exercise. Please bring your laptop and connect to the HDMI in the tutorial to show
your results. (If you upload a pdf, just include a screenshot of results in the pdf.)

We use the same mountain car example as in Exercise 2, so look for more detailed instructions there, if
you haven’t set it up, yet.

The following “policy” was written by an expert to solve the control problem:

def expert(t):

if t < 50:

return np.array([-1.0])

elif t < 100:

return np.array([1.0])

return np.array([0.0])

Note that this uses the time step t and not the state as input, which is why we put “policy” in quotes.

(i) Collect a sufficient amount of data and learn a real policy, i.e., a function that maps from the
current state to the action. Report your achieved loss.

You may still use any ML technique, including linear regression. However, this might also be a
good starting point to use pyTorch, so that you have some experience with more complicated
exercises later. You can follow the official tutorial at https://pytorch.org/tutorials/beginner/basics/

quickstart_tutorial.html.

Hints: You can convert data using torch.from numpy(data input).float(). A useful function
is
torch.utils.data.random split. From the tutorial, make sure you adjust the neural network
and loss function to match our target domain.

(ii) Validate your learned policy in the gym environment. What happens if you start from a starting
state that was not part of your training data (e.g., use env.reset(options=’low’: 0.1,

’high’: 0.4))?

(iii) Can DAgger help here to collect a better dataset? Explain why or why not.

2.4 Weekly Exercise 4

2.4.1 Trajectory Distribution → Control

In the context of imitation learning, assume that from demonstration data you learned a trajectory
distribution as well as an inverse dynamics model and now want to use these to “execute what you

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

Robot Learning, Marc Toussaint & Wolfgang Hönig 133

learned” on a robot. This question is about how to derive a control policy from a trajectory distribution
and an inverse dynamics model.

More specifically, assume you learned a trajectory distribution

p(xt) = N(xt;µt,Σt) , t = 1, .., T , (19)

where for each time step t you have a different mean µt (characterizing the mean trajectory) and
covariance matrix Σt, as well as an inverse dynamics model

u = f̂(xt-1, xt) . (20)

(Both models, p and f were trained from the data using ML, but we neglect annotating parameters.)
We assume xt ∈ Rn and fully observable, and u ∈ Rd.
During execution, assume we are at time step t and current state xt:

(i) Formulate an optimization problem to find a reference trajectory x∗t+1:T for the future execution.

(You want that the reference “starts” (connects with) the current state xt, but also that it is as
consistent as possible with the learned trajectory distribution p.

Think about the role of the covariance matrices Σt and the role of the inverse kinematics in this
formulation.

(This would be called a model-predictive control (MPC) approach: One would solve this optimiza-
tion problem in every control cycle and use inverse kinematics to decide on controls. Depending
on how you formulated the problem, it could be solved very efficiently using Riccati methods.)

(ii) Now assume that the trajectory distribution you learned is actually bi-modal, namely

p(xt) = wtN(xt;µ
1
t ,Σ

1
t) + (1− wt)N(xt;µ

2
t ,Σ

2
t) , (21)

where superscripts index the mode. How could you now formulate the optimization problem?

(iii) Assume you are scared away from using MPC and optimization in each control cycle. Could you
also define a PD law to follow the (multi-modal) trajectory distribution? How? What would be
issues?

2.4.2 Multi-Modal Distributions

Consider a circular single integrator robot with 2D single integrator
dynamics (q = (x, y), u = (vx, vy), q̇ = f(q, u) = u = (vx, vy)).
The robot is equipped with a LIDAR and processes the resulting
point cloud to get observation o = (dx, dy), i.e., a vector pointing
to the closest boundary point of any obstacle, see the figure for some
examples (dotted lines). From experts, we obtained five example
trajectories for a given scenario with a single circular obstacle in
the middle, see the figure for these trajectory (black lines). Our
goal is to learn a policy that directly maps observations to controls
(π : o 7→ u).

(i) Discretize the observation into 8 parts (4 directional ranges and 2 magnitude ranges). For each
of these possible input ranges, we “learn” the optimal action assuming an MSE loss. Draw the
resulting action vectors (one for each possible observation) qualitatively.

(ii) Use the learned policy from a) and draw the resulting solution trajectory qualitatively.

(iii) Now consider that we learn a Gaussian Mixture Model (GMM) with two modes per discretized
observation instead. Draw the resulting action distributions (one for each observation) qualita-
tively.

134 Robot Learning, Marc Toussaint & Wolfgang Hönig

(iv) Explain how you can use the learned policy from c). Draw the resulting solution trajectory
distribution qualitatively.

(v) What changes if we do not discretize the observation? Explain what possible policy function
approximators you might use, what learning algorithms are applicable, and what the expected
outcomes compared to b) and d) are.

2.4.3 Mountain Car Imitation Learning

This is a coding exercise. Please bring your laptop and connect to the HDMI in the tutorial to show
your results. (If you upload a pdf, just include a screenshot of results in the pdf.)

We use the same mountain car example as in Exercise 2 and 3, so look for more detailed instructions
there, if you have not set it up, yet.

In addition to the “policy” from last week, we now have a second expert that solves the problem as
follows:

def expert2(t):

if t < 50:

return np.array([1.0])

elif t < 100:

return np.array([0.0]) # save some energy!

elif t < 150:

return np.array([1.0])

return np.array([1.0])

Note that this expert decided to use a positive acceleration at the beginning, rather than the negative
one that the previous expert used.

(i) Collect data from expert2 and verify that your approach from last week is able to imitate that
expert.

(ii) Now mix your datasets, such that you have an equal amount of examples from expert1 (see
Exercise 3) and expert2. Compare the loss and the success rate of solving the mountain car
problem with this policy compared to just using data from a single expert.

(iii) Use diffusion to learn a stochastic policy using the dataset of b). Verify that your policy can
solve the mountain car problem. Verify that you get a mixture of solutions mimicking both
expert1 and expert2, for example by visualizing the histogram of generated control actions for
the example state x = (−0.5, 0.0).
Hint: We provide example code for training and sampling diffusion models for a simple noisy
circular trajectory. The primary difference to your task above is that you now have to learn
to sample from a conditional distribution p(ut|xt). The simplest way to do so is to add the
condition as an additional input to your neural network.

2.5 Weekly Exercise 5

2.5.1 Literature: SAC

The following paper introduces Soft Actor-Critic, a state-of-the art RL method that integrates many
good ideas that have been discovered over the last decade into a rather clean algorithm:

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine, (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning, pages 1861–1870

https://proceedings.mlr.press/v80/haarnoja18b
https://proceedings.mlr.press/v80/haarnoja18b

Robot Learning, Marc Toussaint & Wolfgang Hönig 135

(i) First some bug hunting:

– In the Supplementary Material, Appendix A., Equation (14), there is a notational bug. Can
you find it?

– In the main paper, going from Eq. (5) to (6), I think there is another bug. Can you find it?

– The line below (6) states “where the actions are sampled” – can you explain where actions
are sampled?

– Idea for another exercise: In the paper the authors state that the gradient of the policy
parameters could be estimated using the REINFORCE / likelihood ratio gradient estimator.
The students could derive this one, or show that the reparametrization one has lower variance.
This would link ex 1 and 2 nicely.

(ii) Now the core question: In Alg. 1 lower part you find three lines to train the parameters ψ, θi, ϕ,
as well as a low-pass filter for ψ̄.

– Find out which functions these parameters parameterize.

– Find out where these parameters are used during training, i.e., the inter-dependencies of
training: For instance, when ϕ is trained, does that depend on ψ? Answer this for all
parameters ψ, θi, ϕ.

2.5.2 The Reparametrization Trick

We typically write a conditional density as p(x|y). If that depends on parameters (to be trained), we
may write this as pθ(x|y) or p(x|y; θ).
The reparametrization trick states that any (conditional) distribution p(x|y; θ) can instead be represented
as a deterministic function x = f(y, ϵ; θ), ϵ ∼ p(ϵ).

(i) Given a Gaussian distribution pθ(x) = N(x|µ,Σ) with parameters θ = (µ,Σ), µ ∈ Rn, Σ ∈
Rn×n, how can you rewrite this as deterministic x = fθ(ϵ) with ϵ ∼ N(0, In), ϵ ∈ Rn?

(ii) Given discrete (aka. categorical) distribution p(x) over a discrete x ∈ {1, ..,M}. How can you
rerepresent sampling x ∼ p(x) as a deterministic function x = f(ϵ) with ϵ ∼ U[0, 1] uniformly in
the real inverval [0, 1]?

[This is called a “trick” in a particular context: Sometimes there is a sampling step within an architecture, i.e., within
a computation graph. E.g. x 7→ z ∼ pθ(z|x), z 7→ y = gθ(z), which is a VAC example, where the latent variable z
is sampled in the “middle” of the architecture. Gradients in principle don’t propagate through a sampling operation,
and standard training would not be possible. But representing this as x 7→ z = fθ(x, ϵ), z 7→ y = gθ(z) with the
sampling ϵ ∼ p(ϵ) done outside the architecture, gradients flow through f and g as usual, and the training process
has to sample ϵ’s as if it was data.]

2.5.3 Mountain Car RL using SAC

Use the SAC implementation in Stable Baselines3 to solve the Continuous Mountain Car problem:
https://stable-baselines3.readthedocs.io/en/master/modules/sac.html.

(i) First, run SAC off-the-shelf, with default parameters using the example code provided on the
above URL. In the tutorial, be able to demonstrate the final policy: Run multiple test rollouts,
and compute the discounted total return (directly from the reward observations) for each test
rollout.

(ii) Monitoring the training process is generally important in RL. Follow https://stable-baselines3.

readthedocs.io/en/master/guide/examples.html#callbacks-monitoring-training to plot the training process
(and generally learn about the Callback mechanism).

(iii) The SAC method has a ton of parameters. Try:

– Fixing ent_coef to one particular value (e.g. 10; or check the SAC paper for common
choices), and report on the difference.

https://stable-baselines3.readthedocs.io/en/master/modules/sac.html
https://stable-baselines3.readthedocs.io/en/master/guide/examples.html#callbacks-monitoring-training
https://stable-baselines3.readthedocs.io/en/master/guide/examples.html#callbacks-monitoring-training

136 Robot Learning, Marc Toussaint & Wolfgang Hönig

– The discounting factor gamma, e.g. to γ = 0.999.

– The network architecture (by default net_arch = [256, 256]). You’ll have to look into code
to understand the parameter, esp. the get_actor_critic_arch method in https://github.

com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/torch_layers.py. Try smaller net-
works.

2.6 Weekly Exercise 6

2.6.1 Literature: Privileged and Sensorimotor Policy Training

Here is a prominent application paper for RL:

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter, (2020). Learning
quadrupedal locomotion over challenging terrain. Science Robotics, 5(47):eabc5986

It uses standard RL in simulation to train a privileged policy (which they call “teacher policy”) which
has full access to the simulation’s state information (e.g. exact terrain profile). In a second stage they
train a sensorimotor policy (which they call “student policy”) to imitate the privileged policy, but with
sensorimotor (partially observable) input only. As the teacher policy can be queried anywhere, they can
use DAgger for imitation, which simplifies imitation learning a lot.

[The general idea of training a sensor-based (=partial input) policy from a privileged (=full information)
policy is old, previously called input remapping, or just surrogate model.]

Fig. 4 gives an overview of the approach. Here the questions:

(i) The input to the previleged policy is full information (exact robot & simulation state). But
what is the definition of the output action āt? Looking for an answer you’ll find words like “leg
frequencies” and “foot position residuals” – what are these?

(ii) The Supplement S4 (pdf page 16) explains the reward function – a great example for reward engi-
neering (in the positive sense, as this reflects the authors’ understanding of “good locomotion”).
Be able to explain each term and how they relate to higher level “commands”.

(iii) Eq.(1) includes a second loss term, comparing l̄t(ot, xt) with lt(H). Explain what lt(H) is and
the idea of this term.

2.6.2 Episodes & Terminal States

Standard MDP theory assumes an infinite process s0, a0, r0, s1, a1, r1, ... of states, actions and rewards.
Accordingly, the return is defined as the infinite sum

∑∞
t=0 γ

trt.

However, practical problems in the literature often involve “terminal states”, and one speaks of “episodes”.
The following exercise clarifies how “terminal states” and “episodes” are meant in an infinite MDP.

(i) We define a terminal state as follows: Assume that in step T the agent reaches a terminal state
sT . The agent can then make a very last action aT , and gets a final reward rT = R(sT , aT),
but after this “there are no more states, actions, or rewards”, and the total return of the agent
is

∑T
t=0 γ

trt.

At first sight this is inconsistent to how MDPs are defined, because by definition they do not
terminate. How can you construct a formal MDP to model such terminal states? (Tip: Extend
the state space.)

(ii) Consider an MDP where the goal state is a tunnel state, which means that every choice of action
in the goal state leads to receiving the goal reward and transitioning to a (maybe random) initial
state s ∼ P (s0).

Is the optimal policy for the MDP with tunnel goal state the same as the optimal policy for
an MDP where the goal state is a terminal state? Provide arguments (ideally a rough proof or
counterexample) for your answer.

https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/torch_layers.py
https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/torch_layers.py
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/448343/1/2020_science_robotics_lee_locomotion.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/448343/1/2020_science_robotics_lee_locomotion.pdf

Robot Learning, Marc Toussaint & Wolfgang Hönig 137

(iii) In practice one never runs (or simulates) a process infinitely long. Instead, one typically aborts/truncates
at some finite horizon T . One such truncated run is called episode. One then typically repeats
many episodes (to collect data for learning or estimation of values/performance). When an
episode was truncated, discuss how one could actually estimate the expected return of the pol-
icy?

2.6.3 Lunar Lander Domain Randomization

This is a coding exercise. Please bring your laptop and connect to the HDMI in the tutorial to show
your results. (If you upload a pdf, just include a screenshot of results in the pdf.)

Install the lunar lander simulation of gymnasium (https://gymnasium.farama.org/) using

pip install "gymnasium[box2d]"

Similar to before, one can create an instance of the lunar lander (with varying wind enabled) using

env = gym.make(’LunarLanderContinuous-v2’, enable_wind=True)

(i) Train a policy – you should be able to reach rewards of > 200. To avoid finding new hyperpa-
rameters, use TD3 rather than SAC for training, where the default settings (with MlpPolicy and
action noise) should work well.

Hint: The action noise can be defined as follows:

from stable_baselines3.common.noise import NormalActionNoise

action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions))

(ii) Validate your policy in environments with different wind magnitudes and gravities. You can
adjust these settings when making a gym environment, e.g.,

env = gym.make(’LunarLanderContinuous-v2’, enable_wind=True, gravity=-10, wind_power=5)

For gravity, use values between -11 and -1; for the wind magnitude use values between 0 and 20.

In which settings does your policy work well and in which does it not?

(iii) Train a policy with domain randomization on both gravity and wind power. How does this policy
compare to the other policy when validating in different settings as in b)?

Hint: You can use the callback mechanism of the policy (for on rollout end) to add the
randomization at the end of each episode. To do this, you can directly modify the parameters
of the environment, e.g., set env.gravity =

np.random.uniform(min value, max value).

2.7 Weekly Exercise 7

2.7.1 Literature: Adversarial Inverse Reinforcement Learning

Here is an advanced paper on inverse RL applied to robotics problems:

Justin Fu, Katie Luo, and Sergey Levine, (2018). Learning robust rewards with adversarial inverse
reinforcement learning

https://gymnasium.farama.org/
http://arxiv.org/abs/1710.11248 [cs]
http://arxiv.org/abs/1710.11248 [cs]

138 Robot Learning, Marc Toussaint & Wolfgang Hönig

The paper was a big step forward in enabling Deep Learning methods for Inverse RL, namely by for-
mulating a loss function similar to Generative Adversarial Networks (GANs) – actually following the
original idea formulating InvRL as a discriminative (max margin) problem [80]. A followup paper [119]
provides a nicer summary of the history of InvRL ideas and proposes improvement on Adversarial InvRL,
but without robotics applications.

The paper webpage https://sites.google.com/view/adversarial-irl provides some videos. Here the questions:

(i) Let’s start with the experiments in Section 7.2: The setting of the evaluation is transfer learning.
Be able to explain Table 1: What are the two domains and what kind of transfer is tested? What
does “TRPO, ground truth” mean (TRPO is a standard RL method)?

(ii) In Section 7.3, the setting of evaluation is imitation learning. How is that different to the setting
of 7.2? How does AIRL compare with GAIL (a pure imitation learning method) and the TRPO
expert?

(iii) The last equation in Sec. 4 (page 4) defines the discriminator Dθ(s, a). In GANs, a discriminator
outputs the probability of whether the input data point is from the “original source” instead of
from the learned generative model. What exactly is the meaning of the output of the Dθ(s, a)
defined here?

[Note that, as in GANs, Alg. 1 describes an algorithm that also improves the “generative model”
(here the learned policy π) whenever the discriminative model was improved.]

(iv) At first it might be unclear why learning Dθ(s, a) is related to extracting an underlying reward
function. The last equation in Sec 6 (page 6) is quite crucial to understand this – explain roughly
why the two neural nets gθ(s) and hϕ(s) in Eq.(4) end up estimating reward and value functions.

2.7.2 Inverse RL on a Toy Control Problem

Consider a trivial control domain, with state x ∈ R, controls u ∈ [−1, 1], and deterministic state
transitions xt+1 = xt + ut.

The expert policy π∗ is deterministic and chooses π(x) = clip(−x), where clip(x) = max{−1,min{+1, x}}
(a typical notation for clipping you should get used to).

(i) What is a reward function R(x) (depending on state only), such that the expert policy π∗ is

optimal? Derive the Q-function Qπ
∗
(x, u) for your reward function R(x) and prove that π∗ is

optimal. Assume a given discounting γ ∈ [0, 1). Is π∗ the only optimal policy for your R(x), or
do equally optimal policies exist?

(ii) For a given γ, there exist many reward functions R(x) such that π∗ is optimal. (Rescaling R
is trivial – neglect this.) Describe a space of alternative reward functions such that π∗ is still
optimal; e.g., find some (non-trivial) F (x) such that for R(x)← R(x)+F (x), π∗ is still optimal.

[Note, this sounds like a question about reward shaping (=changing R while guaranteeing in-
variance of the optimal policy) [79]. However, this question is slightly different, as we have a
concrete deterministic dynamics and do not require invariance w.r.t. all possible world dynamics.]

(iii) Now, conversely, find a (minimal) variation F (x) such that for R(x)← R(x) + F (x), π∗ is not
optimal anymore.

[This illustrates how a choice of reward function can discriminate between policies; as is implicit
in adversarial InvRL.]

2.7.3 Practical Exercise: Exploration in RL

In this exercise, we will revisit the Continuous Mountain Car problem from gym. Previously, running
SAC with default parameters from StableBaselines3 did not perform well. This week, we will explore
whether exploration can make things work better.

https://sites.google.com/view/adversarial-irl

Robot Learning, Marc Toussaint & Wolfgang Hönig 139

One way to explore in RL is by adding noise to the actions taken. The paper Pink Noise Is All
You Need: Colored Noise Exploration In Deep Reinforcement Learning (https://openreview.net/pdf?id=
hQ9V5QN27eS) compares three types of noise:

� Gaussian (white) noise

� Ornstein-Uhlenbeck (OU) noise

� Pink noise

Our goal is to compare the effects of these noises on agent actions during training.

(i) Review the ActionNoise wrapper from StableBaselines3 (https://stable-baselines3.readthedocs.io/
en/master/_modules/stable_baselines3/common/noise.html#ActionNoise), and the Pink Noise paper. Imple-
ment a child class MyPinkNoise(ActionNoise) that returns pink noise when called. Skeleton
code is provided; you need to implement the call and reset methods.

(ii) StableBaselines3 includes implementations of Gaussian and OU noise (https://stable-baselines3.
readthedocs.io/en/master/common/noise.html). Using your pink noise implementation, plot the different
noise traces by plotting the 1D action on the y-axis and the time step on the x-axis with scale=0.3
for all noises.

What do you observe?

(iii) Use all three noise types to train SAC on MountainCarContinuous with default parameters. Using
scale=0.3, train for total timesteps=2e4.

What do you observe? Plot the learning curves of all training runs.

HINT: It is not expected that all noises will lead to successful training. You do not need to adjust
any SAC parameters.

2.8 Weekly Exercise 8

2.8.1 Literature: Neural Lander

Here is a paper that claims to combine safety and learning:

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree Anandkumar,
Yisong Yue, and Soon-Jo Chung, (2019). Neural Lander: Stable Drone Landing Control Using Learned
Dynamics. In 2019 International Conference on Robotics and Automation (ICRA), pages 9784–9790

The paper is at the intersection of control theory and learning and several other works exist to extend
the idea to new domains.

Questions:

(i) Take a look at the proposed control law (8) and (12). What exactly is learned and how is the
learned function applied in the controller?

(ii) The paper shows exponential stability, i.e., that the position error will go to zero quickly (around
(14)). Explain in words the variables ϵm, La, and ρ. Explain how this equation tells us that the
learned function needs to be Lipschitz-bounded.

(iii) Write down pseudo code on how one can use SGD or Adam and train a basic feed forward neural
network with ReLU activation to have a bounded Lipschitz constant. (Use the information in
the paper from III.B.)

(iv) What needs to change if tanh activation functions are used to achieve the same Lipschitz-bound?

https://openreview.net/pdf?id=hQ9V5QN27eS
https://openreview.net/pdf?id=hQ9V5QN27eS
https://stable-baselines3.readthedocs.io/en/master/_modules/stable_baselines3/common/noise.html#ActionNoise
https://stable-baselines3.readthedocs.io/en/master/_modules/stable_baselines3/common/noise.html#ActionNoise
https://stable-baselines3.readthedocs.io/en/master/common/noise.html
https://stable-baselines3.readthedocs.io/en/master/common/noise.html
https://ieeexplore.ieee.org/document/8794351/
https://ieeexplore.ieee.org/document/8794351/

140 Robot Learning, Marc Toussaint & Wolfgang Hönig

2.8.2 Fun With Definitions

In the safe learning survey paper and the lecture, the robot dynamics were defined as xk+1 = fk(xk, uk, wk).
In RL and MDPs a transition model is used instead as p(xk+1|xk, uk). Here we look at the relationship
of the two.

(i) Consider an MDP with states s, t, g and actions a, b. The transition model is p(t|s, a) =
0.1, p(g|s, a) = 0.9, p(g|s, b) = 0.2, p(s|s, b) = 0.8, p(t|t, a) = 1, p(t|t, b) = 1, p(g|g, a) =
1, p(g|g, b) = 1. The goal for the robot starting at s is to avoid t and reach g. What is a
safe sequence of actions here? Write down an equivalent formulation using the notation in the
paper/lecture.

(ii) Consider 1D single-integrator dynamics (i.e., state is position and the velocity can be controlled
directly) and W zero-mean Gaussian: xk+1 = xk + uk ·∆t+ wk, where wk ∼ N(0, σ2). Write
down an equivalent transition model.

(iii) The use of fk allows hybrid models, where the dynamics might change over time. How can such
changes be encoded in the MDP transition model?

(iv) We defined the cost as J(x0:N , u0:N−1) = lN (xN) +
∑N−1
k=0 lk(xk, uk). How can a discount

factor be encoded here?

2.8.3 Working With Code: safe-control-gym

One implementation / benchmark for this is safe-control-gym, see

Zhaocong Yuan, AdamW. Hall, Siqi Zhou, Lukas Brunke, Melissa Greeff, Jacopo Panerati, and Angela P.
Schoellig, (2022). Safe-Control-Gym: A Unified Benchmark Suite for Safe Learning-Based Control and
Reinforcement Learning in Robotics. IEEE Robotics and Automation Letters, 7(4):11142–11149

for the paper and https://github.com/utiasDSL/safe-control-gym for the code on github.

You may install it locally following the instructions to try it, although some questions can also be
answered just by reading the code.

git clone https://github.com/utiasDSL/safe-control-gym.git

cd safe-control-gym

pip install -e .

(i) Group the available algorithms (see the Readme file in the repo) using the taxonomy/grouping
from the lecture (you may ignore the ones that have nothing to do with safety). Try to find
academic references for each algorithm.

(ii) One interesting aspect of the toolbox is that it provides analytical models for the dynamics and
constraints. Where are these models located for the three default systems (cartpole, quadrotor2d,
quadrotor3d)?

(iii) Consider the example for a safety filter in examples/mpsc for a 2D quadrotor. How can you
constrain the states and actions of the filter? Constrain the x coordinate to be within -1 and
2 and show the resulting plot(s), compared to the default setting (your choice of “unsafe”
controller).

(iv) Consider the example for safe RL (examples/rl). For safe explorer ppo there is a pre-training
and a regular training. What exactly is the difference between those two? How can you specify
what safety means for your application?

https://ieeexplore.ieee.org/document/9849119/
https://ieeexplore.ieee.org/document/9849119/
https://github.com/utiasDSL/safe-control-gym

Robot Learning, Marc Toussaint & Wolfgang Hönig 141

2.9 Weekly Exercise 9

2.9.1 Literature: Grasp Data Collection

Here is a core paper on grasp data collection:

Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu, (2020). Graspnet-1billion: A large-scale
benchmark for general object grasping. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11444–11453

The collection of labelled grasp data is a central issue in learning-based grasing. Once such data is
available, we can use strong supervised ML or diffusion methods to learn disciminative or generative
models of grasps. The above paper is a good example on how grasp data generation is typically
“engineered”, and uses a model-based (force closure) method to provide grasp labels. (An alternative
is to use a generic physical simulator, e.g., [30] is a recent paper generating a grasp dataset using the
PhysX simulator.)

The questions are only about Section 3.2 and 3.3:

(i) Sec. 3.2 describes how 97,280 RGB-D images were taken. How is the camera pose known for
each image? What are ArUco markers? For how many scenes were images collected?

(ii) Concerning Sec. 3.3 (paragraph “6D Pose Annotation”), how exactly are all 6D object poses
annotated?

(iii) Paragraph “Grasp Pose Annotation” is the core. Provide pseudo code to what is happening in
the 2nd paragraph; make the looping over objects/points/anything explicit. (Section 5.2, 2nd
paragraph provides the ranges of D,A, and V .) The last paragraph describes how these object
grasps are transferred to the scenes. Summarize what information the eventual dataset comprises
for one scene.

2.9.2 Force Closure

This is a great robotics book:

https://hades.mech.northwestern.edu/images/2/25/MR-v2.pdf

The Section “Grasping and Manipulation – Exercises” contains interesting force and form closure ques-
tions, around Fig. 12.29 and 12.30.

(i) Solve Ex. 12.8 (page 507 in the pdf). Note that a twist in 3D space is a 6-vector combining a
translation and rotation vector; here in 2D it is a 3-vector with 2D translation and one rotation.
Sec. 12.1.6 (page 475) explains how to draw a twist as “CoR” – see footnote1

(ii) Solve Ex. 12.17. (I’ll provide explicit equations defining force closure in the lecture.) (Ex. 12.18
is also a great exercise.)

2.9.3 Practical Exercise: Explore the Graspnet data

This exercise doesn’t need much coding – the aim is simply to familiarize youself with existing datasets
and conventions for learning-based grasping.

(i) Follow https://graspnetapi.readthedocs.io/en/latest/install.html to download and unzip all the data
(sorry – lots of files... If you develop a script to do all downloads, share it with all students.)

(ii) Follow https://graspnetapi.readthedocs.io/en/latest/example_vis.html to visualize the grasp data. Au-
tomatically loop through all available objects (calling showObjGrasp), and all available scenes
(calling showSceneGrasp).

1A convenient way to represent a planar twist V = (vx, vy , ω) (with rotation velocity ω, and trans-
lational velocities vx, vy) is as a center of rotation (CoR) at (−vy/ω, vx/ω). An additional marker ’+’
or ’-’ tells if we rotate positively or negatively around this center.

http://openaccess.thecvf.com/content_CVPR_2020/html/Fang_GraspNet-1Billion_A_Large-Scale_Benchmark_for_General_Object_Grasping_CVPR_2020_paper.html
http://openaccess.thecvf.com/content_CVPR_2020/html/Fang_GraspNet-1Billion_A_Large-Scale_Benchmark_for_General_Object_Grasping_CVPR_2020_paper.html
https://hades.mech.northwestern.edu/images/2/25/MR-v2.pdf
https://graspnetapi.readthedocs.io/en/latest/install.html
https://graspnetapi.readthedocs.io/en/latest/example_vis.html

142 Robot Learning, Marc Toussaint & Wolfgang Hönig

What is the difference between format=’rect’ versus ’6d’? (And why may it take minutes for
format=’6d’?)

(iii) The ’6D grasp’ documentation https://graspnetapi.readthedocs.io/en/latest/grasp_format.html#d-grasp

explains how the grasp pose (translation and orientation) is stored. For a given scene (e.g.
id=0), write a loop to output the grasp-translation and grasp-rotation-matrix for all grasps.

(What I do not understand: The Rectangle Grasp description seems to only describe grasps in
the image plane – how it the real 3D rotation represented? Or it is not?)

2.10 Weekly Exercise 10

2.10.1 Literature: Learning to Plan in TAMP

Here is an example paper for learning to plan:

Danny Driess, Jung-Su Ha, and Marc Toussaint, (2020). Deep Visual Reasoning: Learning to Predict
Action Sequences for Task and Motion Planning from an Initial Scene Image

The paper trains an image-based action sequence prediction. A follow-up paper2 does something similar
with a much more ambitious Large Manguage Model, but the above paper more clearly defines the
problem in relation to TAMP. To get an overview, you may first watch the video https://www.youtube.com/

watch?v=i8yyEbbvoEk.

Here are the questions:

(i) Eq. (4) defines the action sequence prediction model π. Note that S is the scene, g the goal,
and a1:K ∈ T(g, S), FS(a1:K) = 1 means “a1:K is feasible and leads to goal g”.

How does this π relate to modern sequence/language models, which also predict the next
word/token given previous tokens? (What exactly is similar and different?)

How does this π relate to a trained state evaluation function as they are used, e.g., in modern
chess/go engines? (Which score a board and therefore provide a heuristic for search. What
exactly is similar and different?)

(ii) In Eq. (4), the actions ak are input to the network. But they are encoded in a very particular
way, as explained in subsection C (see also video at 0:20sec). How exactly are actions encoded?

(iii) As always, understanding the data generation is key. Section V.B (page 7) explains the data
generation process, and Eq. (5) the definition ofDdata (ingnoreDtrain). In this whole process, how
often was the feasibility FS(a1:K) of an action sequence a1:K in a scene S being computed. (This
computation happended fully model-based assuming full knowledge of the scene instantiated in
the simulator.)

2.10.2 Optimal Sequential Manipulation in TAMP

Consider the scene on the right, where we have one robot with 7 degrees of freedom
(dofs) q ∈ R7, and a stick with its pose s ∈ SE(3) as degrees of freedom. (Ignore
the triangle in the image.)
As discussed in the lecture, we consider the whole scene as a single multibody
system with (q, s) as its configuration. Initially the stick is lying somewhere on the
table (away from the red ball); the final goal is for the stick to touch the red ball.

2Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre
Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint,
Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence, (2023). PaLM-E: An Embodied Multimodal
Language Model

https://graspnetapi.readthedocs.io/en/latest/grasp_format.html#d-grasp
http://arxiv.org/abs/2006.05398
http://arxiv.org/abs/2006.05398
https://www.youtube.com/watch?v=i8yyEbbvoEk
https://www.youtube.com/watch?v=i8yyEbbvoEk
http://arxiv.org/abs/2303.03378
http://arxiv.org/abs/2303.03378

Robot Learning, Marc Toussaint & Wolfgang Hönig 143

Assume that you have access to three constraint functions:

� ϕgrasp(q, s) ∈ R3 is a 3-dimensional constraint such that ϕgrasp(q, s) = 0 indicates a correct
(stable) grasp of the stick by the robot.

� ϕtouch(s) ∈ R1 is a 1-dimensional constraint such that ϕtouch(s) = 0 indicates that the stick
touches the red ball.

� ϕcoll(q, s) ∈ R1 is a 1-dimensional constraint such that ϕcoll(q, s) ≤ 0 indicates that nothing in
the scene collides.

(i) Formulate a mathematical program that represents the problem of optimally grasping the stick
and then, with the grasped stick, optimally touching the red ball. The problem should only be
about finding the grasp pose and the final pose – not yet the motions in between. As usual,
optimality should reflect minimal motion effort by the robot. Assume the initial configuration is
(q0, s0) ∈ R7 × SE(3).

(ii) It is quite natural to choose (q1, s1, q2, s2) as the decision variables of the above mathematical
program. But can you think of an alternative, lower-dimensional parameterization of the problem?

(iii) Now modify the mathematical program above (of a) or b)) to include the full motion from the
start configuration until the stick touches the ball. Use an optimality criterion as is standard in
trajectory optimization.

(iv) Neglect the motion again; consider only grasp and touch. But this time consider a sequence of
4 actions: grasp-stick, place-stick, grasp-stick, touch-ball, where the 2nd action places the stick
back on the table before picking it up again. Can you think of scene (stick and ball placement)
where this action sequence makes sense? Instead of (q1, s1, q2, s2, q3, s3, q4, s4), what would be
a lower-dimensional parameterization?

(For discussion at the tutorial:) You know how path finding in a standard setting is defined as finding
a collision free path.3 How can the same sequential manipulation problem as in b) be represented as a
path finding problem (respecting all constraints but neglecting optimality)?

2.11 Weekly Exercise 11

2.11.1 Literature: Neural-Swarm2

Here is the paper we discussed in the lecture that uses (and extends) deep sets for a control problem
that arises in multi-robot aerial swarms 4:

Guanya Shi, Wolfgang Honig, Xichen Shi, Yisong Yue, and Soon-Jo Chung, (2022). Neural-Swarm2:
Planning and Control of Heterogeneous Multirotor Swarms Using Learned Interactions. IEEE Transac-
tions on Robotics, 38(2):1063–1079

The paper is an extension of the NeuralLander paper to the multi-robot case we discussed in exercise 8.

Questions:

(i) How does the dataset exactly look like? How was the data obtained? What sensing/measurement
capabilities were needed to obtain such data?

(ii) Write down pseudo code on how one can use SGD or Adam and train a 2-group permutation-
invariant function using the heterogeneous deep sets proposed in (9).

3E.g., finding a continuous path γ : [0, T] → Xfree from a given start configuration γ(0) = x0 to a
final configuration γ(T) ∈ Xgoal within the free configuration space Xfree = {x ∈ X : ϕcoll ≤ 0}.

4A shorter and perhaps easier to follow earlier work is Guanya Shi, Wolfgang Honig, Yisong Yue,
and Soon-Jo Chung, (2020). Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using
Learned Interactions. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 3241–3247

https://ieeexplore.ieee.org/document/9508420/
https://ieeexplore.ieee.org/document/9508420/
https://ieeexplore.ieee.org/document/9196800/
https://ieeexplore.ieee.org/document/9196800/

144 Robot Learning, Marc Toussaint & Wolfgang Hönig

(iii) Consider the use-case of motion planning (Fig. 6). Explain how the neural network is applied
inside the motion planner.

(iv) In the considered examples for K-group permutation invariant functions, K is relatively small
(4 in the paper). Consider the case where K is large or unknown, for example if we are able to
measure the size of the neighboring robot (a real value). How could learning be applied in this
case?

2.11.2 Encodings for Environmental Monitoring

Consider a team of robots that is spatially distributed as shown below. In the figure, circles are robots,
the numbers are their associated measurements (such as temperatures), and lines indicate the existence
of a communication link. The goal is to find the minimum of their sensor measurements. In this question
we will explore various concrete encodings for such problem.

x

y

0 1 2 3 4 5
0

1

2

3

4

5

5

2

34

(i) First consider the abstract, centralized setting with function f(X) = minx∈X x, where X is a set
of real numbers. In other words, the function takes one or more numbers as input and returns
the smallest element of these numbers. Recall that the deep set

f(X) ≈ ρ

∑
x∈X

ϕ(x)

 (22)

should be able to approximate this function. Provide concrete (differentiable) functions for ρ
and ϕ for this case.
Hint: You can find some inspiration in the original Deep Set paper or the paper from question 1.

(ii) Now assume the case where robots have a limited communication radius. One example is shown
in the figure, where the lines show communication links. Define the Aggregate and Update

functions of a simple message-passing neural network.

Demonstrate in the example above, how the node at (1, 1) computes the minimum value.

(iii) How could a CNN be used for the case with limited communication radius? Be specific about
the layers the CNN should have.

(iv) For the use-case outlined above, what are advantages and disadvantages of the three encodings
(Deep Sets, GNN, CNN)? Consider both small (=few neighbors) and large (=many neighbors)
cases.

Robot Learning, Marc Toussaint & Wolfgang Hönig 145

References

[1] Pieter Abbeel, Adam Coates, and Andrew Y. Ng, (2010). Autonomous Helicopter Aerobatics
through Apprenticeship Learning. The International Journal of Robotics Research, 29(13):1608–
1639.

[2] Pieter Abbeel and Andrew Y. Ng, (2004). Apprenticeship learning via inverse reinforcement
learning. In Twenty-first international conference, page 1.

[3] Riad Akrour, Marc Schoenauer, and Michèle Sebag, (2012). APRIL: Active preference learning-
based reinforcement learning. In Peter A. Flach, Tijl De Bie, and Nello Cristianini, editors,
Machine Learning and Knowledge Discovery in Databases, volume 7524, pages 116–131.

[4] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning, (2009). A survey of
robot learning from demonstration. Robotics and autonomous systems, 57(5):469–483.

[5] Christopher G. Atkeson and Stefan Schaal, (1997). Robot learning from demonstration. In ICML,
volume 97, pages 12–20.

[6] Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide Scaramuzza, (2021).
NeuroBEM: Hybrid aerodynamic quadrotor model. In Robotics: Science and Systems XVII,
volume 17.

[7] Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause, (2016). Safe controller optimization
for quadrotors with Gaussian processes. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 491–496.

[8] Christopher M. Bishop and Hugh Bishop, (2024). Deep Learning: Foundations and Concepts.

[9] Ronen I. Brafman and Moshe Tennenholtz, (2002). R-max-a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231.

[10] Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, and Ryan Julian, (2023). Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on Robot Learning, pages 287–318.

[11] Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati,
and Angela P. Schoellig, (2022). Safe Learning in Robotics: From Learning-Based Control to
Safe Reinforcement Learning. Annual Review of Control, Robotics, and Autonomous Systems,
5:411–444.

[12] Michael Burri, Michael Bloesch, Zachary Taylor, Roland Siegwart, and Juan Nieto, (2018). A
framework for maximum likelihood parameter identification applied on MAVs. Journal of Field
Robotics, 35(1):5–22.

[13] Michael Burri, Janosch Nikolic, Helen Oleynikova, Markus W. Achtelik, and Roland Siegwart,
(2016). Maximum likelihood parameter identification for MAVs. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 4297–4303.

[14] Sylvain Calinon and Aude Billard, (2007). Incremental learning of gestures by imitation in a
humanoid robot. In Proceedings of the ACM/IEEE International Conference on Human-robot
Interaction, pages 255–262.

[15] Stanley H. Chan, (2024). Tutorial on Diffusion Models for Imaging and Vision.

[16] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl, (2020). Learning by cheating.
In Conference on Robot Learning, pages 66–75.

[17] S. Chen, S. A. Billings, and P. M. Grant, (1990). Non-linear system identification using neural
networks. International Journal of Control, 51(6):1191–1214.

[18] Weizhe Chen, Sven Koenig, and Bistra Dilkina, (2024). Why Solving Multi-agent Path Finding
with Large Language Model has not Succeeded Yet.

[19] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song, (2023). Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. In Robotics:
Science and Systems XIX.

https://delete_delete_delete_doi.org/10.1177/0278364910371999
https://delete_delete_delete_doi.org/10.1177/0278364910371999
http://portal.acm.org/citation.cfm?delete_delete_delete_doid=1015330.1015430
http://portal.acm.org/citation.cfm?delete_delete_delete_doid=1015330.1015430
http://link.springer.com/10.1007/978-3-642-33486-3_8
http://link.springer.com/10.1007/978-3-642-33486-3_8
https://www.sciencedirect.com/science/article/pii/S0921889008001772?casa_token=23LVhxWg4jgAAAAA:GehDaKG7uEQPK4tGHZvaYo9YPFM63lvQpXoH7LjTu46LEo4YSRpe2UtyEMGEaxrvrjkq7P_1mw
https://www.sciencedirect.com/science/article/pii/S0921889008001772?casa_token=23LVhxWg4jgAAAAA:GehDaKG7uEQPK4tGHZvaYo9YPFM63lvQpXoH7LjTu46LEo4YSRpe2UtyEMGEaxrvrjkq7P_1mw
https://mcgovern-fagg.org/amy_html/courses/cs5973_fall2005/lfd.pdf
https://www.roboticsproceedings.org/rss17/p042.html
http://ieeexplore.ieee.org/document/7487170/
http://ieeexplore.ieee.org/document/7487170/
https://link.springer.com/10.1007/978-3-031-45468-4
https://www.jmlr.org/papers/volume3/brafman02a/brafman02a.pdf?ref=https://githubhelp.com
https://www.jmlr.org/papers/volume3/brafman02a/brafman02a.pdf?ref=https://githubhelp.com
https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
https://onlinelibrary.wiley.com/delete_delete_delete_doi/abs/10.1002/rob.21729
https://onlinelibrary.wiley.com/delete_delete_delete_doi/abs/10.1002/rob.21729
http://ieeexplore.ieee.org/document/7487627/
https://dl.acm.org/delete_delete_delete_doi/10.1145/1228716.1228751
https://dl.acm.org/delete_delete_delete_doi/10.1145/1228716.1228751
http://arxiv.org/abs/2403.18103
http://proceedings.mlr.press/v100/chen20a.html
https://www.tandfonline.com/delete_delete_delete_doi/full/10.1080/00207179008934126
https://www.tandfonline.com/delete_delete_delete_doi/full/10.1080/00207179008934126
http://arxiv.org/abs/2401.03630
http://arxiv.org/abs/2401.03630
http://www.roboticsproceedings.org/rss19/p026.pdf

146 Robot Learning, Marc Toussaint & Wolfgang Hönig

[20] Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei, (2017).
Deep reinforcement learning from human preferences. Advances in neural information processing
systems, 30.

[21] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen, (2015). Gaussian processes
for data-efficient learning in robotics and control. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(2):408–423.

[22] Martin Do, Pedram Azad, Tamim Asfour, and Rudiger Dillmann, (2008). Imitation of human
motion on a humanoid robot using non-linear optimization. In Humanoids 2008-8th IEEE-RAS
International Conference on Humanoid Robots, pages 545–552.

[23] Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc Tous-
saint, and Trimpe Sebastian, (2018). Probabilistic recurrent state-space models. In International
conference on machine learning, pages 1280–1289.

[24] Danny Driess, Jung-Su Ha, and Marc Toussaint, (2020). Deep Visual Reasoning: Learning to
Predict Action Sequences for Task and Motion Planning from an Initial Scene Image.

[25] Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint, (2023). Learning
multi-object dynamics with compositional neural radiance fields. In Conference on robot learning,
pages 1755–1768.

[26] Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint, (2023). Learning
multi-object dynamics with compositional neural radiance fields. In Conference on Robot Learning,
pages 1755–1768.

[27] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence, (2023). PaLM-E: An
Embodied Multimodal Language Model.

[28] Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius, (2022). Pink noise is all
you need: Colored noise exploration in deep reinforcement learning. In The Eleventh International
Conference on Learning Representations.

[29] Ben Eisner, Harry Zhang, and David Held, (2024). FlowBot3D: Learning 3D Articulation Flow
to Manipulate Articulated Objects.

[30] Clemens Eppner, Arsalan Mousavian, and Dieter Fox, (2021). Acronym: A large-scale grasp
dataset based on simulation. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 6222–6227.

[31] Jonas Eschmann, Dario Albani, and Giuseppe Loianno, (2024). Data-driven system identification
of quadrotors subject to motor delays.

[32] Michael Everett, Yu Fan Chen, and Jonathan P. How, (2018). Motion Planning Among Dynamic,
Decision-Making Agents with Deep Reinforcement Learning. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3052–3059.

[33] Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan, (2020). Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex scenarios. The International
Journal of Robotics Research, 39(7):856–892.

[34] Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao Gou, Jirong Liu, Hengxu Yan, Wenhai Liu,
Yichen Xie, and Cewu Lu, (2023). Anygrasp: Robust and efficient grasp perception in spatial
and temporal domains. IEEE Transactions on Robotics.

[35] Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu, (2020). Graspnet-1billion: A large-
scale benchmark for general object grasping. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11444–11453.

[36] Chelsea Finn and Sergey Levine, (2017). Deep visual foresight for planning robot motion. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 2786–2793.

https://proceedings.neurips.cc/paper/7017-deep-reinforcement-learning-from-
http://ieeexplore.ieee.org/document/6654139/
http://ieeexplore.ieee.org/document/6654139/
https://ieeexplore.ieee.org/abstract/document/4756029/
https://ieeexplore.ieee.org/abstract/document/4756029/
http://proceedings.mlr.press/v80/doerr18a.html
http://arxiv.org/abs/2006.05398
http://arxiv.org/abs/2006.05398
https://proceedings.mlr.press/v205/driess23a.html
https://proceedings.mlr.press/v205/driess23a.html
https://proceedings.mlr.press/v205/driess23a.html
https://proceedings.mlr.press/v205/driess23a.html
http://arxiv.org/abs/2303.03378
http://arxiv.org/abs/2303.03378
https://openreview.net/forum?id=hQ9V5QN27eS
https://openreview.net/forum?id=hQ9V5QN27eS
http://arxiv.org/abs/2205.04382
http://arxiv.org/abs/2205.04382
https://ieeexplore.ieee.org/abstract/document/9560844/
https://ieeexplore.ieee.org/abstract/document/9560844/
http://arxiv.org/abs/2404.07837 [cs, eess]
http://arxiv.org/abs/2404.07837 [cs, eess]
https://ieeexplore.ieee.org/document/8593871/
https://ieeexplore.ieee.org/document/8593871/
http://journals.sagepub.com/delete_delete_delete_doi/10.1177/0278364920916531
http://journals.sagepub.com/delete_delete_delete_doi/10.1177/0278364920916531
https://ieeexplore.ieee.org/abstract/document/10167687/
https://ieeexplore.ieee.org/abstract/document/10167687/
http://openaccess.thecvf.com/content_CVPR_2020/html/Fang_GraspNet-1Billion_A_Large-Scale_Benchmark_for_General_Object_Grasping_CVPR_2020_paper.html
http://openaccess.thecvf.com/content_CVPR_2020/html/Fang_GraspNet-1Billion_A_Large-Scale_Benchmark_for_General_Object_Grasping_CVPR_2020_paper.html
https://ieeexplore.ieee.org/abstract/document/7989324/

Robot Learning, Marc Toussaint & Wolfgang Hönig 147

[37] Chelsea Finn, Sergey Levine, and Pieter Abbeel, (2016). Guided cost learning: Deep inverse
optimal control via policy optimization. In International Conference on Machine Learning, pages
49–58.

[38] Justin Fu, Katie Luo, and Sergey Levine, (2018). Learning robust rewards with adversarial inverse
reinforcement learning.

[39] Scott Fujimoto and Shixiang Shane Gu, (2021). A minimalist approach to offline reinforcement
learning. Advances in neural information processing systems, 34:20132–20145.

[40] Scott Fujimoto, Herke Hoof, and David Meger, (2018). Addressing function approximation error
in actor-critic methods. In International Conference on Machine Learning, pages 1587–1596.

[41] Julian Förster, (2015). System identification of the crazyflie 2.0 nano quadrocopter.

[42] Fernando Gama, Qingbiao Li, Ekaterina Tolstaya, Amanda Prorok, and Alejandro Ribeiro, (2022).
Synthesizing Decentralized Controllers With Graph Neural Networks and Imitation Learning. IEEE
Transactions on Signal Processing, 70:1932–1946.

[43] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez, (2021). Integrated Task and Motion Planning. Annual
Review of Control, Robotics, and Autonomous Systems, 4(1):265–293.

[44] Claudio Gaz, Marco Cognetti, Alexander Oliva, Paolo Robuffo Giordano, and Alessandro De Luca,
(2019). Dynamic identification of the franka emika panda robot with retrieval of feasible param-
eters using penalty-based optimization. IEEE Robotics and Automation Letters, 4(4):4147–4154.

[45] Matthieu Geist, Bilal Piot, and Olivier Pietquin, (2017). Is the Bellman residual a bad proxy?
Advances in Neural Information Processing Systems, 30.

[46] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio, (2014). Generative adversarial nets. Advances in neural
information processing systems, 27.

[47] Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022). Deep visual constraints: Neural implicit
models for manipulation planning from visual input. IEEE Robotics and Automation Letters,
7(4):10857–10864.

[48] Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022). Deep visual constraints: Neural implicit
models for manipulation planning from visual input. IEEE Robotics and Automation Letters,
7(4):10857–10864.

[49] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine, (2018). Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, pages 1861–1870.

[50] Dylan Hadfield-Menell, Stuart J. Russell, Pieter Abbeel, and Anca Dragan, (2016). Cooperative
inverse reinforcement learning. Advances in neural information processing systems, 29.

[51] Matthew Hausknecht and Peter Stone, (2015). Deep recurrent q-learning for partially observable
mdps. In 2015 Aaai Fall Symposium Series.

[52] Tairan He, Chong Zhang, Wenli Xiao, Guanqi He, Changliu Liu, and Guanya Shi, (2024). Agile
But Safe: Learning Collision-Free High-Speed Legged Locomotion.

[53] Donald Joseph Hejna III and Dorsa Sadigh, (2023). Few-shot preference learning for human-in-
the-loop rl. In Conference on Robot Learning, pages 2014–2025.

[54] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver, (2018). Rainbow: Combining
improvements in deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

[55] Jonathan Ho and Stefano Ermon, (2016). Generative Adversarial Imitation Learning. In Advances
in Neural Information Processing Systems, volume 29.

[56] Jonathan Ho, Ajay Jain, and Pieter Abbeel, (2020). Denoising Diffusion Probabilistic Models. In
Advances in Neural Information Processing Systems, volume 33, pages 6840–6851.

https://proceedings.mlr.press/v48/finn16.html
https://proceedings.mlr.press/v48/finn16.html
http://arxiv.org/abs/1710.11248 [cs]
http://arxiv.org/abs/1710.11248 [cs]
https://proceedings.neurips.cc/paper_files/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://www.research-collection.ethz.ch/handle/20.500.11850/214143
https://ieeexplore.ieee.org/document/9755021/
https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-091420-084139
https://ieeexplore.ieee.org/abstract/document/8772145/
https://ieeexplore.ieee.org/abstract/document/8772145/
https://proceedings.neurips.cc/paper/2017/hash/e0ab531ec312161511493b002f9be2ee-Abstract.html
https://proceedings.neurips.cc/paper/5423-generative-adversarial-nets
https://ieeexplore.ieee.org/abstract/document/9844753/
https://ieeexplore.ieee.org/abstract/document/9844753/
https://ieeexplore.ieee.org/abstract/document/9844753/
https://ieeexplore.ieee.org/abstract/document/9844753/
https://proceedings.mlr.press/v80/haarnoja18b
https://proceedings.mlr.press/v80/haarnoja18b
https://proceedings.neurips.cc/paper_files/paper/2016/hash/c3395dd46c34fa7fd8d729d8cf88b7a8-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/c3395dd46c34fa7fd8d729d8cf88b7a8-Abstract.html
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://arxiv.org/abs/2401.17583v3
https://arxiv.org/abs/2401.17583v3
https://proceedings.mlr.press/v205/iii23a.html
https://proceedings.mlr.press/v205/iii23a.html
https://ojs.aaai.org/index.php/AAAI/article/view/11796
https://ojs.aaai.org/index.php/AAAI/article/view/11796
https://proceedings.neurips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

148 Robot Learning, Marc Toussaint & Wolfgang Hönig

[57] Zhehui Huang, Zhaojing Yang, Rahul Krupani, Baskın Şenbaşlar, Sumeet Batra, and Gaurav S.
Sukhatme, (2024). Collision Avoidance and Navigation for a Quadrotor Swarm Using End-to-end
Deep Reinforcement Learning.

[58] Brian Ichter, James Harrison, and Marco Pavone, (2018). Learning Sampling Distributions for
Robot Motion Planning. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 7087–7094.

[59] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza, (2023). Champion-level drone racing using deep reinforcement learning.
Nature, 620(7976):982–987.

[60] Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Matthias Müller, Vladlen Koltun, and Davide
Scaramuzza, (2020). Deep Drone Acrobatics. In Robotics: Science and Systems XVI.

[61] Michael Kearns and Satinder Singh, (2002). Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49(2/3):209–232.

[62] Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon, (2020). Domain
Adaptive Imitation Learning. In Proceedings of the 37th International Conference on Machine
Learning, pages 5286–5295.

[63] Jens Kober and Jan Peters, (2009). Learning motor primitives for robotics. In 2009 IEEE
International Conference on Robotics and Automation, pages 2112–2118.

[64] Ryan Kortvelesy and Amanda Prorok, (2021). ModGNN: Expert Policy Approximation in Multi-
Agent Systems with a Modular Graph Neural Network Architecture. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 9161–9167.

[65] Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn,
and Sergey Levine, (2023). Pre-Training for Robots: Offline RL Enables Learning New Tasks
from a Handful of Trials.

[66] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter, (2020).
Learning quadrupedal locomotion over challenging terrain. Science Robotics, 5(47):eabc5986.

[67] Sergey Levine and Vladlen Koltun, (2013). Guided policy search. In International Conference on
Machine Learning, pages 1–9.

[68] Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok, (2020). Graph Neural Net-
works for Decentralized Multi-Robot Path Planning. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 11785–11792.

[69] Qingbiao Li, Weizhe Lin, Zhe Liu, and Amanda Prorok, (2021). Message-Aware Graph Attention
Networks for Large-Scale Multi-Robot Path Planning. IEEE Robotics and Automation Letters,
6(3):5533–5540.

[70] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra, (2019). Continuous control with deep reinforcement learning.

[71] Ryan Lowe, given-i=YI family=WU, given=YI, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel,
and Igor Mordatch, (2017). Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Envi-
ronments. In Advances in Neural Information Processing Systems, volume 30.

[72] Kevin M. Lynch and Frank C. Park, (2017). Modern Robotics.

[73] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Apari-
cio Ojea, and Ken Goldberg, (2017). Dex-Net 2.0: Deep Learning to Plan Robust Grasps with
Synthetic Point Clouds and Analytic Grasp Metrics.

[74] Odalric-Ambrym Maillard, Rémi Munos, Alessandro Lazaric, and Mohammad Ghavamzadeh,
(2010). Finite-sample analysis of Bellman residual minimization. In Proceedings of 2nd Asian
Conference on Machine Learning, pages 299–314.

[75] Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake, (2022). KPAM: KeyPoint Affor-
dances for Category-Level Robotic Manipulation. In Tamim Asfour, Eiichi Yoshida, Jaeheung
Park, Henrik Christensen, and Oussama Khatib, editors, Robotics Research, volume 20, pages
132–157.

http://arxiv.org/abs/2309.13285
http://arxiv.org/abs/2309.13285
https://www.nature.com/articles/s41586-023-06419-4
http://www.roboticsproceedings.org/rss16/p040.pdf
http://link.springer.com/10.1023/A:1017984413808
http://link.springer.com/10.1023/A:1017984413808
https://proceedings.mlr.press/v119/kim20c.html
https://proceedings.mlr.press/v119/kim20c.html
https://ieeexplore.ieee.org/abstract/document/5152577/
https://ieeexplore.ieee.org/document/9561386/
https://ieeexplore.ieee.org/document/9561386/
http://arxiv.org/abs/2210.05178
http://arxiv.org/abs/2210.05178
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/448343/1/2020_science_robotics_lee_locomotion.pdf
https://proceedings.mlr.press/v28/levine13.html
https://ieeexplore.ieee.org/document/9341668/
https://ieeexplore.ieee.org/document/9341668/
https://ieeexplore.ieee.org/document/9424371/
https://ieeexplore.ieee.org/document/9424371/
http://arxiv.org/abs/1509.02971
https://proceedings.neurips.cc/paper_files/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://books.google.com/books?hl=en&lr=&id=5NzFDgAAQBAJ&oi=fnd&pg=PR11&dq=modern+robotics+book&ots=qsJmY4kXPh&sig=o1uhr6h_eJKF33_HBe2xZaT32Ow
http://arxiv.org/abs/1703.09312
http://arxiv.org/abs/1703.09312
http://proceedings.mlr.press/v13/maillard10a.html
https://link.springer.com/10.1007/978-3-030-95459-8_9
https://link.springer.com/10.1007/978-3-030-95459-8_9

Robot Learning, Marc Toussaint & Wolfgang Hönig 149

[76] Matthew T. Mason, (2018). Toward Robotic Manipulation. Annual Review of Control, Robotics,
and Autonomous Systems, 1(1):1–28.

[77] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, and Georg Ostrovski, (2015). Human-
level control through deep reinforcement learning. nature, 518(7540):529–533.

[78] Teodor Mihai Moldovan and Pieter Abbeel, (2012). Safe exploration in Markov decision processes.
In Proceedings of the 29th International Coference on International Conference on Machine Learn-
ing, ICML’12, pages 1451–1458.

[79] Andrew Y. Ng, Daishi Harada, and Stuart Russell, (1999). Policy invariance under reward trans-
formations: Theory and application to reward shaping. In Icml, volume 99, pages 278–287.

[80] Andrew Y. Ng and Stuart Russell, (2000). Algorithms for inverse reinforcement learning. In Icml,
volume 1, page 2.

[81] James Orr and Ayan Dutta, (2023). Multi-Agent Deep Reinforcement Learning for Multi-Robot
Applications: A Survey. Sensors, 23(7):3625.

[82] Alexandros Paraschos, Christian Daniel, Jan R. Peters, and Gerhard Neumann, (2013). Proba-
bilistic movement primitives. Advances in neural information processing systems, 26.

[83] Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J. Lim, (2021). Demonstration-Guided
reinforcement learning with learned skills.

[84] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta, (2017). Robust Adver-
sarial Reinforcement Learning. In Proceedings of the 34th International Conference on Machine
Learning, pages 2817–2826.

[85] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz, (2018). Parameter Space Noise for
Exploration.

[86] Dean A. Pomerleau, (1988). Alvinn: An autonomous land vehicle in a neural network. Advances
in neural information processing systems, 1.

[87] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, and Jack Clark, (2021). Learning transferable
visual models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763.

[88] Spencer M. Richards, Felix Berkenkamp, and Andreas Krause, (2018). The Lyapunov Neural
Network: Adaptive Stability Certification for Safe Learning of Dynamical Systems.

[89] Benjamin Riviere, Wolfgang Honig, Matthew Anderson, and Soon-Jo Chung, (2021). Neural
Tree Expansion for Multi-Robot Planning in Non-Cooperative Environments. IEEE Robotics and
Automation Letters, 6(4):6868–6875.

[90] Benjamin Riviere, Wolfgang Honig, Yisong Yue, and Soon-Jo Chung, (2020). GLAS: Global-
to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning With End-to-End Learning.
IEEE Robotics and Automation Letters, 5(3):4249–4256.

[91] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell, (2011). A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning.

[92] Stuart Russell, (2019). Human compatible: AI and the problem of control.

[93] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever, (2017). Evolution
Strategies as a Scalable Alternative to Reinforcement Learning.

[94] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, T. K. Satish Kumar, Sven Koenig,
and Howie Choset, (2019). PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent
Learning. IEEE Robotics and Automation Letters, 4(3):2378–2385.

[95] Stefan Schaal, Christopher G. Atkeson, and Sethu Vijayakumar, (2002). Scalable techniques from
nonparametric statistics for real time robot learning. Applied Intelligence, 17(1):49–60.

https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-060117-104848
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
http://www.datascienceassn.org/sites/default/files/Algorithms%20for%20Inverse%20Reinforcement%20Learning.pdf
https://www.mdpi.com/1424-8220/23/7/3625
https://www.mdpi.com/1424-8220/23/7/3625
https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
http://arxiv.org/abs/2107.10253
http://arxiv.org/abs/2107.10253
https://proceedings.mlr.press/v70/pinto17a.html
https://proceedings.mlr.press/v70/pinto17a.html
http://arxiv.org/abs/1706.01905
http://arxiv.org/abs/1706.01905
https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html
http://proceedings.mlr.press/v139/radford21a
http://proceedings.mlr.press/v139/radford21a
http://arxiv.org/abs/1808.00924
http://arxiv.org/abs/1808.00924
https://ieeexplore.ieee.org/document/9484771/
https://ieeexplore.ieee.org/document/9484771/
https://ieeexplore.ieee.org/document/9091314/
https://ieeexplore.ieee.org/document/9091314/
http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
https://books.google.com/books?hl=en&lr=&id=Gg-TDwAAQBAJ&oi=fnd&pg=PT8&dq=human+compatible+russell&ots=qoZKXK7gQ0&sig=p4x57HjxfMAVCpQ4O_XcE7J4ECY
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
https://ieeexplore.ieee.org/document/8661608/
https://ieeexplore.ieee.org/document/8661608/
http://link.springer.com/10.1023/A:1015727715131
http://link.springer.com/10.1023/A:1015727715131

150 Robot Learning, Marc Toussaint & Wolfgang Hönig

[96] Stefan Schaal, Auke Ijspeert, and Aude Billard, (2003). Computational approaches to motor
learning by imitation. Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences, 358(1431):537–547.

[97] Ingmar Schubert, Jingwei Zhang, Jake Bruce, Sarah Bechtle, Emilio Parisotto, Martin Riedmiller,
Jost Tobias Springenberg, Arunkumar Byravan, Leonard Hasenclever, and Nicolas Heess, (2023).
A generalist dynamics model for control.

[98] Guanya Shi, Wolfgang Honig, Xichen Shi, Yisong Yue, and Soon-Jo Chung, (2022). Neural-
Swarm2: Planning and Control of Heterogeneous Multirotor Swarms Using Learned Interactions.
IEEE Transactions on Robotics, 38(2):1063–1079.

[99] Guanya Shi, Wolfgang Honig, Yisong Yue, and Soon-Jo Chung, (2020). Neural-Swarm: Decen-
tralized Close-Proximity Multirotor Control Using Learned Interactions. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 3241–3247.

[100] Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung, (2019). Neural Lander: Stable Drone Landing
Control Using Learned Dynamics. In 2019 International Conference on Robotics and Automation
(ICRA), pages 9784–9790.

[101] Mohit Shridhar, Lucas Manuelli, and Dieter Fox, (2022). Cliport: What and where pathways for
robotic manipulation. In Conference on Robot Learning, pages 894–906.

[102] Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, (1997). Computational capabilities of
recurrent NARX neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 27(2):208–215.

[103] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller,
(2014). Deterministic policy gradient algorithms. In International Conference on Machine Learn-
ing, pages 387–395.

[104] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez,
Pulkit Agrawal, and Vincent Sitzmann, (2022). Neural descriptor fields: Se (3)-equivariant object
representations for manipulation. In 2022 International Conference on Robotics and Automation
(ICRA), pages 6394–6400.

[105] Samarth Sinha, Ajay Mandlekar, and Animesh Garg, (2022). S4rl: Surprisingly simple self-
supervision for offline reinforcement learning in robotics. In Conference on Robot Learning, pages
907–917.

[106] Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine, (2020). AVID:
Learning Multi-Stage Tasks via Pixel-Level Translation of Human Videos.

[107] Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser, (2020). Grasping in the wild:
Learning 6dof closed-loop grasping from low-cost demonstrations. IEEE Robotics and Automation
Letters, 5(3):4978–4985.

[108] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and
Jeff Clune, (2018). Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for
Training Deep Neural Networks for Reinforcement Learning.

[109] Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox, (2021). Contact-
graspnet: Efficient 6-dof grasp generation in cluttered scenes. In 2021 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 13438–13444.

[110] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, and Thore Graepel,
(2018). Value-Decomposition Networks For Cooperative Multi-Agent Learning Based On Team
Reward.

[111] Russ Tedrake, (2023). Robotic Manipulation - Lecture Website.

[112] Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek, (2020). Robots That
Use Language. Annual Review of Control, Robotics, and Autonomous Systems, 3(1):25–55.

https://royalsocietypublishing.org/delete_delete_delete_doi/10.1098/rstb.2002.1258
https://royalsocietypublishing.org/delete_delete_delete_doi/10.1098/rstb.2002.1258
http://arxiv.org/abs/2305.10912 [cs]
https://ieeexplore.ieee.org/document/9508420/
https://ieeexplore.ieee.org/document/9508420/
https://ieeexplore.ieee.org/document/9196800/
https://ieeexplore.ieee.org/document/9196800/
https://ieeexplore.ieee.org/document/8794351/
https://ieeexplore.ieee.org/document/8794351/
https://proceedings.mlr.press/v164/shridhar22a.html
https://proceedings.mlr.press/v164/shridhar22a.html
https://ieeexplore.ieee.org/abstract/document/558801/
https://ieeexplore.ieee.org/abstract/document/558801/
http://proceedings.mlr.press/v32/silver14.html
https://ieeexplore.ieee.org/abstract/document/9812146/
https://ieeexplore.ieee.org/abstract/document/9812146/
https://proceedings.mlr.press/v164/sinha22a.html
https://proceedings.mlr.press/v164/sinha22a.html
http://arxiv.org/abs/1912.04443
http://arxiv.org/abs/1912.04443
https://ieeexplore.ieee.org/abstract/document/9126187/
https://ieeexplore.ieee.org/abstract/document/9126187/
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
https://ieeexplore.ieee.org/abstract/document/9561877/
https://ieeexplore.ieee.org/abstract/document/9561877/
https://manipulation.csail.mit.edu/index.html
https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-101119-071628
https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-101119-071628

Robot Learning, Marc Toussaint & Wolfgang Hönig 151

[113] Andreas Ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt, (2017). Grasp Pose Detection
in Point Clouds. The International Journal of Robotics Research, 36(13-14):1455–1473.

[114] Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho
Hwang, Joseph E. Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg, (2021). Recovery
RL: Safe Reinforcement Learning With Learned Recovery Zones. IEEE Robotics and Automation
Letters, 6(3):4915–4922.

[115] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel,
(2017). Domain randomization for transferring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 23–30.

[116] Ekaterina Tolstaya, Fernando Gama, James Paulos, George Pappas, Vijay Kumar, and Alejan-
dro Ribeiro, (2020). Learning Decentralized Controllers for Robot Swarms with Graph Neural
Networks. In Proceedings of the Conference on Robot Learning, pages 671–682.

[117] Marc Toussaint, (2015). Logic-Geometric Programming: An Optimization-Based Approach to
Combined Task and Motion Planning. In IJCAI, pages 1930–1936.

[118] Marc A. Toussaint, Kelsey Rebecca Allen, Kevin A. Smith, and Joshua B. Tenenbaum, (2018).
Differentiable physics and stable modes for tool-use and manipulation planning.

[119] Aaron Tucker, Adam Gleave, and Stuart Russell, (2018). Inverse reinforcement learning for video
games.

[120] Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki, (2023). Se (3)-diffusionfields:
Learning smooth cost functions for joint grasp and motion optimization through diffusion. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pages 5923–5930.

[121] Kim P. Wabersich, Andrew J. Taylor, Jason J. Choi, Koushil Sreenath, Claire J. Tomlin, Aaron D.
Ames, and Melanie N. Zeilinger, (2023). Data-Driven Safety Filters: Hamilton-Jacobi Reacha-
bility, Control Barrier Functions, and Predictive Methods for Uncertain Systems. IEEE Control
Systems, 43(5):137–177.

[122] Yutong Wang, Mehul Damani, Pamela Wang, Yuhong Cao, and Guillaume Sartoretti, (2022).
Distributed Reinforcement Learning for Robot Teams: A Review. Current Robotics Reports,
3(4):239–257.

[123] Lilian Weng, (2017-08-20T00:00:00+00:00). From GAN to WGAN.

[124] Lilian Weng, (2018-08-12T00:00:00+00:00). From Autoencoder to Beta-VAE.

[125] Lilian Weng, (2021-07-11T00:00:00+00:00). What are Diffusion Models?

[126] Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subrama-
nian, Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs,
Leilani Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih Lin, Patrick MacAlpine, Declan
Oller, Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett,
Rory Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano,
(2022). Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature,
602(7896):223–228.

[127] Zhenjia Xu, Zhanpeng He, and Shuran Song, (2022). Universal manipulation policy network for
articulated objects. IEEE robotics and automation letters, 7(2):2447–2454.

[128] Chenning Yu, Hongzhan Yu, and Sicun Gao, (2022). Learning Control Admissibility Models with
Graph Neural Networks for Multi-Agent Navigation. In 6th Annual Conference on Robot Learning.

[129] Javier Yu, Joseph A. Vincent, and Mac Schwager, (2022). DiNNO: Distributed Neural Network
Optimization for Multi-Robot Collaborative Learning. IEEE Robotics and Automation Letters,
7(2):1896–1903.

[130] Zhaocong Yuan, Adam W. Hall, Siqi Zhou, Lukas Brunke, Melissa Greeff, Jacopo Panerati, and
Angela P. Schoellig, (2022). Safe-Control-Gym: A Unified Benchmark Suite for Safe Learning-
Based Control and Reinforcement Learning in Robotics. IEEE Robotics and Automation Letters,
7(4):11142–11149.

http://journals.sagepub.com/delete_delete_delete_doi/10.1177/0278364917735594
http://journals.sagepub.com/delete_delete_delete_doi/10.1177/0278364917735594
https://ieeexplore.ieee.org/document/9392290/
https://ieeexplore.ieee.org/document/9392290/
https://ieeexplore.ieee.org/abstract/document/8202133/
https://ieeexplore.ieee.org/abstract/document/8202133/
https://proceedings.mlr.press/v100/tolstaya20a.html
https://proceedings.mlr.press/v100/tolstaya20a.html
https://argmin.lis.tu-berlin.de/papers/15-toussaint-IJCAI.pdf
https://argmin.lis.tu-berlin.de/papers/15-toussaint-IJCAI.pdf
https://dspace.mit.edu/handle/1721.1/126626
http://arxiv.org/abs/1810.10593 [cs, stat]
http://arxiv.org/abs/1810.10593 [cs, stat]
https://ieeexplore.ieee.org/abstract/document/10161569/
https://ieeexplore.ieee.org/abstract/document/10161569/
https://ieeexplore.ieee.org/document/10266799/
https://ieeexplore.ieee.org/document/10266799/
https://delete_delete_delete_doi.org/10.1007/s43154-022-00091-8
https://lilianweng.github.io/posts/2017-08-20-gan/
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://www.nature.com/articles/s41586-021-04357-7
https://ieeexplore.ieee.org/abstract/document/9681198/
https://ieeexplore.ieee.org/abstract/document/9681198/
https://openreview.net/forum?id=xC-68ANJeK_
https://openreview.net/forum?id=xC-68ANJeK_
https://ieeexplore.ieee.org/abstract/document/9681319
https://ieeexplore.ieee.org/abstract/document/9681319
https://ieeexplore.ieee.org/document/9849119/
https://ieeexplore.ieee.org/document/9849119/

152 Robot Learning, Marc Toussaint & Wolfgang Hönig

[131] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola, (2017). Deep Sets. In Advances in Neural Information Processing
Systems, volume 30.

[132] Songyuan Zhang, Kunal Garg, and Chuchu Fan, (2023). Neural Graph Control Barrier Functions
Guided Distributed Collision-avoidance Multi-agent Control. In 7th Annual Conference on Robot
Learning.

[133] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn, (2023). Learning Fine-Grained
Bimanual Manipulation with Low-Cost Hardware.

[134] Yang Zhou, Jiuhong Xiao, Yue Zhou, and Giuseppe Loianno, (2022). Multi-Robot Collaborative
Perception With Graph Neural Networks. IEEE Robotics and Automation Letters, 7(2):2289–
2296.

[135] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning.

[136] Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, and Ayzaan Wahid, (2023). Rt-2: Vision-language-action models transfer web
knowledge to robotic control. In Conference on Robot Learning, pages 2165–2183.

https://papers.nips.cc/paper_files/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://openreview.net/forum?id=VscdYkKgwdH
https://openreview.net/forum?id=VscdYkKgwdH
http://arxiv.org/abs/2304.13705
http://arxiv.org/abs/2304.13705
https://ieeexplore.ieee.org/document/9676458/
https://ieeexplore.ieee.org/document/9676458/
https://proceedings.mlr.press/v229/zitkovich23a.html
https://proceedings.mlr.press/v229/zitkovich23a.html

	1 Lectures
	1.1 Introduction
	What is this lecture about?
	Organization

	1.2 Taxonomy
	1.3 Robotics Essentials
	Articulated Multibody System
	Forward Kinematics
	Inverse Dynamics
	Standard Control Stack
	Inverse Kinematics
	Model-Predictive Control (MPC)
	Challenges

	1.4 Machine Learning Essentials
	Supervised ML
	Unsupervised ML

	1.5 Dynamics Learning
	Parameter Estimation
	Dynamics Regression
	Residual Dynamics
	Observation-based models (Autoregression, Recurrent, State-Space)
	Data Quality
	Frequency Excitation

	1.6 Imitation Learning
	Early Work
	Behavior Cloning
	Trajectory Distribution Learning
	Constraints & Feature Learning
	Distributional Shift
	DAgger
	Data Collection (TeleOp, Kinesthetic, MoCap, Video)

	1.7 Imitation Learning 2
	Privileged Teacher
	GAN
	VAE
	Diffusion
	Case Studies

	1.8 Reinforcement Learning
	Markov Decision Process
	Value Function, Bellman, Q-Iteration
	Proof of convergence of Q-Iteration
	Policy Iteration
	Bellman Residual Loss
	Policy Gradient
	Deep RL
	Data Collection in RL
	Reward Engineering

	1.9 RL II: Offline RL & Sim2Real
	Offline RL
	Regularization
	Sim2Real
	Domain Randomization
	Privileged Training & Imitation Learning
	Domain Adaptation

	1.10 Inverse RL
	Value Alignment
	General Approach
	Max Margin IRL
	Max Entropy IRL
	Adversarial IRL
	Preference-based RL

	1.11 Safe Learning
	Safety Definitions
	Safety Certification
	Safety Encouraging RL
	Safe Dynamics Learning
	Open Challenges

	1.12 Manipulation & Grasp Learning
	Manipulation
	Contacts & Force Closure
	Grasp Learning
	Grasp Data Collection (model- and simulation-based)
	Manipulation Learning

	1.13 TAMP & Language
	Task and Motion Planning
	Logic-Geometric Program
	Learning in TAMP
	Constraints Learning
	Learning to predict plans
	Language in Robotics
	Language-Image Models (CLIP, CLIPort, SayCan, PaLM-E, RT-2)

	1.14 Multi-Robot Learning
	Deep Sets
	GNNs
	MARL
	DiNNO

	2 Exercises
	2.1 Weekly Exercise 1
	2.1.1 Basic Inverse Kinematics
	2.1.2 Point mass under PD control
	2.1.3 BONUS: Fun with Euler-Lagrange
	2.1.4 Logistic Regression

	2.2 Weekly Exercise 2
	2.2.1 Work with the Literature
	2.2.2 System Identification of a Simple Car
	2.2.3 Mountain Car Dynamics Learning

	2.3 Weekly Exercise 3
	2.3.1 Literature: DAgger
	2.3.2 Trajectory Distributions, GMMs, ProMPs
	2.3.3 Mountain Car Imitation Learning

	2.4 Weekly Exercise 4
	2.4.1 Trajectory Distribution Control
	2.4.2 Multi-Modal Distributions
	2.4.3 Mountain Car Imitation Learning

	2.5 Weekly Exercise 5
	2.5.1 Literature: SAC
	2.5.2 The Reparametrization Trick
	2.5.3 Mountain Car RL using SAC

	2.6 Weekly Exercise 6
	2.6.1 Literature: Privileged and Sensorimotor Policy Training
	2.6.2 Episodes & Terminal States
	2.6.3 Lunar Lander Domain Randomization

	2.7 Weekly Exercise 7
	2.7.1 Literature: Adversarial Inverse Reinforcement Learning
	2.7.2 Inverse RL on a Toy Control Problem
	2.7.3 Practical Exercise: Exploration in RL

	2.8 Weekly Exercise 8
	2.8.1 Literature: Neural Lander
	2.8.2 Fun With Definitions
	2.8.3 Working With Code: safe-control-gym

	2.9 Weekly Exercise 9
	2.9.1 Literature: Grasp Data Collection
	2.9.2 Force Closure
	2.9.3 Practical Exercise: Explore the Graspnet data

	2.10 Weekly Exercise 10
	2.10.1 Literature: Learning to Plan in TAMP
	2.10.2 Optimal Sequential Manipulation in TAMP

	2.11 Weekly Exercise 11
	2.11.1 Literature: Neural-Swarm2
	2.11.2 Encodings for Environmental Monitoring

