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1 Lectures

1.1 Introduction

(slides by Marc Toussaint)

What is this lecture about?

o Related Lectures:
— Guanya Shi (CMU): Robot Learning nctps://16-831-524. github. i0/1ectures
— Erdem Biyik (USC): hetps://1iratab.usc. edu/csci699/
— Jan Peters (TU Darmstadt): nttps://1earn.ki-canpus. org/courses/moocrobot-tud2021

- Yisong Yue & Hoa ng M. Le (CalTeCh): https://sites.google.com/view/icm12018-imitation-learning/

1.1:1

What is this lecture about?
e Shi's lecture (referenced below):

Let’s Start!

What is “robot learning” and what is this class about?
O Learning to make sequential decisions in the physical world

Sensor observations Data Robot actions

Learning algorithm
for

Actions effect the next observations

What is this lecture about?

e Shi's lecture (referenced below):


https://16-831-s24.github.io/lectures
https://liralab.usc.edu/csci699/
https://learn.ki-campus.org/courses/moocrobot-tud2021
https://sites.google.com/view/icml2018-imitation-learning/
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What is “Robot Learning”?

O Learning to make sequential decisions in the physical world

O Learning: Data-driven and improve from data
* Wj/o learning & data: search & planning, classic control, optimal control, ...

O Sequential: The current action/decision influences the next state therefore the next
action/decision
* W/o sequential: bandit, standard supervised learning, ...

O Physical world: The robot needs to interact with the physical world in the closed-loop
* Ak.a. “embodied intelligence”
¢ W/o physical world: RL for games, LLMs...

What is this lecture about?

e In Shi's view:

— Formalize the problem “making sequential decisions in a physical world” (—
MDPs)

— Focus on Learning in MDPs — Reinforcement Learning

1.1:4
What is this lecture about?
e However, the topic is much wider
e Robotics is a very wide field — Learning can be applied almost anywhere
1.1:5

What is this lecture about?

e Module description (Moses 41016) — Learning Outcomes

— The students have a systematic understanding of the wide variety of contexts and problems
settings in which machine learning methods can be applied within robotics.

— They understand how the learning problems are mathematically formulated in these settings.
— [They also learn about underlying ML methods to tackle these problems.]. ..
e Content

— The term Robot Learning generally denotes the use of learning methods in the context of
robotics, which is ubiquitous in modern robotics research. This course aims to provide a
systematic introduction to the field, in particular to the various contexts and problem setting
where machine learning can be applied and the specific learning methods themselves. This
includes topics such as:

— System identification, model learning, residual model learning
— Imitation learning, behavior cloning, learning from demonstration
— Reinforcement Learning (RL), skill learning, offline RL

— Constraint learning, grasp learning, iterative learning control
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— Learning to predict plans, learning to warmstart MPC or optimization

— Inverse RL

Motivation

[ ] OpenA| / Figure robot: https://www.youtube.com/watch?v=Sq1QZB5baNw

e Boston DynamiCS: https://www.youtube.com/watch?v=tFADML7FIWk

e CoRL 2023 award/finalist papers:
— https://hshi74.github.io/robocook/
— https://mimic-play.github.io/
— https://robot-parkour.github.io/

The State-of-the-Art in Robot Learning

Conference on Robot Learning nttps://wwm.corl.org/

Robotics: Science and Systems Conference nttps://roboticsconterence. org/
ICRA, IROS, L4C conferences
NeurlPS, ICML conferences

The meta-goal of this lecture:

Enable you to read & understand papers at these conferences

Some of the lectures will directly discuss essential research papers

Planned Lectures

e Taxonomy (today)

e Robotics Primer & Machine Learning Primer
e Dynamics Learning / System ldentification

e Imitation Learning

Method Lecture: Diffusion & other policy representations


https://www.youtube.com/watch?v=Sq1QZB5baNw
https://www.youtube.com/watch?v=tF4DML7FIWk
https://hshi74.github.io/robocook/
https://mimic-play.github.io/
https://robot-parkour.github.io/
https://www.corl.org/
https://roboticsconference.org/
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e Reinforcement Learning & variants (several lectures)

e Safe Learning, Multi-Robot Learning

e Constraint Learning, Grasping/Manipulation Learning, Affordance Learning

e Method Lecture: Robotics/3D ML: Rotation encodings, PointNet, SE(3)-Equivariant
e Method Lecture: Black-Box Optimization, CMA, CEM

e Plan Prediction Learning (from MPC to Language Models)

e Online adaptation

e Method Lecture: Generative models (PCA, auto encoder, VAE, GANs, diffusion, stochastic outputs
in transformers)

1.1:10

Organization

1.1:11

Organization

e 6 LPs (180h, 12h/w, 15 weeks)
e Lectures, weekly, in person

Tutorials, weekly:
— Weekly exercise sheets, mix of analytic/coding, to be discussed in the tutorials

ISIS as central webpage
Contact:
— Office (grades/etc): llaria Cicchetti-Nilsson <office@lis.ut-berlin.de>

llaria
Cicchetti-
Nilsson

1.1:12

Assignments & Exam

e Tutorial exercises are a mix of analytic and coding problems. Voting System:

— When attending a tutorial, students mark in an ISIS questionnaire which exer-
cises they have worked on

— Students are randomly selected to present their solutions (no need for correct
solutions — just something to present and discuss)

— When not attending: upload pdf notes/solutions on ISIS


<office@lis.ut-berlin.de>
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e Exam prerequisite:
— at least 50% votes in the exercises

e The written exam will be about analytical problems, determines final grade (no
portfolio)

1.1:13

Prerequisites

e Module description:

Knowledge in Machine Learning

Fundamentals in Al (esp. Markov Decision Processes)

Foundations of robotics
— Basic programming skills
o Self-Checks:
— Maths, Al, ML & Robotics lectures:

https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-Maths.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-AI.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-MachineLearning.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-Robotics.pdf

— ML: not only pyTorch.. but also Hastie et al: The Elements of Statistical
Learning?
https://hastie.su.domains/Papers/ESLII.pdf

— For reference:

https://www.user.tu-berlin.de/mtoussai/teaching/#reference-material

e Numeric coding in Python (numpy)

1.1:14

Module description (Moses 41016)

e Grading
— graded, written exam, English (90min)
e This module is used in the following module lists:
— Automotive Systems (M. Sc.)
— Computer Engineering (M. Sc.)
— Computer Science (Informatik) (M. Sc.)
— Elektrotechnik (M. Sc.)

1.1:15



https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-Maths.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-AI.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-MachineLearning.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-Robotics.pdf
https://hastie.su.domains/Papers/ESLII.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/#reference-material
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1.2 Taxonomy

(slides by Marc Toussaint)

Robot Learning Taxonomy

I. What is learned?

— Which mapping between state, control, rewards/values/constraints, plan, ob-
servation is learned?

Il. How is the data generated?
— By robot itself? (online?) By human demonstration? In simulation?
— Optimally?  Safe?
— Are labels available? (Supervised vs. RL vs. un-/self-supervised)

1.2:1

I. What is learned?

Environment

[Satinder Singh, ~2005]

1.2:2

I. What is learned?

e State, control — next state: dynamics — System identification

e State — control: policy — Optimal Control, iterative learning control, Rein-
forcement Learning

State, control — rewards — Reward function. Model-based RL, InvRL

Observations — control: policy (in partially observable case)

State — plan: plan prediction — for MPC, but also language models
Observations — state: state estimation

State/Observations — value: value function — learnt, also planned/computed
(DDP)
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e State/Observations — constraint: — constraint model, success model, affor-
dance

1.2:3
Il. How is the data generated?
e By human demonstration
— Imitation learning (behavior cloning)
— Inverse Reinforcement Learning, human preference learning
e Online, by robot itself
— on-policy/off-policy learning, RL vs. offline RL
e In simulation/domain transfer
— sim2real gap, domain randomization, domain transfer
e “Optimally”: e.g. maximizing information gain
— Active Learning, intrinsic rewards, Bayesian RL & Exploration
— Frequency excitation in system identification
— Pink noise, structured RL exploration
e “Safely”: e.g. subject to chance constraints
— Safe RL, safe exploration, simultaneous risk learning
1.2:4

Robot Learning Taxonomy
o These two dimensions (/. What is learned? Il. How is the data generated?) span a
large space of robot learning approaches
— Quite beyond focus on RL only
— Across the fields of robotics and control theory

— Learning is not necessarily replacing “search & planning, classical control, op-
timization”

e Other aspects:

— Direct/Indirect? Is the mapping learned directly? Or are components/models
learned that are input to a classical solver?

— Scenario specific E.g. specific for grasping, or multi-robot systems

1.2:5
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1.3 Robotics Essentials

(slides by Marc Toussaint)

Robotics Essentials Outline

e A robot is an articulated multi-body system:  kinematics & dynamics

e Standard Control: 1K, path finding & traj. opt, PD & MPC

1.3:1

Robot as Articulated Multibody System

e A robot is a multibody system. Each body
— has a pose z; € SE(3)
— has inertia (m;, I;) with mass m; € R and inertia tensor I; € R3*3 sym.pos.def.

— has a shape s; (formally: any representation that defines a pairwise signed-
distance d(s;, s;))

[Useful: “multibody system” on Wikipedia]

b 1.3:2
R
Robot as Articulated Multibody System /_QBR/
e Tree structure: ’AL h
— Every body is linked to a parent body or the world N\

— We have relative transformations @; € SE(3) from parent (or WOF|&;)J_)

[If not tree-structured, we only represent a tree and use additional constraints to describe loops —
more involved, but doable]

e Articulated Degrees of Freedom (dofs):

— Some of the relative transformations (); may have .
articulated (=motorized) dofs ¢ so that Q;(q) e 2’\ G
[Different types of joints (hinge, prismatic, universal, ball) have
different # dofs and different mapping from dofs ¢ — Q;(q)] "

— We stack all dofs of all relative transformations into <
a single
joint vector ¢ € R™

1.3:3
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x € SE(3)™: all body poses, g € R™: joint vector

— Forward kinematics: ¢ — x, ¢— 2, §— &

— Forward dynamics: w +— ¢, inverse dynamics: §+— u  (u € R™: joint torques)

1.3:4

Forward Kinematics ¢q— =

e Given ¢, what is the pose of any body i?

T
T2

¢ |7 =0l) esE@

Z m

— Algorithm: First determine all rel. trans. Q;(q), then forward chain them

— Often one cares only about position/orientation of one particular body x;: the
“endeffector”

1.3:5

Forward Velocities & Jacobian ¢+ &

e Given ¢, what is the linear and angular velocity (v;, w;) of any body i?

U1, W1

V2, Wa
g—| . | =J@q¢ eR™E

,Um? Wi

- with Jacobian J(q) = 9,¢(q) € R™*6xn,

[Since, ¢ is SE(3)-valued, the Jacobian actually has output in its tangent space se(3) = RS.
In practise, code typically provides separate positional Jacobian JPs € R™X3X" and angular
Jacobian Jane ¢ RMXx3xn ]

— Since we know how to compute ¢(q), we can think of J(gq) as the “autodiff”
of it

— However, positional/angular Jacobians are really very easy to provide without
expensive autodiff

[In practise, one only needs to figure out the JP°%, J2"€ for a rotational and translational joint
— all others follow from this.]

1.3:6
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Forward Accelerations ¢+ &
e Given ¢, what is the linear and angular acceleration (;,;) of any body i?

t=J(q) ¢+ J(q) ¢ =~ J(q) g

— One typically approximates J=0

1.3:7

The word “kinematics”

[in parts from Wikipedia]

Mathematical description of possible motions of a (constrainted/multibody)
system/mechanism without considering the forces

“geometry of [possible] motions”

Formally: Describe the space (manifold) of possible system poses and all possible
paths in that space

Read generalized coordinates on wikipedia: Understanding motion in terms
of coordinates and (non-)holonomic constraints:

F(x,y,2)=0

%y, 2)

1.3:8

Inverse dynamics ¢ +— u

e Given ¢, what joint torques u do we need to generate this ¢ (accounting for gravity)?

_ H . . . £ /- bodyj
e Coupled Newton-Euler equations: For each body: & I e
parent yd v
. o / [] body %
F;, = (fl) = ( " ) %‘/ It O =ikl
Ti Liw; + w; X Tyw; PO i A oy
FibaCk =F, — FZ.e><t + E FJbaCk , U= h—l.rFibaCk from Featherstone’1

j=child(i)

[where F& are external (e.g. gravity) forces; and F”2k is the force “send back through the joint
to the parent of i"; h; is the joint axis (picking up the torque)]

[Can also be written as linear equation system between ¢, F, Fhback and v (with sparse matrices
only) — and solved/inverted in O(m).]
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1.3:9

solved!  We can accelerate the thing as we like

the rest is planning: How should | accelerate to reach some future goals?

1.3:10

Standard Template: Waypoint + Reference Motion + Controller

e Standard problem setting: Control motors, so that at ¢ = T" seconds the endeffector
x; is at desired position y* € R3, i.e., ¢(qi=7) = "
e Problem decomposition:

— Find a final robot pose gr that fulfills constraint ¢(g:—r) = y* — inverse
kinematics

— Find a nice reference motion from current robot pose ¢y to g — path finding,
trajectory optimization, or trivial interpolation/PD

— Find a control policy 7 : z; — wu; that reactively sends motor commands to
follow the reference motion — inverse dynamics, PD control, Riccati

[You could think of this as three different time scales: rough future waypoint(s)/goal(s), continuous
motion to next waypoint, short-term controls.]

[There are other ways to approach this: You could remove step (1) and shift that issue into (2),
or remove (1 & 2) and shift all issues into (3) - morphing this into other approaches. E.g. directly
defining a desired force/acceleration behavior in “task space” (=operational space control).]

[continuous replanning/re-estimation can also make (1) and (2) reactive.]

1.3:11

Inverse Kinematics

e Find ¢ to fulfill ¢(q) = y* for differentiable fwd kinematics ¢.

: 2 *
— s.t. =
min g - qof Pla) =y

¢ —qol* + pléq) —y*|* for large

or min
ERn

e Solution for linearized ¢:

¢ =gqo+J(JJ + D)y — ¢(a0))

Python Package: https://marctoussaint.github.io/robotic/


https://marctoussaint.github.io/robotic/
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1.3:12

Path Finding & Trajectory Optimization

e Given current go and future ¢*, find a collision free path
— Wolfgang Honig's & Andreas Orthey's lecture
— RRTs, PRMs, under constraints (kinodynamic)

e Trajectory opimization
— Time continuous formulation:

T
min /0 c(q(t),q(t),4()) dt st q(0) = qo, o(T) = q",4(0) = 4(T) =0, Yo, 1] * P(a(

— Time-discretized, assuming k-order Markov coupling terms (KOMO):

A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM,
Gaussian Process smoothing, optimal control, and probabilistic inference: Marc Toussaint.
Springer 2017

1.3:13

Control around a Reference

e Use Inverse Dynamics directly
— We have ¢*(t) — map it to controls u directly
— But what if you're off the reference a bit? How to steer back?
e Use PD law to accelerate back to reference:
— Define a PD law §sied = G*(¢) + k,(q¢*(t) — q) + ka(d*(t) — ¢) with desired
PD behavior back to reference
— Then use Inv dynamics gesired — o
— (Also ok, but needs severe tuning: directly define a PD controller it = M¢*(t)+
Kp(g*(t) — a) + Ka(¢*(t) — 4).)
e Use Riccati to get an Optimal Linear Regulator around reference
— Define optimal control problem, e.g., ming.q gsu fOT c(q(t), q(t),u(t)) dt +
¢(x(T))
— We can linearize dynamics around reference — has an analytic solution (Alge-
braic Riccati eq.)

— Resulting controller is a “linear regulator”, i.e., a PD law where matrices K,,, K4
depend on ¢ and are chosen optimally.

1.3:14

Model-Predictive Control (MPC)
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e When getting far away from the reference, linearization of Riccati might break, and
PD is too simple

e Continuously replan (~ 10-1000Hz): re-solve the optimal control problem

— Optimal Control problem can also include task constraints directly, not only
following a reference

— As a compromise: typically limit horizon

This is a default way of “thinking control” in robotics

1.3:15

Summary

e A robot is an articulated multi-body system
— Fwd kinematics: ¢ — x, ¢— &, §— &
— Fwd dynamics: u — §, inv dynamics: §+— u

e Standard Control Template:
— IK (or constraint solving) to estimate future goal/waypoints
— Path Finding & Trajectory Optimization to estimate Reference Motion

— PD, Linear Regulator, or MPC to control (around the reference)

1.3:16

How far can we get with this approach?

e What did we assume to know?
— Structure of multi-body system, all shapes, inertias
— All goals/objectives modelled (=programmed) as differentiable costs/constraints

1.3:17

Challenge 1: Interacting with the environment

e If we only care about the robot itself (all goals/objectives/models concern the
robot directly) — the above it totally fine

e Things get challenging when we care about interacting with the environment
— Models/goals/objectives of interaction (contact, grasp) are more complicated
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1.3:18

Challenge 1: Interacting with the environment

e Example: Locomotion
— Interaction: Making contact with the ground to generate ground forces
— Robot root is not attached to world, but free floating (complicates dynamics a
bit)
— Dynamics heavily influenced by ground forces, which are contact complementary

hard on-off switching of forces at contact — hybrid/discrete structure, makes
dynamics and solvers much much more complicated (hybrid control)

. more complicated than “vanilla robot”, but still doable

1.3:19

Challenge 1: Interacting with the environment

e Example: Manipulation

— Objects in the environment (part of the “multibody system”) have their own
DOFs, but are NOT “articulated” with motors: if not grasped or touched, they
cannot move — their Jacobian 9,z; = 0

— Hard on-off switching of manipulability; hybrid dynamics & problem

— Dynamics of object motions can be much more complicated than (also free-
floating) robot dynamics: friction, stiction, slip, non-point contacts

— Waypoint constraints ¢(z:) much more complicated (correct grasping of com-
plex shape, pushing, throwing)

— If objects are deformable, their form becomes DOF (e.g. neural latent code) —
becomes much much more complicated in above approach

e In essence, things become much more complicated, but one still can write down
essential physics equations of object interaction, and use these equations in above
approach

1.3:20

Challenge 2: State Estimation

e All of the above requires to estimate states
— ¢o (includes pose of a mobile robot)
— x; (poses of objects in environment)
— shapes and inertias in the environment, dynamics parameters (e.g. friction)
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[Basic state estimation can often also be formulated as optimization problem (e.g. graph-SLAM)
— similar to motion optimization: Find estimates (also of past motion) that is most consistent
with sensor readings; minimze error between real readings and model-predicted readings. (Or as
probabilistic inference.)]

1.3:21

Relation to Robot Learning

e On the formal/theory side, they share foundations:

— Optimal Control formulation <> Markov Decision Processes & Reinforcement
Learning

— More generally: optimality formulations — learning/black-box opt. approaches

e Components can be replaced or shortcut by learning:
— Dynamic modelling <> system identification

— Optimal Control (e.g., MPC, Riccati) can be shortcut by learning V- or Q-
function

— Need of inverse dynamics can be shortcut by learning Q-function instead of
V-function

— Constraint solving (also IK) can be shortcut by directly learning a policy or
sampler that fulfills constraint

— Shortcut state estimation: Avoid all state-based models, learn direct sensor-
based models (policies, value functions, planners, dynamics, etc)

— End-to-end: Shortcut the whole approach by learning images — torques

1.3:22

1.4 Machine Learning Essentials

(slides by Marc Toussaint)

Machine Learning Essentials

e Supervised ML  fp:z—y

e Unsupervised ML pg(z)  (and conditional py(z|z))

[Neglected here: Optimal embeddings, clustering]

1.4:1
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Supervised ML

e Given data D = {(x;,y;)}"_; and a parameterized fy : z — v, find 0

m(;nzf(yi,fe(ffi)) +  R(0)
i=1 regularization
(data) loss

done!  That's (supervised) ML

1.4:2

Loss Functions

e Regularizations:
- Ly (Ridge):  R(0) = |0]3
— Ly (Lasso):  R(6) =01
e Regression y € R™: Squared error: £(y,9) = (y — 9)?

[Robust variants: Huber loss, Forsyth]

e Classification y € {0,.., M} (where f : x — f(x) € RM discriminative values)
oFy (@)

— Neg-Log-Likelihood: £(y, f(z)) = —log p(y|x) with p(y|z) = S

= Hinge: £(y, f(2)) = X2z, [1 = (fy- (x) = fir (2))]+
— Cross-Entropy: {(y, f(x)) = =3, hy(2)logp(z|z) same as NLL for one-hot-
encoding hy(z) = [y = 2]

1.4:3

Parameterized Functions

o Linear fy(x) =6y + Z?Zl O;z; =20

e Linear in features: fo(x) = ¢(x)'@  (or Hilbert space..)
— Linear: (b(l.) = (1,%1, "7xd) S Rl+d
1 d(d+1)
- Quadratic: ¢(z) = (1,21, .., 24,2}, 2122, 1173, .., x3) € RITI+T—2—
i d(d+1) | d(d+1)(d+2)
- Cubic: ¢(x) = (.., 23, 2320, 2323, .., 23) € RUHHTHS—+7775—

— Also: Radial-Basis Functions (RBF), piece-wise linear
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(MTipith > gruplt pipe)

1.4:4

Parameterized Functions

o Neural Nets: Repeating non-linear and linear parts:  (this is a 3-layer NN):

fo(z) =Ws ¢[ Wo ¢ Wy z+b1 | +ba | + b3
11 111
— Non-linear parts: ”
rectified linear unit (ReLU): ¢(z) = [z]+ = max{0,z}
leaky ReLU: ¢(x) = max{0.01x,x}
— sigmoid, logistic: ¢(z) =1/(1+e™%)
— max-pooling, soft-max, layer-norm

— Linear parts:
— Fully connected (W is a full matrix)

— Convolutional
— Transformer-like (cross-attentions)

1.4:5

e |n essense
— You define the parameterized function fy

— You define the loss ¢ and regularization R
— You provide the data set D

— An optimizer (analytic for linear models, stochastic gradient otherwise) finds
good parameters 6

e And you cross-validate to check your hyper-parameter choices

1.4:6

Unsupervised ML
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e Given data D = {z;}},, learn “something” about p(x)

e Important setting: parameterized autoencoder fy : v — z — 2/, find 6

ngn;ﬂm, fo(zi)) + E(/@

regularization

autoencoding loss

- You learn to reproduce x through a compact latent code z € R" (while
x € R is high-dimensional)

— z has high entropy (typically Gaussian) distribution — you can generate =’ ~
p(x) by sampling z and decoding

— If f is linear, this is called Principle Component Analysis

— Better: Variational Autoencoder (VAC): Enforces p(z) to have proper distribu-
tion.

1.4:7

Example: Digits

NI IO
L AU
WHLUOINCH I A
W GO LIW ()
WA (T arad (1))
WO o (N O
Lo ()OS O\ P unasto
WL OO Qo Lir—a(s
(o CONGILOL (s Lol
(0 GOl (o VAL () LU
L (URAAR L v
AT O LU O
Cuen eI v v w

1.4:8

e There are other ideas in unsupervised learning, but the autoencoding objective is a
major breakthrough

— You “understand” the structure of data if you can compress and de-compress it

— Autoencoders do this with powerful NN architectures
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1.4:9

Diffusion Denoising Models

e Given data D, you want to learn a “system” that generates samples x ~ py(z)
where pg(x) models D

e Autoencoders are one approach, Diffusion Denoising Models another:
— Train a stepwise stochastic process (Langevin dynamics) to generate samples
x ~ pp(x)
— Has its origin in “energy-based models” and score matching

— The step-wite sample generation process is very powerful

1.4:10

Conditional Generative Models
e Given data D = {(x;, ¢;)}!_, train a conditional distribution pg(z|c)
— We're actually back to Supervised ML ¢ +— x (where ¢ is the input)

— But if z is high-dimensional (and ¢ low-dim.), the generative model aspect is
important:

— The reconstruction objective enforces the system to find a good latent repre-
sentation to generate high-dim. =

— this is complemented by making conditional to ¢

/

fo:

T
c

A loss l(x;, fo(xi,c;)) jointly trains autoencoding x — z +— 2’ and conditional
generation ¢ — z — '

1.4:11

1.5 Dynamics Learning

(slides by Marc Toussaint & Wolfgang Honig)

Outline

e |. What is learned?

— Incl. which mapping exactly, model assumption, parameterization, loss function
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e |I. How is the data generated?

e |ll. Multirotor Examples

1.5:1

I. What is learned?

instructions/lang./goal info g
physics parameters ©

state controls
Tt Ut
rewards 7 waypoints/subgoals =
value V' (z) tra')elzrc)tor i e
. xr
Q-value Q(z, u) observations ) Yl b+ H]
¢ action plan a1 x
constraint ¢(x) Yt

1.5:2

Dynamics Learning — State-based view

e Learning the state-based dynamics:

xy = f@p1, 1) or  p(xe|@pr,upr)

e Distinguish three cases:

— Parameter Estimation: f is assumed physics with unknown physics parameters

S}
— Full Regression: f is learned as regression model

— Residual Dynamics: learn the difference to a nominal physics model

1.5:3

Dynamics Learning — Observation-based view

e 1; is the system state

[Markov Property: We call a variable state if the future is conditionally independent on the past
when conditioned on state; I(future, past |state) = 0.]

e Sometimes the true state is not observed (or unknown), only observations y; are
available (y;: sensor readings, or state estimates from sensors)
RN
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e We need to use the history of observed y;, u; to predict next ;!
e Distinguish three cases:
— Autoregression: Learn a direct history-based model y; = f(yi— .1, Ut— 1)
— Recurrent Model: Learn a recurrent model with latent state b, (e.g. LSTM)
— State-space Model: Jointly learn embedding/decoding « +— y and latent
dynamics z,u — 2’ (is also a recurrent model)

1.5:4

e In summary, six cases we'll discuss more concretely:
— state-based dynamics
— physical parameter estimation

— full regression
— residual dynamics

— observation-based dynamics
— autoregression (NARX)

— observation-based dynamics — recurrent model

— observation-based dynamics — state-space model

1.5:5

e Why learn the dynamics?

— Given learned dynamics, we can use planning (MPC) or RL against the learned model to
generate controllers

— Examples in literature: Schaal'02, Deisenroth’15 (PILCO!), Finn'17, Driess'23, Schubert'23

e Quick terminology:

— Dynamics Learning <+ System ldentification (in control theory), Model Learning (in model-
based RL)

— In control theory u; are called inputs and the observations/measurements y; are called outputs

1.5:6

State Dynamics — Parameter Estimation

e Assume that dynamics z; = fo (2.1, us1) has unknown physical parameters O,e.g.:
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Dynamic Identification of the Franka Emika Panda Robot
with Retrieval of Feasible Parameters
Using Penalty-based Optimization

Claudio Gaz' ~ Marco Cognetti?> ~ Alexander Oliva’  Paolo Robuffo Giordano?  Alessandro De Luca'

(@370

consistency of the parameters. The identification procedure

Claudio Gaz, Marco Cognetti, Alexander Oliva, Paolo Robuffo Giordano, and Alessandro De Luca, (2019). Dynamic identification of the franka emika panda
robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robotics and Automation Letters, 4(4):4147-4154

1.5:7

State Dynamics — Parameter Estimation

e Given data D = {(x4, 741, us1)}iq, find parameters

ngnz |zt — fo e, ue)|?
t

e Sometimes, it is possible to describe fg as linear in ©. See Gaz'19!
— Then finding optimal © leads to a linear least squares problem.
— Otherwise: Black-box optimization (CMA-ES) or gradient-based (SGD, Gauss-
Newton)

1.5:8

State Dynamics — Full Regression

e Learn fy directly, using some ML regression, e.g. (old-fashioned LWR):

Sealable Techniques from Nonparametric Statistics
for Real Time Robot Learning

Stefan Schaal, Christopher G. Atkeson, and Sethu Vijayakumar, (2002). Scalable techniques from nonparametric statistics for real time robot learning. Applied
Intelligence, 17(1):49-60

1.5:9



https://ieeexplore.ieee.org/abstract/document/8772145/
https://ieeexplore.ieee.org/abstract/document/8772145/
http://link.springer.com/10.1023/A:1015727715131
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State Dynamics — Full Regression
e Given data D = {(x¢, %41, Ut1) bim1:n,t=1.7;, find parameters
. 2
melnz lze — fo(wea, )l
t
— same formulation as parameter estimation, really.

e Use supervised ML to minimize regression error

1.5:10
State Dynamics — Full Regression (probabilistic)

e Given data D = {(x¢, %41, 1) Fim1in,e=1.17;, find parameters

mein - zf: log pg(¢ | 741, us1)

where p;(x4 | 241, us1) is a probabilistic regression, e.g. Gaussian Process:

output, ()

o 0
input, x input, x
(a), prior (b), posterior

(from Rasmussen & Williams)
[Marc Deisenroth’s PICLO paper had huge impact: Using learned GP dynamics to derive optimal
controls.]

1.5:11

State Dynamics — Residual Dynamics

e Given a nominal dynamics f; (e.g., assumed physics), learn a residual model fy to
minimze

m{jnz lze = [far (@1, weer) + folwe, ut-l)]”2
t

e Examples: Gaz'19, Multirotor Examples

1.5:12
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Observation-based Dynamics — Autoregression (NARX)

Computational Capabilities of
Recurrent NARX Neural Networks

Hava T. Siegelmann, Bill G. Home, and C. Lee Giles, Senior Member, IEEE

Abstract—Recently, fully connected recurrent neural networks
onally rich—a

as Turing machines. This work focuses on another network which

& popular in control applications and has been found o be very

et u ki These nebworks are

n Nonlinear AutoRegressive models with cXogenous

Tnpats (VARX models), and are thorfore called NARX nefworks.

As opposed to other recurrent networks, NARX networks have a

rather

a variety of problems.

than from hidden states. They are formalized by

fully connected networks can simulate pushdown automata
with two stacks, which are computationally equivalent to
Turing machines. The stacks are encoded in two of the nodes
of the network with the remaining nodes used to simulate the
finite state control. There is an initial period during which the
network reads the input, then the network performs the desired
computation, and finally the output of the network is decoded.

An important class of discrete-time nonlincar systems is
the Nonlinear AutoRegressive with eXogenous Inputs (NARX)

Y1) = lult — )l Lu(e).y(t — st - 1))

Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, (1997). Computation:;oieal;:)llﬂlities of recurrent NARX neural networks. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 27(2):208-215

our notation: y; = fo(Y-m:6-1, Ut-H:4-1)
— developed in time-series modelling, sequence modelling

e How long does the history H have to be?

e What's the modern version of autoregression?

— NARX="Autoregression with controls”

1.5:13

Observation-based Dynamics — Autoregression (Transformers)

O DeepMind

2023926

A Generalist Dynamics Model for Control

Ingmar Schubert”!, Jingwei Zhang?, Jake Bruce?, Sarah Bechtle?, Emilio Parisotto®, Martin Riedmiller?, Jost
Tobias Springenberg?, Arunkumar Byravan?, Leonard Hasenclever? and Nicolas Heess?

TU Berlin, ?DeepMind, “Work done at DeepMind
s - co o T

Figure 2 | Illustration of the tokenization for n = 3 and m = 2. Starting from o,, performing action a;

will result in the next observation o, and the reward r. The constant separator tokens t5 and t; are

inserted to indicate the start of a new environment step.
Ingmar Schubert, Jingwei Zhang, Jake Bruce, Sarah Bechtle, Emilio Parisotto, Martin Riedmiller, Jost Tobias Springenberg, Arunkumar Byravan, Leonard
Hasenclever, and Nicolas Heess, (2023). A generalist dynamics model for control

1.5:14

Observation-based Dynamics — Recurrent Model

e Rather than giving the model a history as input, it should /earn to memorize relevant
information, i.e., learn a latent representation for relevant information — recurrent
NN

e Train a latent representation h; to consume history information and predict y;

Unfold



https://ieeexplore.ieee.org/abstract/document/558801/
http://arxiv.org/abs/2305.10912 [cs]
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(Wikipedia; change in notation: z ~ (y,u),0 ~ y)

e The most common NN architecture is LSTM (better: Gated Recurrent Units):

2

(LTI network

o1
o o] Oy Gl
S
— (Hochreiter, Schmidthuber, 1997)

1.5:15

Observation-based Dynamics — State-Space Model

e Also a recurrent model, but explicitly assumes latent state z; € R4

Probabilistic Recurrent State-Space Models

Andreas Doerr ' Christian Daniel ' Martin Schiegg' Duy Nguyen-Tuong' Stefan Schaal>® Mare Toussaint *

Sebastian Trimpe >

@

(=) )
Ot
O, 2)

Figure 1. Graphical model of the PR-SSM. Gray nodes are ob-
served variables in contrast to latent variables in white nodes.
Thick lines indicate variables, which are jointly Gaussian under a
GP prior.
Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc Toussaint, and Trimpe Sebastian, (2018). Probabilistic recurrent
state-space models. In International conference on machine learning, pages 1280-1289

1.5:16

Observation-based Dynamics — State-Space Model
e Jointly train an embedding/decoding ¢ :  — y and latent dynamics f : z,u — 2’

u»i> x’

'r )
91 91,
y y
e Only uy.7,y1.7 are observed! Train model to maximize data likelihood,
log p(y1.7 | w1.7) > Evidence Lower Bound (ELBO)

— This method trains both, g and f, and implicitly infers a notion of state x;
— Technically, use SGD to maximize ELBO

1.5:17

e More Literature for the six cases provided at the end of these slides...

1.5:18



http://proceedings.mlr.press/v80/doerr18a.html
http://proceedings.mlr.press/v80/doerr18a.html
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Il. How is the data generated?

e Importance of data generation is (mostly) under-acknowledged in papers!
e |deas to generate good data may be more important than ML method details

e What is good data?

1.5:19

Good Data — in Linear Regression

e Reconsider regression with linear model fy(x) = 26, loss

LO) = > (yi — fol:))® + AlOJ

and solution
0 = (X' X + D)Xy .

e What is good data?
e What is the estimator variance Var{6*}?

— Assume data with variance Var{y} = ¢?I,

— Then Var{0*} = (X'X + \I)?o?

— Smaller variance via larger A (but then larger bias), or larger det(X'X)!
e Good data means reducing variance (=randomness) of estimated model!

— large det(XX) <> cover input space!
[Large estimator variance <> “Overfitting”: Reducing variance prevents overfitting. Hastie

has great section on shrinkage methods (=regularization)]

1.5:20

Good Data — in Linear System lIdentification

Signals and Systems
Lecture 11: System |dentification

Dr. Guillaume Ducard

Fall 2018

based on materials from: Prof. Dr. Raffaello D'Andrea

Institute for Dynamic

ETH Zurich

land

https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Signals-and-Systes
Lectures/Fall2018/Lecturell_sigsys.pdf


https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Signals-and-Systems/Lectures/Fall2018/Lecture11_sigsys.pdf
https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Signals-and-Systems/Lectures/Fall2018/Lecture11_sigsys.pdf
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1.5:21

Good Data — in Linear System ldentification

e Cover the input space — cover frequency space
— Linear dynamics can be Laplace transformed into frequency domain:

— U(s) are controls; Y observations; H(s) is called transfer function (complex)

— H(s) can be probed by sending a single control frequence (U(s) = d5/)

[ H(9)

A i)
W H@) for N =11

o ACkas oy

e In essence: stimulate the system with control frequencies u(t) = cos(kt/1) for
k=0,1,..
e Franka Systemld paper [Gaz'19]: Sinusoidal reference motions (Eq. 31):

i des(t) = Aisin (%’T t) , 1€{1,.,n}

1.5:22

Good Data - in general

e Think about good state space coverage! (in all variants of Robot Learning)
— Frequency coverage in control systems

Exploration in RL beyond e-greedy

Long-term structured variation (at least pink noise, Ornstein-Uhlenbeck) instead
of Brownian motion

— Explicit exploration: Novelty seeking, information seeking, exploration bonus,
Bayesian RL

1.5:23
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I11. Background: Multirotors

e State x = (p,q,v,w)" 7

e Control ug = (Q,...,2,)"

e Forces f = 3. cf,Qizo, = Fug, Ja Ay
e Torques T =) _.(cf, P, X 2q, + ¢r,29,) Y = Mug l/y\q), I
e Dynamics — TR

pP=v, mv = mg + R(q)Fuq +f,

2 w [Mahony, ~2012]

1
q=-qo {0} Jw=—-—w x Jw+ Mugq + 74,

[Propellers create forces and torques, rest is Newton-Euler]

[fa, Ta can model drag, wind, aerodynamic interactions etc.]

1.5:24

Multirotors: What is learned?

e Parameters that are hard to measure: inertia J, motor params (cy,, c-,, delay)

e Residuals f,, 7,
[potentially as a function of the state (e.g., drag) or environment (e.g., downwash)]

[potentially non-Markovian, i.e., a function of a history of states]

e Full dynamics model not so much — Why?
[Impossible to gather data from all states safely]

[Rotational symmetries are surprisingly difficult to learn]

1.5:25

Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

e Inertia: Swing body in different positions and record motion; solve an optimization
problem
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1.5:26

Muiltirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments
e Motors: Use thrust stand (often for a single motor + propeller) + curve fitting

1.5:27

Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments
e Drag: Use wind tunnel 4 curve fitting with “guessed” models

v 7

Julian Férster, (2015). System identification of the crazyflie 2.0 nano quadrocopter

1.5:28



https://www.research-collection.ethz.ch/handle/20.500.11850/214143
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Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

e Is this learning?

[Yes, since curve fitting is extensively used]

e Advantages and Disadvantages?

[Pros: Physics intuition (explainability); can improve “important” parameters if needed; no need
to have a flying system]

[Cons: Labor and equipment intensive; does not capture unmodeled terms; does not capture the
robot as a system]

1.5:29

Multirotors: How is it learned? (Parameter Estimation)

e Assumption: we have a system that can already fly; Can we do better?
[Strong assumption, since controllers need models, too]

o Direct (analytical) optimization

Jonas Eschmann, Dario Albani, and Giuseppe Loianno, (2024). Data-driven system identification of quadrotors subject to motor delays
[Will skip the discussion here]

e Probabilistic formulation (Gaussian noise)

Michael Burri, Janosch Nikolic, Helen Oleynikova, Markus W. Achtelik, and Roland Siegwart, (2016). Maximum likelihood parameter identification for MAVs.
In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 4297-4303

1.5:30

Multirotors: How is it learned? (Maximum Likelihood)

e Given: Dataset with trajectory (position, orientation, motor speed), Z; measure-
ments (IMU data, motor commands), U

e Goal:

Xz, 0pr = argmax p(Z, U, X, 6)
X,0
(parameters to estimate 0; state estimates X; probability p)

1.5:31

Multirotors: How is it learned? (Maximum Likelihood)
e Assumptions to simplify p(Z, U, X, é)

e White noise (IMU, motors)


http://arxiv.org/abs/2404.07837 [cs, eess]
http://ieeexplore.ieee.org/document/7487627/
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e Access to a prior trajectory — linearize around it and reason about “residuals”
instead

e p(-) becomes a mixture of Gaussians — can be maximized by minimizing the negative
log-likelihood

[essentially a least square problem]

1.5:32

Multirotors: How is it learned? (Maximum Likelihood)
:n:=0
y := INITIALIZEESTIMATOR ()
: % Solve ML problem
while n < n,,4, do
b, A := EVALUATERESIDUALS (%)
0y := SOLVELEASTSQUARESPROBLEM (b, A)
Yy =yHBiy
8: 8" :=EXTRACTPARAMETERS (y)
9: Xy := RECOVERPARAMETERCOVARIANCE (A)
10: return 6*, X

where 5 = (X, )T from before

Michael Burri, Janosch Nikolic, Helen Oleynikova, Markus W. Achtelik, and Roland Siegwart, (2016). Maximum likelihood parameter identification for MAVs.
In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 4297-4303

T W b

=

Michael Burri, Michael Bloesch, Zachary Taylor, Roland Siegwart, and Juan Nieto, (2018). A framework for maximum likelihood parameter identification
applied on MAVs. Journal of Field Robotics, 35(1):5-22

1.5:33

Muiltirotors: How is it learned? (Supervised Deep NN)

e Basic models do not capture “complicated” aerodynamic effects

e Blade Element Momentum (BEM) work for single rotors (but high computational
effort)

e Can we use (more) data to use function approximation instead?
Challenges:

e Training/Data efficiency

e Inference speed

1.5:34

Multirotors: How is it learned? (Supervised Deep NN)

e Key idea: learn the “residual physics”, only
[Input: past h states and motor commands — not Markovian!]

[Output: forces and torques that cannot be explained by the basic model(s) (fa, 7a)]


http://ieeexplore.ieee.org/document/7487627/
https://onlinelibrary.wiley.com/delete_delete_delete_doi/abs/10.1002/rob.21729
https://onlinelibrary.wiley.com/delete_delete_delete_doi/abs/10.1002/rob.21729
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Our Approach First Principles

MM RM

— | Joop

IR [

Learning Based

1.5:35

Muiltirotors: How is it learned? (Supervised Deep NN)

e ML method: Supervised training — Where do the labels come frome?

[Solve dynamics for f4, Ta]

e Architecture

e Input h = 20 (past 50 ms)

e temporal convolutional (TCN) with 25k parameters (MLP and other parame-
ters in ablation)

e Main takeaway: strong model/physics priors are better

Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide Scaramuzza, (2021). NeuroBEM: Hybrid aerodynamic quadrotor model. In
Robotics: Science and Systems XVII, volume 17

[Video: nttps://youtu.be/NzelulfnzTq)

1.5:36

Multirotors: Data Collection

e Motion capture system for accurate position/orientation state estimates
[Sampling at 500 Hz, submillimeter accuracy]
[Very costly: EUR 20k — 100K]

e On-board data logging of IMU
[Sampling at 1000 Hz, very noisy]

1.5:37

Multirotors: Data Preprocessing

e Two data sources — Synchronization needed (incl. clock skew)


https://www.roboticsproceedings.org/rss17/p042.html
https://youtu.be/Nze1wlfmzTQ
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e Online Option: Send data to one computer using a low-latency link (and ac-
count for link delay)

e Offline Option: Solve optimization problem for clock skew and bias

e Some derivatives (e.g., v) are not directly observable

e Online Option: Use data from an online filter (e.g., Extended Kalman Filter)

e Offline Option: Interpolate data (e.g., using splines), use analytical solution of
fitted spline

e Motor delays (“easy” to measure)

e Option 1: Include it in model explicitly
e Option 2: Shift/filter data accordingly

1.5:38

Multirotors: Data Quantity

o Maximum Likelihood: 45 sec flight data “The pilot was careful to excite all axes,
especially in yaw direction.”

e NeuroBEM: 96 flights, 75 min flight data (1.8M data points) (up to 18 m/s and
47 m/s?)

1.5:39
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1.5:40
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Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, (1997). Computational capabilities of recurrent NARX neural networks. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 27(2):208-215


https://www.research-collection.ethz.ch/handle/20.500.11850/214143
http://arxiv.org/abs/2404.07837 [cs, eess]
https://onlinelibrary.wiley.com/delete_delete_delete_doi/abs/10.1002/rob.21729
https://onlinelibrary.wiley.com/delete_delete_delete_doi/abs/10.1002/rob.21729
https://ieeexplore.ieee.org/abstract/document/8772145/
https://ieeexplore.ieee.org/abstract/document/8772145/
http://link.springer.com/10.1023/A:1015727715131
http://ieeexplore.ieee.org/document/6654139/
https://www.tandfonline.com/delete_delete_delete_doi/full/10.1080/00207179008934126
https://ieeexplore.ieee.org/abstract/document/558801/
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e Observation-based Dynamics — Recurrent Model (also visual!):
Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide Scaramuzza, (2021). NeuroBEM: Hybrid aerodynamic quadrotor model. In
Robotics: Science and Systems XVII, volume 17

Chelsea Finn and Sergey Levine, (2017). Deep visual foresight for planning robot motion. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 2786-2793

Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint, (2023). Learning multi-object dynamics with compositional neural radiance fields.
In Conference on robot learning, pages 1755-1768

Ingmar Schubert, Jingwei Zhang, Jake Bruce, Sarah Bechtle, Emilio Parisotto, Martin Riedmiller, Jost Tobias Springenberg, Arunkumar Byravan, Leonard
Hasenclever, and Nicolas Heess, (2023). A generalist dynamics model for control

1.5:41

Literature

e State-Space Models (learning a state dynamics based on only observations):

Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc Toussaint, and Trimpe Sebastian, (2018). Probabilistic recurrent
state-space models. In International conference on machine learning, pages 1280~1289

1.5:42

not mentioned...

Constrained ML models (Geist)
Embed to Control

Koopman embedding

Dual control

Safe Exploration

1.5:43

1.6 Imitation Learning

(slides by Marc Toussaint)

General ldea

e Given expert demonstration data D = {(m’i:Ti,uizTi)}" 1

i=
i: episode/demonstration

xizTi :  ith state trajectory

uijTi . ith control trajectory

without external rewards/objectives/costs defined
— extract the “relevant information/model/policy” to reproduce demonstrations

e Reproducing could mean various things
— Move along similar trajectories (e.g. imitate a gesture)

— Reproduce the effect of the demonstration (manipulation, flight maneuver, no traffic collisions)

1.6:1



https://www.roboticsproceedings.org/rss17/p042.html
https://ieeexplore.ieee.org/abstract/document/7989324/
https://proceedings.mlr.press/v205/driess23a.html
http://arxiv.org/abs/2305.10912 [cs]
http://proceedings.mlr.press/v80/doerr18a.html
http://proceedings.mlr.press/v80/doerr18a.html
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Early Work

Deep Imitation Learning in 1989

ALVINN:

0 A CMU paper! AN AUTONOMOUS LAND VEHICLE IN A
¢ CMU has incubated many self-driving companies

NEURAL NETWORK

Dean A. Pomerleau
Computer Science Department
Camegie Mellon University
Pittsburgh, PA 15213

Tnput Retina

(Shi’s lecture 5)

https://www.youtube.com/watch?v=ntIczNQKf jQ

1.6:2
Early Work
e Behavior Cloning (later called so):
Dean A. Pomerleau, (1988). Alvinn: An autonomous land vehicle in a neural network. Advances in neural information processing systems, 1
e Early review paper:
Stefan Schaal, Auke ljspeert, and Aude Billard, (2003). Computational approaches to motor learning by imitation. Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, 358(1431):537-547
[clarifies direct policy learning (BC) vs. trajectory imitation (and auto-control); mentiones work
from the 60ies, but esp. 90ies]
e Early work named Learning from Demonstration (or Programming by Demonstration)
Christopher G. Atkeson and Stefan Schaal, (1997). Robot learning from demonstration. In /CML, volume 97, pages 12-20
[Idea: Avoid explicit programming — teach by demonstration. See also entries in “Handbook of
Robotics”...]
e Another early survey:
Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning, (2009). A survey of robot learning from demonstration. Robotics and autonomous
systems, 57(5):469-483
[Distinguishes 3 kinds: behavior cloning, use data to learn dynamics (system identification), learn
plans (nowadays uncommon)]
1.6:3
Outline
e Types of Imitation Learning
— Behavior Cloning
— Trajectory Distribution Learning (& Constraint Learning)
— Direct (Interactive) Policy Learning
— Inverse Reinforcement Learning (not covered today)
e Data Generation


https://www.youtube.com/watch?v=ntIczNQKfjQ
https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html
https://royalsocietypublishing.org/delete_delete_delete_doi/10.1098/rstb.2002.1258
https://mcgovern-fagg.org/amy_html/courses/cs5973_fall2005/lfd.pdf
https://www.sciencedirect.com/science/article/pii/S0921889008001772?casa_token=23LVhxWg4jgAAAAA:GehDaKG7uEQPK4tGHZvaYo9YPFM63lvQpXoH7LjTu46LEo4YSRpe2UtyEMGEaxrvrjkq7P_1mw
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— Distributional (domain) shift, “compound errors” in imitation, on-/off-policy
— Data augmentation or interactive data aggregation

— Collection techniques: Tele-Operation, Kinesthetic Teaching, Human Demonstrations

1.6:4
Behavior Cloning
e Formulate Imitation Learning literally as Supervised ML
e Given data D = {(21.¢,,u},7,)} iy, find
melnzz(utvﬂ-g(xt)) ) (1)
7t
where 7y :  — u is a deterministic policy (e.g. NN) mapping states to controls
1.6:5

Behavior Cloning

Deep Imitation Learning in 1989 ARG

QACMU paper! AN AUTONOMOUS LAND VEHICLE IN A

¢ CMU has incubated many self-driving companies NEURAL NETWORK

Dean A. Pomerleau
Computer Science Department
Camegie Mellon University
Pittsburgh, PA 15213

(Shi’s lecture 5)
1.6:6

Behavior Cloning

e Behavior Cloning literally imitates the demonstrated mapping « — u

o Issues:
— But does that also imitate the long term behavior or eventual effect of the demonstrations?
(Ignores distributional shift.)

— Does it capture the “essence” of what is demonstrated?

— Can it deal with multi-modal demonstrations? (— next week: multi-modal policies)

1.6:7
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Trajectory Distribution Learning

[This is not common terminology, and seemingly skipped in other Imitation Learning lectures —
unfortunately. | think this captures an essence of the problem.]
e What does it mean to capture the “essence” of data?
— Learn a distribution model pg(x1.7) of demonstrated trajectories!

max Hpg(mli:Ti) (likelihood maximization (LM)) , (2)
i
where pg is some model class powerful enough to represent “essence”

e What are “powerful” models?
— Transformer models, diffusion models

— But we'll start with very basic Gaussian models

— ...and discuss models specifically for robotic manipulation

1.6:8

Trajectory Distribution Learning: GMMs

Gesture 1
Data GMR -B GMR - 1A GMR- 1B
02 02 02

’
’
>

Demonstration 1 Demonstration 2 Demonstration 3
02 02 02

o
- . - 3
50 0 45 0
3 3 3 . . . e

= <
20 40 6 80 100 % f & 8 100 20 @ 60 8 10
t & &

Demonstration 4 Demonstraion 5 Demonstraon &
- o o
02 02 02 50 100 50 100 50 100 50 100
01 * 0.1 = 0.1 * 0.2 0.2 02 02
) S 0 T o
; ; : -
) i) <G B s P T T e T
-0.1 -0.1 0.1 w
- o ,n o o
20 40 6 80 100 n 4% & 8 100 20 @ 60 & 10 1o o 1o o 1o o 1o
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Sylvain Calinon and Aude Billard, (2007). Incremental learning of gestures by imitation in a humanoid robot. In Proceedings of the ACM/IEEE International
Conference on Human-robot Interaction, pages 255262

— Embed trajectories z1.7 in “space-time” {(¢,z¢)}L_,
— Fit a density estimator to p(¢,x¢) (easiest: Gaussian Mixture Model (GMM), LM well studied)

— Can be translated to control policy by reading out conditional p(z|t) and using inverse dynamics

1.6:9

Trajectory Distribution Learning: GMMs
— A simple way to describe the distribution of demonstrated trajectories
— Variance of learned p(z|t) captures “consistent bottlenecks” in demonstrations
[Is that a key structure in demonstrations? Search also “Calinon constraints”]
— Can be combined with Dynamic Time Warping to temporally align demonstrations

— GMM approach is around for ~ 20 years
1.6:10

Trajectory Distribution Learning: ProMPs


https://dl.acm.org/delete_delete_delete_doi/10.1145/1228716.1228751
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— Demonstration |
= Remontuain >
Combinatlor

q|[rad]

0 0.3 times] 07 1 0

el p gle trajectory. The pr y
03 07 1 o 03 07 1 trajectory  given the underlying weight vector w is given as a linear basis function model

(a) Conditioning (b) Combination (c) Blending v [ @ } —al

s Pl u-\*r[‘.\’(y, @/ w.3,) m

Alexandros Paraschos, Christian Daniel, Jan R. Peters, and Gerhard Neumann, (2013). Probabilistic movement primitives. Advances in neural information
processing systems, 26

Nothing but (prob.) linear regression t — z with basis function features (LM<->regression)

— Very simple distribution model over trajectories [could use GPs to kernelize]

Related to Inference Control (AICO, ICML’09), Path Integral methods (RSS'12)
— Great flexibility to condition, compose, and blend
— Somewhat superseeds earlier work on learning movement primitives from demonstration

[typically Dynamic Movement Primitives (DMPs, Schaal et al’03)]

1.6:11

Trajectory Distribution Learning: Features & Constraints
e Think about Manipulation!

kPAM: KeyPoint Affordances for
Category-Level Robotic Manipulation

Lucas Manuelli*, Wei Gao*, Peter Florence, Russ Tedrake

CSAIL, Massachusetts Institute of Technology,
{manuelli, weigao, peteflo, russt} @mit.edu
*These authors contributed equally to this work.

Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake, (2022). KPAM: KeyPoint Affordances for Category-Level Robotic Mampulatlon In Tamim Asfour,
Eiichi Yoshida, Jaeheung Park, Henrik Christensen, and Oussama Khatib, editors, Robotics Research, volume 20, pages 132-157

1.6:12

Trajectory Distribution Learning: Features & Constraints

e Think about Manipulation!
Neural Descriptor Fields:
SE(3)-Equivariant Object Representations for Manipulation

An[hnny Simeonov™!, Yilun Du*"!, Andrea Tagllmm:chl2 3
Joxhua B. Tenenbaum', Alberto Rodrxguez . Pulkn Agrawal'!, Vincent Sitzmann'-!
Institute of y  “Google Research 3University of Toronto
* Authors contributed equally, order determined by coin flip. 'Equal Advising.

small Handful (~5-10) of Demonstrations Test-time executions: Unseen objects in out-of-distribution poses

. - P S = "‘1- '
TN PR L}

Fig. 1: Given a few (~5-10) demonstrations of a manipulation task (left), Neural Descriptor Fields (NDFs) generalize the task to novel
object instances in any 6-DoF configuration, including those unobserved ar training time, such as mugs with arbitrary 3D translation and
rotation (right). NDFs are continuous functions that map 3D spatial to spatial descri We ize this to functions
which encode SE(3) poses, such as those used for grasping and placing. NDFs are trained self-supervised for the surrogate task of 3D
reconstruction, do not require labeled keypoints, and are SE(3) 0 unseen object

Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann, (2022). Neural descriptor
fields: Se (3)-equivariant object representations for manipulation. In 2022 International Conference on Robotics and Automation (ICRA), pages 6394-6400


https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
https://link.springer.com/10.1007/978-3-030-95459-8_9
https://ieeexplore.ieee.org/abstract/document/9812146/
https://ieeexplore.ieee.org/abstract/document/9812146/
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1.6:13

Trajectory Distribution Learning: Features & Constraints

e Think about Manipulation!

Deep Visual Constraints: Neural Implicit Models
for Manipulation Planning from Visual Input

Jung-Su Ha  Danny Driess ~ Marc Toussaint
Learning & Intelligent Systems Lab, TU Berlin, Germany

(a) No object model (b) See () Plan (d) Act

Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022). Deep visual constraints: Neural implicit models for manipulation planning from visual input. IEEE
Robotics and Automation Letters, 7(4):10857-10864

1.6:14

Trajectory Distribution Learning: Features & Constraints

e Connects to large body of literature:
— More examples: FlowBot3D, UMPNet, Bi-KVIL, "Waypoint-based imitation learning”, ..
— Human Activity Modelling, Action Segmentation:

"I E - °
2|7 /| =~
st - | | oo Il e T

Tigure 4. Qualitative compar
is shown for clrity. We can

of results for action segmentation task on (2) EGTEA, and (b) EPIC dataset. Only part of the whole video
in (a) tha the take, put and close a ectly detected by adding GTRM.

e What really is the essence to extract from demonstrations?

1.6:15

e Back to Behavior Cloning...

o [ssues:

— But does that also imitate the long term behavior or eventual effect of the demonstrations?
(Ignores distributional shift.)

— Does it capture the “essence” of what is demonstrated?

1.6:16



https://ieeexplore.ieee.org/abstract/document/9844753/
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Distributional (Domain) Shift

e Standard ML: z,y ~ p(z,y) i.i.d.; same p for trains & test

e Sequential Decision Processes: own policy 7 influences test distrib. pr(z¢)!
— Fundamental difference between learning in sequential decision processes and Supervised ML!

— Also in off-policy & offline RL: We train a policy (or Q,V-function) with losses relative to
Prg (z¢) with behavior policy (mg)

— Generally called distributional shift, or Out-of-Distribution (OOD) testing

1.6:17
Distributional Shift in Behavior Cloning

e When we train policy my in BC, we minimize
i O(ul ¢ in B« {£ 3
mjn 3¢, mo(ah)) & minEre {8 mo() 3)

but when using the policy, we generate fully different distribution
e s
Also called Compound Error (Shi’s lecture 5)
o What we should train is this:!

min Er, {{(7*(2), 7o (2))} 4)
1.6:18

Distributional Shift in Behavior Cloning

e BC formulates a supervised ML problem, but in view of testing, it is not:

— Training distribution
pronmD .
Y

/ ‘,', from expert
.
i’ k
- L7
“'Q\ .'0
o . A '...\ -3
Test distribution of: rae. T L0
. ~  Ccecsee®
learned policy _—

Low Training Good Test

Error Performance

(Shi’s lecture 5)
1.6:19
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How address the Distributional Shift?
e Ensure the data better covers the eventual pr(x¢) of trained =
— Enforce the expert to demonstrate also for non-optimal states (cover also non-expert situations)

— Collect data interactively at exactly the states visited by 7 (DAgger)
1.6:20

Enforcing wider expert demonstrations

e Occasionally perturb the expert! Add noise!

End-to-end Driving via Conditional Imitation Learning

Felipe Codevilla»?  Matthias Milller'®  Antonio Lopez®  Vladlen Koltun'  Alexey Dosovitskiy’

03

AN AUTONOMOUS LAND VEHICLE IN A -
NEURAL NETWORK o

Desn A Fomeriess 0.0
pute Sceace -

Camege Mellon Univenity
Piasbargh PA 15213

Steering

“...the network must not solely be
shown examples of accurate driving,
but also how to recover (i.e. return —— Noise

. — |
to the road center) once a mistake by Eg;‘ﬁm
has been made.” -06

00 05 1.0 15 20
Time

(Shi’s lecture 5)

1.6:21

DAgger

Initialize D + (.
Initialize 7, to any policy in I1.

fori=1to N do N
Letm; = ﬁ.iﬂ'* + (1 — 5”‘?[1 \.".:
Sample T'-step trajectories using ;. . —_—i

Use interaction to collect data " "**euuuasa . i

Get dataset D; = {(s,7*(s))} of visited states by 7; where learmed policy goes
and actions given by expert

Aggregate datasets: D + DJD;. rain poli C°”retcé ne
. . “ rain policy on expel ata to
Train classifier 7; 11 on D. expertdata  [EEE— -
end for mistakes

Return best 7; on validation.
Algorithm 3.1: DAGGER Algorithm.

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell, (2011). A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

https://www.youtube.com/watch?v=V0OnpNnWzSU

e This repeatedly collects data from the current 7, to approximate ming Er{¢(7* (z¢), mo(x¢))}

1.6:22

e From Yue's ICML'18 tutorial:


http://arxiv.org/abs/1011.0686
https://www.youtube.com/watch?v=V00npNnWzSU
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Direct Policy Reward Access to Interactive Pre-collected
Learning Learning il t D ator | D i
Behavioral Yes No No No Yes
Cloning
Direct Policy Yes No Yes Yes Optional
Learning
(Interactive IL)
Inverse No Yes Yes No Yes
Reinforcement
Learning

e Crucial point: For DAgger we have a very different setting: Access to the environment (testing
rollouts), interactively querying the expert.

1.6:23

Data Collection

1.6:24

Data Collection

e We've covered the theoretical aspect concerning distributional shift
e Data source:
— Tele-Operation

— Kinesthetic Teaching
— Human Demonstrations & Motion Capture
— Videos Only

1.6:25

Tele-Operation: Aloha
Learning Fine-Grained Bimanual Manipulation with
Low-Cost Hardware

Tony Z. Zhao!  Vikash Kumar® Sergey Levine?  Chelsea Finn'
! Stanford University > UC Berkeley * Meta

Example Teleoperated Skills

m NIST hoa% i ﬁ

Example Learned Policy

Fig. 1: ALOHA = : A Low-cost Qwu source Hardware System for Bimanual Teleoperation. The whole system costs <$20K with off-the-shelf
robots and 3D printed Lefi: The user by the leader robots, with the follower robots mirroring the motion.
Right: ALOHA is capable of precise, contact-rich, and dynamic tasks. We show examples of both teleoperated and leamed skills.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn, (2023). Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

https://tonyzhaozh.github.io/aloha/

1.6:26



http://arxiv.org/abs/2304.13705
https://tonyzhaozh.github.io/aloha/
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Kinesthetic Teaching

Learning movement primitives for force interaction tasks (Kober et al'15)

1.6:27

Human Demonstrations & Motion Capture

Recogrition - Human Motion Capturing (HMC)

NG Hodl 1 HMC-Modul 2

o Angle Tomt Angle
Reconsinuction Reconstruction

MM Interace l ©

Conversion
to MM

Martin Do, Pedram Azad, Tamim Asfour, and Rudiger Dillmann, (2008). Imitation
of human motion on a humanoid robot using non-linear optimization. In Humanoids
2008-8th IEEE-RAS International Conference on Humanoid Robots, pages 545-552

(uwm)
[omrs_|
-8
L

Reproduction

1.6:28

Human Demonstrations From Video Only
AVID: Learning Multi-Stage Tasks via
Pixel-Level Translation of Human Videos

Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine
Berkeley Artificial Intelligence Research, Berkeley. CA, 94720
Email: smithlaura@berkeley.edu

instructions reinforcement learning

instruction instruction instruction instruction
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https://ieeexplore.ieee.org/abstract/document/4756029/
https://ieeexplore.ieee.org/abstract/document/4756029/
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Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine, (2020). AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human

Videos
1.6:29
e This whole lecture talked about states! Same for observations y; only!
— History-input policies (analogous to autoregressive dynamics)
— Recursive (RNN) policies (analogous to recursive dynamics)
— Transformer policies (sequence models)
1.6:30

1.7 Imitation Learning 2

(slides by Wolfgang Honig)

Recap
e Imitation Learning

e Given: expert demonstration data D = {(z{,1,, u}.7, )} ey

1=

e Goal: reproduce demonstrations
e Main Challenges:

e Distributional Domain Shift Solutions:

— Behavior Cloning: add noise
— DAgger: interactively add additional expert data
— Trajectory Distribution Learning: rely on controller

e Data Collection Solutions:

— Humans: teleoperation, kinesthetic teaching, motion capture, videos
— high-effort computations (w.r.t. to computation or observation), e.g., Privileged Teacher

1.7:1

Outline Today

e Data Collection: Privileged Teacher
e Generative Models

e Case Studies

o Quadrotor Acrobatics
e Learning from ALOHA data

e Transfer Learning

1.7:2



http://arxiv.org/abs/1912.04443
http://arxiv.org/abs/1912.04443
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Privileged Teacher

e So far we considered to directly learn 7y :  — u (or g : y — u)
e y might be high-dimensional or unstructured (e.g., RGBD sequences)
e Key insight: First learn privileged policy (“teacher”); use it to generate data for the “student”

(i) Learn mg, : z — u (where z contains some “ground truth” data, e.g., states, traffic lights,
neighbor behavior)

(ii) Use mg, to generate data D = {(xizTi,uitTi)}Ll

(iii) Learn mg, : @ — u

1.7:3
Privileged Teacher
Learning by Cheating
Dian Chen Brady Zhou Vladlen Koltun Philipp Kriahenbiihl
UT Austin Intel Labs, UT Austin Intel Labs UT Austin
|
Privileged |
=-e o i
E ] l =—u.
A imitation
imitation
o agent agen
(a) Privileged agent imitates the expert (b) Sensorimotor agent imitates the privileged agent

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krahenbiihl, (2020). Learning by cheating. In Conference on Robot Learning, pages 66-75

https://youtu.be/u9ZCxxD-Ulw
1.7:4

Privileged Teacher
e Pros and Cons compared to one-stage IL?
Pros: Cons
e Second stage can be easily trained with DAg- e Simulation-focused
ger e Hierarchical approach (requires domain
e Data augmentation simple knowledge)

1.7:5

Generative Models
o Generative Model:
e Input: Data D = {d*}7
o Learning: find distribution py such that d? ~ py

e Inference: generate novel data d* ~ py


http://proceedings.mlr.press/v100/chen20a.html
https://youtu.be/u9ZCxxD-UUw
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e What generative models do you know? [GAN, VAE, Diffusion, for details see:]

Christopher M. Bishop and Hugh Bishop, (2024). Deep Learning: Foundations and Concepts

e Relationship to IL
e If D= {(xﬁ:Ti,ui:Ti)}{;l, we can learn conditional distribution pg(ut|x¢)

e Can also generate solution trajectories (esp. in combination with “classic” methods)

1.7:6
Generative Adverserial Network (GAN)
e Train two networks (generator and discriminator)
real images
Christopher M. Bishop and Hugh Bishop, (2024). Deep Learning:
Foundations and Concepts
Lilian Weng, (2017-08-20T00:00:004-00:00). From GAN to WGAN
g(z.w)
synthetic images
e Loss function (dy should be 1 for real data):
. 1 1
max min ————— Z Indg(zn) — N Z In(1 — dg (9w (2n)))
¢ data p cdata 9em negen
1.7:7

GAN + Imitation Learning = (GAIL)

Generative Adversarial Imitation Learning

e Generator is a policy z — u

Jonathan Ho Stefano Ermon
 OpenAl Stanford University o Discriminator has x, u as input
hoj@openai.com ermon@cs.stanford. edu
- v — e Steps:
Algorithm 1 Generative adversarial imitation learning
1: Input: Expert trajectories 75 ~ 7, initial policy and discriminator parameters 6y, wo (I) Rollout/Sample trajec-
2: fori =0.1.2.... do . .
3:  Sample trajectories 7; ~ 7, tories using generator
4: Update the discriminator parameters from w; to w;41 with the gradient

(=policy)
Er, [V log(Du(s,a))] + Er, [Vi log(1 — Dy(s,a)) a7 (ii) Update discriminator
5:  Take a policy step from ; to 6; 1, using the TRPO rule with cost function log(D,,, , (s, a)). .
Specifically, take a KL-constrained natural gradient step with - (“I) U pdate pOIICy
E,, [Vologmo(als)Q(s.a)] — AVeH ().

where Q(3,a) = E,,[log(D,,,,(s.a)) | s = 5,a0 = a

(18)

6: end for

Jonathan Ho and Stefano Ermon, (2016). Generative Adversarial Imitation Learning. In Advances in Neural Information Processing Systems, volume 29

1.7:8



https://link.springer.com/10.1007/978-3-031-45468-4
https://link.springer.com/10.1007/978-3-031-45468-4
https://link.springer.com/10.1007/978-3-031-45468-4
https://lilianweng.github.io/posts/2017-08-20-gan/
https://proceedings.neurips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html

50

Robot Learning, Wolfgang Hénig

Variational Autoencoder (VAE)

e Train two networks (encoder and decoder)

Input <o |deally they are identical. oo
x~x
Probabilistic Encoder
a4(2/x)
Sampled

latent vector

—8

An compressed low dimensional
representation of the input.

Probabilistic
-| Decoder

po(x|2)

Mean
Std. dev |Z|

z=p+toOe
e~ N(0,I)

e Loss function:

Reconstructed
input

Christopher M. Bishop and Hugh Bishop, (2024).
Deep Learning: Foundations and Concepts
Lilian  Weng, (2018-08-12T00:00:00+00:00).
From Autoencoder to Beta-VAE
Stanley H. Chan, (2024). Tutorial on Diffusion
" x Models for Imaging and Vision

ML Lecture, slides 8 and 9

min —E, g (z)x) log po(x|2) + Dk1 (94 (2]x) [ po(2))

0,9

1.7:9

Variational Autoencoder (VAE)

e Training: SGD Updates for both networks
repeat
L+0

forje {1..... M} do
Enj ™~ .\‘(0 1:] Q
Znj ﬂj(xns¢)fnj + 0—? (Xn, ¢)

2 2
Hrj — O—n_j}

2

L+ L+1{1+no
end for
L+ L+Inp(x,|z,, W)
W w+ VL // vpd
¢ —d+nVuLl // up
until converged
return w, ¢

nj

[There is an error in the Bishop book (Alg. 19.1): p and o are swapped at the highlighted line]
e Inference: Sample from Normal distribution and execute decoder

1.7:10

Variational Autoencoder (VAE) + Imitation Learning

2018 IEEE International Conference on Robotics and Automation (ICRA)

May 21-25, 2018, Brisbane, Australia

Learning Sampling Distributions for Robot Motion Planning

Brian Ichter*!, James Harrison*?, Marco Pavone

1


https://link.springer.com/10.1007/978-3-031-45468-4
https://lilianweng.github.io/posts/2018-08-12-vae/
http://arxiv.org/abs/2403.18103
http://arxiv.org/abs/2403.18103
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Learning Sample Distribution Methodology Outline

Offline:
1 Input: Data (successful motion plans, robot in action,
human demonstration, etc.)
2 Construct conditioning variables y
3 Train CVAE, as in Fig. 2a
Online:
4 Input: Motion planning problem  (Xfree, Zinit, Xgoal )
learned sample fraction A
5 Construct conditioning variable y
6 Generate AV free samples from the CVAE latent space
conditioned on y, as in Fig. 2b
7 Generate (1 — A)N free samples from an auxiliary
(uniform) sampler
8 Run sampling-based planner (e.g.., PRM”, FMT", RRT")

Brian Ichter, James Harrison, and Marco Pavone, (2018). Learning Sampling Distributions for Robot Motion Planning. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 7087-7094

1.7:11

Diffusion

e Train one network that “removes’ noise

polxe—1]xe)
O O @ O
m .

(e x—1)

Christopher M. Bishop and Hugh Bishop, (2024).

Deep Learning: Foundations and Concepts
Lilian Weng, (2021-07-11T00:00:00-+00:00).
Forward diffusion process: sample xo and add iid Gaussnanggﬂfg'ﬂpfﬁ'jg‘f"(%‘ﬁi?s'Tuto,ia| on Diffusion

: Models for Imaging and Vision
noise Jonathan Ho, Ajay Jain, and Pieter Abbeel,
T (2020). Denoising Diffusion Probabilistic Mod-
els. In Advances in Neural Information Processing
q(X1~T |XO) — I | q(Xt Ixt—l) Systems, volume 33, pages 6840-6851
i—1 ML Lecture, slide 11

q(xt|xt—1) = N(xt; /1 = Bexi—1, BeI)
1.7:12

Diffusion

e Train one network that “removes’ noise

I)E(xlfl‘xt]
Or O @z O
e

Christopher M. Bishop and Hugh Bishop, (2024).

Deep Learning: Foundations and Concepts

Lilian  Weng, (2021-07-11T00:00:00+00:00).
. tanley H. Chan, . Tutorial on Diffusion

Reverse process: learn py(x¢—1[xt) Models for Imaging( e Vision

Jonathan Ho, Ajay Jain, and Pieter Abbeel,

(e |-

T (2020). Denoising Diffusion Probabilistic Mod-
els. In Advances in Neural Information Processing
po(x0.7) = p(XT) | | Po (Xt—1]%t) Systems, volume 33, pages 6840-6851
t=1 ML Lecture, slide 11

Do (xe—1]xe) = N(x¢—1; g (xt,1), Bg(x¢, 1))
1.7:13



https://link.springer.com/10.1007/978-3-031-45468-4
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
http://arxiv.org/abs/2403.18103
http://arxiv.org/abs/2403.18103
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://link.springer.com/10.1007/978-3-031-45468-4
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
http://arxiv.org/abs/2403.18103
http://arxiv.org/abs/2403.18103
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
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Diffusion: Training

Algorithm 20.1: Training a denoising diffusion probabilistic model

Input: Training data D = {x,,}
Noise schedule {51, ..., 7}
Output: Network parameters w

fortc {1,....T}do
| Qg Hi:l(l - 57) // Calculate alphas from betas
end for
repeat
x~D // Sample a data point
t o~ {I,AA.,T} // Sample a point along the Markov chain
ENN(E‘O,I) // sample a noise v
Zy \/EtX+ ﬂf // Evaluate

ﬁ(w) — Hg(thw,i)*eHQ // Compute loss term

variable

Take optimizer step
until converged
return w

1.7:14
Diffusion: Sampling
Algorithm 20.2: Sampling from a denoising diffusion probabilistic model
Input: Trained denoising network g(z, w, )
Noise schedule {8, ..., 37}
Output: Sample vector x in data space
ZT NN(Z‘U,I) // Sample from final latent space
fortcT,....,2do
Qp Hizl(l = 57) // Calculate alpha
// Evaluate network output
1 B
p(z, w,t) Wiecn {Zz - ﬁg(zt,w’f)}
€ ~ N(ElU,I) // Sample a noise vector
2 + p(z, W, t) + /Bie // Add scaled noise
end for
x = ﬁ {z1 = \/—l%g(zl,w,i)} // Final denoising step
return x
1.7:15

Diffusion + Imitation Learning

Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

Diffusion Policy:

Visuomotor Policy Learning via Action Diffusion

Cheng Chi', Siyuan Feng?, Yilun Du, Zhenjia Xu', Eric Cousineau’, Benjamin Burchfiel?, Shuran Song'

! Columbia University 2 Toyota Research Institute 3 MIT
hutps://diffusion-policy.cs.columbia.edu
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Input: Image Observation Sequence

Observation O,

Ouw

FPse=

Diffusion Policy z4(O. A, k) »

Output: Action Sequence

a) Diffusion Policy General F

v

I

Action Sequence A
+——Prediction Horizon Ty ——
A
Bes ¢

B orim

ConviD
a. on
b 4 ConviD

x: Action Emb

*CuuﬂD

conditianing ConviD

-

b) CNN-based

aee b

Iy

Action Emb

uopuBLY 55010

quiy  quasqo

Action Emb

ey

c) Transformer-based

xK

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran Song, (2023). Diffusion Policy: Visuomotor Policy Learning
via Action Diffusion. In Robotics: Science and Systems XIX

1.7:16
Comparison of Generative Models
GAN: Adversarial < | x (CRITELE ¥
training
VAE: maximize x || Encoder + Decoder <
variational lower bound 94(2x) po(x|2)
Diffusion models:
Gradually add Gaussian Xo X1 Xo——— ... --------d z
noise and then reverse
e What are advantages / disadvantages? (e.g., sample quality, sample efficiency, distribution “cover-
age”, ease of training)
1.7:17

Case Study: Deep Drone Acrobatics

Robotics: Science and Systems 2020

Corvalis, Oregon, USA, July 12-16,

2020

Deep Drone Acrobatics

Elia Kaufmann*!, Antonio Loquercio*i, René Ranftl!, Matthias Miiller’, Vladlen Koltun®, Davide Scaramuzza®

N
g 3

ek,
iiﬁ"“*—i,, The,
f % O,ﬂ;’;,
,
y i
-9

Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Matthias Miiller, Vladlen Koltun, and Davide Scaramuzza, (2020). Deep Drone Acrobatics. In Robotics:

Science and Systems XVI

https://youtu.be/2N_wKXQ6MXA

1.7:18

Case Study: Deep Drone A
e Input

crobatics


http://www.roboticsproceedings.org/rss19/p026.pdf
http://www.roboticsproceedings.org/rss19/p026.pdf
http://www.roboticsproceedings.org/rss16/p040.pdf
https://youtu.be/2N_wKXQ6MXA
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(i) Abstraction of sequence of last camera images (feature tracks)

(ii) Preprocessed sequence of IMU data
(iii) Reference trajectory

e Output

o Desired body rates and thrust (to be tracked by attitude controller)
e Data

e Purely from simulation (privileged expert = optimization-based MPC controller)
e Learning

e Privileged Teacher (here: given, not learned from human demonstrations)
o DAgger

1.7:19

Case Study: Deep Drone Acrobatics

Feature Tracks (15Hz) Temporal Convolutions
1x1
L = —— _ PointNet x128

2 ao‘ ! F—A—A
A ———»  Pointet | - -

128x1

Multi-Layer Perceptron Action
- | PointNet
IMU (200Hz)
P

& —— =

Reference Trajectory

‘Sampler
@, —

1.7:20

Case Study: Deep Drone Acrobatics

Unique design choices:

e Pre-processing of input for sim-to-real transfer

e Asynchronous network branch inference

o Custom DAgger rollout for sim-to-real transfer: only use policy if similar to expert; also
include random actions

1.7:21
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Case Study: Using ALOHA Data

Learning Fine-Grained Bimanual Manipulation with
Low-Cost Hardware

Tony Z. Zhao!  Vikash Kumar® Sergey Levine?  Chelsea Finn'
! Stanford University ? UC Berkeley * Meta

Example Teleoperated Skills

NIST boar

Example Learned Policy

Fig. 1: ALOHA = : A Low-cost Open-source Hardware System for Bimanual Teleoperation. The whole system costs <$20k with off-the-shelf
robots and 3D printed Left: The user by iving the leader robots, with the follower robots mirroring the motion.
Right: ALOHA is capable of precise, contact-rich, and dynamic tasks. We show examples of both teleoperated and learned skills.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn, (2023). Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

https://tonyzhaozh.github.io/aloha/

1.7:22

Case Study: Using ALOHA Data
B top camera

wrist camera wrist camera

see-through rippe

front camera

j—— S0cm  ——|

red: bimanual workspace

1.7:23

Case Study: Using ALOHA Data

e Conditional Variational Autoencoder (CVAE)

e Encoder: joint positions, expert action sequence (k >> 1)
e Latent space: z “style” (dim=32)

e Decoder: observations (4 RGB images), joint positions, “style” z; output: planned action
sequence


http://arxiv.org/abs/2304.13705
https://tonyzhaozh.github.io/aloha/
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action sequence
transformer transformer
encoder decoder

DAL EDEDLS hhkb o

[CLS] joints action sequence + PosEmb agoxsaoxs N cam 1 cam4  joints 2 position embeddings (fixed)

[]z styte variable 1

transformer
encoder

1.7:24

Case Study: Using ALOHA Data

Action Chunking

e Inference: z is always set to O (deterministic generator) 6 1.2 3 4 5 6 7

e Key insights: transformer architectures for encoder and de- =0 mooo

coder; MPC-style encoding (action chunks + temporal ensem- t=4 \:| |:| D D
ble) Action Chunking + Temporal Ensemble

e Fun statistics: N o o A x[05,03,02.011=[]
e 80 M parameters; 5h training (RTX 2080 Ti); 10ms 1 I ooo

inference
=2 (I { ]
3 0 o

1.7:25

e 50 demonstrations per task (about 20min of data)

Case Study: Domain Adaptive Imitation Learning (DAIL)

Domain Adaptive Imitation Learning

Kuno Kim ' Yihong Gu? Jiaming Song' Shengjia Zhao' Stefano Ermon'

e How to perform a task, given demonstrations from a different domain (viewpoint, embodiment,
and/or dynamics mismatch)?

Ve gy e d dd
s 2

https://youtu.be/10tc1JCN_1M

Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon, (2020). Domain Adaptive Imitation Learning. In Proceedings of the 37th International
Conference on Machine Learning, pages 5286-5295

1.7:26

Case Study: Domain Adaptive Imitation Learning (DAIL)
e Given: unprocessed examples for the same tasks for robots « and y
[ Dz,y = {(DAIzaTi’DMnyi,)}i]\Ll for N tasks {T’b}i\él

e Data is not paired/aligned, i.e., sg) does not “match” s(yt)


https://youtu.be/l0tc1JCN_1M
https://proceedings.mlr.press/v119/kim20c.html
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a.
paired x |'/l'/|'/|')|>[) 00D
igne T )

A7I>i,yd= 1Y(|'/M'/I')I>|,(|~)|‘)|‘>|-)|>|)
T

3:52:;% 7| * (DD 2K [EE<] -}

D, =\ |¥ {IREAAA], [€[C]C] -}
%

e Goal: Given a new demonstration of unseen task T} for y, transfer/execute directly (“zero-shot”)
on robot x

1.7:27

Case Study: Domain Adaptive Imitation Learning (DAIL)
e Learning Alignment from Dy , = {(DMw,Ti’DMy,Ti)}ﬁV:f
(i) Learn ¥ o for all T; (Behavior Cloning)
(ii) Learn mapping of states from z to y: fgf T g > Ty
(iii) Learn mapping of actions from y to x: Go, Uy > Uz

(iv) Learn dynamics/step function of : Py, i @e, ug — g

1.7:28

Case Study: Domain Adaptive Imitation Learning (DAIL)
e Adaption

(i) Learn 7% gy for new task T); (Behavior Cloning)

(i) 75 1, (@) = g6, (73, 1, (fo, (x2)))

Unpaired
Unaligned

(5y,ay,59), (2 @xsS%) ~ Dy

&) @ @}Dg Dot match |

— mmd(a""y oY) omm

f Demo

Adapt
Pe,, }BAC !mitation LosAs

— rxfngn E[Dg.(mx|1#)] | Policy

b. Alignment C. Adaptation

Adapt fxg =gofiyrof

1.7:29

Case Study: Domain Adaptive Imitation Learning (DAIL)
e Alignment Approach: Generative Adversarial MDP Alignment (GAMA)

o Discriminator tries to separate real transitions ((x,u) — z’) from aligned transitions

e “Generator” are f and g (deterministic)
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Algorithm 1 Generative Adversarial MDP Alignment (GAMA)

input: Alignment task set D, = {(Da, T D, 7 )}¥; of unpaired trajectories, fitted T
while not done do:

fori =1,....,N do:

Sample (s, @y, s,) ~ Dy, - (545 a(,,,s({,) ~ D, - and store in buffer B;, B,

forj =1,..,Mdo:

Sample mini-batch j from B;, B,

Update dynamics model with: 7]Eﬂ: . Vo, (B, (50, 00) — 513

Update discriminator: J”Eﬂ;jl [V, log Dy (54,4, 5,)] + Bar [Vge log (1= Doy (3,4, 5)))]

i
Update alignments (fy,, go,) with gradients:

—B.. , [Vo,log Do, (3, dy. 3,
e 7. [V, 1og Doy, (3. Gy, 5,)]

w)

FEr Vo, (fai(52) — a2)?]
.

By Vo, (Fami(ss) - a.)]

1.7:30

Conclusion
e Imitation Learning works well for robotics
e Efficient, effective, stable training
e Fast inference
e State-of-the-art real-robot results (mobile robots, manipulation, planning)
e Main challenge: acquire labeled data

e Simulation possible (e.g., make slow algorithms fast) = Use DAgger and/or privileged
teacher paradigm
e Only real data = intuitive data collection interfaces, powerful generative and sequence models,
transfer learning
e Details can be tricky (what to learn [policy, trajectory, value function], how to represent inputs,
network architectures)

e Not discussed (yet): How to become better than the “expert” (notion of reward)

1.7:31

1.8 Reinforcement Learning

(slides by Marc Toussaint)

instructions/lang. /goal info g
physics parameters ©

I. What is learned?

state controls
7t ur
rewards 7,
value V(x)
Q-value Q(, u) observations
constraint () v

waypoints/subgoals
trajectory [, ¢4 11
action plan a;

e So far we discussed dynamics and imitation learning

— The mappings we learned concerned z,y,u (including also dynamics parameters © and con-
straints ¢(z))

— Demonstration data was given, or dynamics data well-collected

— There is no external task/cost evaluation
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e In RL, we assume rewards r given, which opens a new dimension
— We will learn state values (V-, Q-function) and a policy maximizing expected discounted rewards

— RL is more autonomous in that it explores the world and generates its own data

— But it relies on an externally given reward function

1.8:1
Outline
e First essentials towards modern Deep RL methods
e Then a discussion of challenges
1.8:2

Markov Decision Process

e The world: An MDP (8, A, P, R, Py,~) with state space 8, action space A, transition probabilities
P(s¢41|st,at), reward fct 74 = R(s¢, a¢), initial state distribution Pp(sg), and discounting factor

~ € [0,1].
e The agent: A parameterized policy mg(at|st).

e Together they define the path distribution (§ = (so.7+1,a0:T)) (o) (o) (o2)
HoH )

T
Py(§) = P(s0) [ ] mo(aclse) Pseialse, ar)

=0 W O ©

and the expected discounted return (with discounting factor v € [0,1))
5O) = Bemr, { Z207'r1 } = [ Po(©) B(O) de
R(&) ¢

1.8:3

Value functions

[The following assumes a deterministic policy a = m(s); stochastic 7(a|s) is handled with expecta-

tions over a.]
e The value function of a policy my gives the return when started in state s:

V7(s) = E{3,7're| so=s}
V7™ (s) = R(s,7(s)) + VB |s,x(s) { V™ (s") } (Bellman Equation)

e The Q-function gives the return when starting in state s and taking first action a:

Q™ (s,a) = E{Zt yir | sozs,ao:a}
Q™ (s,a) = R(s,a) + VEy 5 o {Q7 (s, 7(s"))} (Bellman Equation)

1.8:4
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Bellman Optimality Equation

e Bellman equations (+» Policy Evaluation):

VT (S) = R(Sr 77(3)) + 'Y]Es’\s,rr(s) {Vﬂ-(sl)}
Q" (s,a) = R(s,a) + 1By o {Q" (s, 7(s") }

e Bellman optimality equations: («+» Q-lteration/Value lteration)

V*(s) = maxgq [R(s7 a) + 'yIESqS’a{V* (s')}] = maxq Q* (s, a)
Q* (57 a) = R(Sv a) + ’yIEs’\s,a{maXa’Q* (8/7 a/)}

m*(s) = argmax, Q*(s,a)
I'E

[Sketch of proof: If 7* would be other than argmax,[-], then @’ = 7 everywhere except 7'(s) =
argmax,[-] would be better.]

" Aopt=Bopt

Richard E. Bellman (1920-1984)

1.8:5

e The core question is how to actually compute them

e Model-based:  (if we know or estimated the models P(s’|s,a), R(s,a), P(s0))
— Q-lteration, Policy lteration

e Data-based:  (if we directly use data D = {(s;,a:,7i,5i11)}—g)
— “Reinforcement Learning”
— TD-Learning, Q-learning, Actor-Critic
— Modern: DDPG, TC3, SAC, etc

1.8:6

Model-based: Q-lteration
e Bellman Optimality equation for Q*:
Q* (Sv a) = R(57 a) + 'Y]ES, | s,a{ mz}x Q* (5,7 a/) }
a

Vv (s')

e Q-lteration: initialize Q= (s, a) = 0, then iterate:
Vs Viyi(s) = mﬁka(s,a')
Vsa: Qrt1(s,a) = R(s,a) + 1B (s a{ Vit1(s') }
stopping criterion:  maxs,q |Qr+1(s,a) — Qr(s,a)| < e

[Note: Using Vi1 in this iteration is like a buffer — cf. the “target network” in neural RL.]
e Theorem: Q-lteration converges to the optimal state-action value function Q*

1.8:7
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Q-Iteration — Proof of convergence
o Let Ap = [Q" = Qilloo = maxs,a|Q7(s,a) — Qr(s; a)|
Qk+1 (57 a) = R(57 a) + WEsl\s,a{maxa/ Qk(s/a al)}
< R(S, (1) + 'VES’\S,a{maXa’ [Q* (5l7 a,) + Ak] }
= |:R(57 a) + 7E5’|s,a{maxa’ Q* (sl7 a/)}} +74Ag
= Q*(Sv a) + ’YAk
similarly: Q41 > QF —yAy
e The proof translates directly also to value iteration
1.8:8
Model-based: Policy Iteration
e Policy Evaluation: Dynamic Programming for Q™ instead of Q*: lterate:
Vst Vita(s) = Qi(s, 7(s))
Vs,a: Qrt+1(s,a) = R(s,a) + 'yES/|S7,1{Vk+1 (s/)}
stopping criterion:  maxg,q |Qr+1(s,a) — Qr(s,a)| < e
e Policy Improvement: Then update the policy to become better:
w(s) «— argmax Q(s, a)
a
e [terating the two steps above is guaranteed to converge
e This is also called actor-critic (with m=actor, and Q™ =critic)
1.8:9

require a known (or estimated) model
e To approximately do the same from data, we follow two strategies
— Whenever there was an expectation E{-} in these equations, we replace it by sample data

The two discussed methods (Q-Iteration and Policy lteration) can compute optimal policies, but

— Whenever there was a full function update (e.g. Vs,a : Q(s,a) < --- or policy improvement)

we need to replace it by a data-based loss functions and do gradient steps.

For simplicity, the following focusses on Policy lteration (or actor-critic) approaches
[Similar strategies can be applied for “Deep Q-Learning”:

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fi
and Georg Ostrovski, (2015). Human-level control through deep reinforcement learning. nature, 518(7540):529-533

But major RL methods nowadays follow actor-critic approaches]

1

djeland,

.8:10

Data-based: Bellman Loss for the Q-function

e Recall

Qw(sv a) = R(S, a) + VES’\s,a{QT((Slv Tr(sl))}


https://www.nature.com/articles/nature14236
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e Given data D = {(s;,a;,7;, 8i41) }1_, define the Bellman residual:
3.”(@97 Q) = E(s,a,r,s’)wD{ [QQ(sv a) -r—= 7@(5/1 W(S/))]Z }

e This defines a supervised ML problem for Qg! We have Q-gradients and can do standard SGD.

— Actually we want Q = Qy, and could compute gradients also accounting for yQ(s’, 7(s’)). This
is called Bellman residual minimization, and known since the 80ies, but has challenges [74, 45]

— So instead, during training we fix Q to some “old version” of Qg: We set Q = Qg where 0 is
a low-pass filter of 6 (a delayed version of the current parameters ). This stabilizes training.

1.8:11

e So, for a given policy m, B™(Qg, Q) defines a loss for Qg
e How can we also define a loss function for the policy?

1.8:12

Data-based: Return Maximization for the Policy
e To train the policy, we choose to directly maximize expected return:
J(0) = Egnpy { o720V Rist, ar) } = [ Po(€) R(E) dE
| S —
R(8)

— This is not really an error, but exactly what we aim to maximize
. . )
— All we need is the gradient 55 J(0)

1.8:13

Policy Gradient -2.J(0)

[The word “policy gradient” means gradient of J(6) w.r.t. the policy parameters 6.]
e For a deterministic policy a = my(s) € R%:
e 9 fo)
3570 = Eonry { 507 (5,0 ey ) 557009}

[Derived here: [103], and led to the Deep Deterministic Policy Gradient (DDPG) method [70]. Is
the foundation of many followups. This gradient is somewhat noisy, D4PG is an improvement.]

e For a stochastic policy mg(als): (standard “Policy Gradient Theorem”):
567(0) = 55 | Pa(€) R(€) dé = [ Po(€) 5 log Po () R(E)dé
= Eeor, { & 108 PUORE) } = Eer, { T 1" (G logmo(atlse)] TH_, 7" ~'rv }
_
Q7O (s¢,at)

1.8:14
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RL: Interleaving training with data collection
Algorithm 1 TD3
Initialize critic networks Q, , Qg., and actor network 7,
with random parameters 61, 05, ¢
Initialize target networks 6] < 0y, 05 < 60, ¢' « ¢
Inidatize replay buffer B e Actor-Critic style Deep RL:
Select action with exploration noise a ~ (s) + ¢, - %%(Qg, Q) provides gradient steps for
e ~N(0,0) and observe reward r and new state s Q0
Store transition tuple (s, a,r, s') in B
- % J(0) provides gradient steps for 7y
Sample mini-batch of N transitions (s, a,r, s") from B
a7y (s)+e e~ clipV(0,6), —c.c) — gradually training both is interleaved with
Y T+ ymini— o Qg: (s',a) .
Update critics 6; + ming, N~ S(y — Qo (5, a))2 collecting more data
if £ mod d th
! L;T[;galé Py benlhe deterministic policy eradient: Scott Fujimoto, Herke Hoof, and David Meger, (2018). Addressing function
V. ¥y,\,,1 V. ) VP 8 v e approximation error in actor-critic methods. In International Conference on
5(9) = N1 3 VaQo, (5, )lazry () Voo (s) Machine Learning, pages 1587-1596
Update target networks:
0 70; + (1 —7)0;
¢ 1o+ (1—1)¢
end if
end for
1.8:15

Techniques to improve methods

e Papers on techniques in state-of-the-art methods:

— In Deep Q-Learning (DQN) approaches: [54] (Rainbow paper)
— In Actor-Critic approaches: [40] (TD3 paper)
— A state-of-the-art actor-critic method: [49] (SAC paper)

e Ma

ny ideas:

— Replay buffers (“experience replay”): Limited buffer of experiences to train on (approximates

PG(S’ a,T, S/))

Double Q-Learning: maintain 2 indep. Q-functions Q1 2(s,a) (and use min in policy update)

Delayed targets: low pass filter Q of Q as target

Smoothed policy samples: add (clipped) noise when sampling policy in Bellman loss

Prioritized Replay: (pick replay data where Bellman error is largest)

Dueling Networks: (decompose Q in value and advantage)

Multi-Step Learning: (n-step updates)

Distributional RL: (let Q-function predict return distribution, not mean)

Noisy Nets: (replace e-greedy exploration by “learnt noise”)

1.8:16

Discussion

e The previous material should enable you to read about modern Deep RL methods (TD3, D4PG,
SAC)

e Rest of this lecture is discussion

— Why do we actually learn Q and not V7?7

— What if we have partial observability?

— How are reward functions engineered?

How is the data collected?

— Why not just use black-box optimization?


https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
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1.8:17
Why do we actually learn Q and not V?
e Q(s,a) tells us what is the best action a = argmax, Q
e In control, value functions are also estimated, but never @ (I think). Why?
[E.g. the Hamilton-Jacobi-Bellman Eq: —%V(z,t) = miny, [c(:v7 u) + %—Zf(m,u)] ]
e Without Q-function, we'd somehow have to learn how to walk up-hill on V:
— Learn an inverse model (s, As) — a
“ " . . ~ O
— Learn a “flow” policy 7 : s — As = 5-V(s)
1.8:18
What if we have partial observability?
e Policy has only access to observations yo.¢
— Make the @ function a recursive NN
Matthew Hausknecht and Peter Stone, (2015). Deep recurrent g-learning for par-
tially observable mdps. In 2015 Aaai Fall Symposium Series
1.8:19

How is the data collected?

e A core challenge in modern RL!
e Many modern methods require that the data is collected from the current my!
— So that E{-} can be replaced by the data in the Bellman equations
— This is called on-policy — we'll discuss off-policy next time
— But 7 is so uninformed! So non-exploring! So iid. in each step (~ Brownian noise)
— Check pseudo codes of mentioned methods (SAC, DDPG, TD3, etc)

e In old RL (discrete state-action spaces), things were much better!
— Explicit Exploit or Explore [61] — a must read!
— R-mAX [9], Optimistic value initialization, Bayesian RL

— These methods design policies to systematically explore, typically by systematically rewarding
exploration

— Optimism in the face of uncertainty: Rewarding decisions with uncertain outcomes!


https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf

Robot Learning, Marc Toussaint 65

1.8:20

How is the data collected?

e In Deep RL: Structured noise instead of Brownian:

Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius, (2022). Pink noise is all you need: Colored noise exploration in deep reinforcement
learning. In The Eleventh International Conference on Learning Representations

Parameter-space noise: (add noise to 6 instead of a)

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz,
(2018). Parameter Space Noise for Exploration

Guided Policy Search

Sergey Levine and Vladlen Koltun, (2013). Guided policy search. In International Conference on Machine Learning, pages 1-9

— Use model-based trajectory optimization to generate data
Demonstration Guided [83]
Or just give up:

— Offline Reinforcement Learning: Assume the data was generated somehow externally

— Imitation Learning & Inverse RL: Learn from demonstrations

1.8:21

How are reward functions engineered?

e Reward shaping theory: You can add potentials without changing optimal policy

Andrew Y. Ng, Daishi Harada, and Stuart Russell, (1999). Policy invariance under reward transformations: Theory and application to reward shaping. In lcml,
volume 99, pages 278-287

e Reward engineering:

employ the same joint final reward. At the time #. where the
ball passes the rim of the cup with a downward direction, we
compute the reward as r(t,) = exp(—a(z, — zp)* — a(y, —
yy)?) while we have r () = O for all t = t.. Here, the
cup position is denoted by [z..,y., 2.] € R, the ball position
[.1‘,,.,1/1,.,2,,] € R? and we have a scaling parameter o = 100.
The directional information is necessary as the algorithm could
otherwise learn to hit the bottom of the cup with the ball. The

Jens Kober and Jan Peters, (2009). Learning motor primitives for robotics. In 2009 IEEE International Conference on Robotics and Automation, pages
2112-2118

https://www.youtube.com/watch?v=qtqubguikMk

1.8:22

Why not just use black-box optimization?

e Eventually, maxg J(0) is an optimization problem

— Instead of deriving gradients (via Bellman, and Q-functions), why not treat as black-box or
derivative-free optimization problem?

1.8:23



https://openreview.net/forum?id=hQ9V5QN27eS
https://openreview.net/forum?id=hQ9V5QN27eS
http://arxiv.org/abs/1706.01905
https://proceedings.mlr.press/v28/levine13.html
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
https://ieeexplore.ieee.org/abstract/document/5152577/
https://www.youtube.com/watch?v=qtqubguikMk
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Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Tlya Sutskever
OpenAl

Abstract

‘We explore the use of Evolution Strategies (ES), a class of black box optimization
algorithms, as an alternative to popular MDP-based RL techniques such as Q-
learning and Policy Gradients. Experiments on MuJoCo and Atari show that ES
is a viable solution strategy that scales extremely well with the number of CPUs
available: By using a novel communication strategy based on common random
numbers, our ES impl ation only needs to cc icate scalars, making it
possible to scale to over a thousand parallel workers. This allows us to solve 3D
humanoid walking in 10 minutes and obtain competitive results on most Atari
games after one hour of training. In addition, we highlight several advantages of
ES as a black box optimization technique: it is invariant to action frequency and
delayed rewards, tolerant of extremely long horizons, and does not need temporal
discounting or value function approximation.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and llya Sutskever, (2017). Evolution Strategies as a Scalable Alternative to Reinforcement Learning

1.8:24

e Ratio of ES timesteps to TRPO timesteps needed to reach various percentages of TRPO's learning
progress at 5 million timesteps:

Environment 25% S50% T5% 100%
HalfCheetah 0.15 049 042 0.58
Hopper 053 3.64 06.05 6.94
InvertedDoublePendulum 046 048 0.49 1.23
InvertedPendulum 028 052 0.78 0.88
Swimmer 056 047 0.53 0.30
Walker2d 041 569 8.02 7.88

1.8:25

Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for
Training Deep Neural Networks for Reinforcement Learning

Felipe Petroski Such Vashisht Madhavan Edoardo Conti Joel Lehman Kenneth O. Stanley Jeff Clune

Uber Al Labs
{felipe.such, jeffclune}@uber.com

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff Clune, (2018). Deep Neuroevolution: Genetic Algorithms
Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning

e Roughly: “Do you spend your time training nets, or simulating?”

1.8:26



http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
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DQN ES A3C RSIB GAIB GA6B

DQN 6 6 3 6 7
ES 7 7 3 6 8
A3C 7 6 6 6 7
RS 1B 10 10 7 13 13
GA 1B 7 7 7 0 13
GA 6B 6 5 [ 0 0

Table 4. Head-to-head comparison between algorithms on the
13 Atari games. Each value represents how many games for
which the algorithm listed at the top of a column produces a
higher score than the algorithm listed to the left of that row (e.g.
GA 6B beats DQN on 7 games).

e Conclusion: It varies from problem to problem what is better.
And it is suprising that “naive” black-box ES can beat elaborate RL-methods

1.8:27
1.8:28
1.9 RL II: Offline RL & Sim2Real
(slides by Marc Toussaint)
Outline
e Some RL application papers
e Offline RL (on-policy vs. off-policy)
e Sim2Real
— Domain Randomization
— Privileged Training & Imitation Learning
— Domain Adaptation
1.9:1

Outline
e Some RL application papers
e Offline RL (on-policy vs. off-policy)
e Sim2Real
— Domain Randomization
— Privileged Training & Imitation Learning

— Domain Adaptation

1.9:2
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Autonomous Helicopter Aerobatics through ' Auboty 200
L . e s prsin:
Apprenticeship Learning

saacub coukjouabPemisions
DO 10.1770278361910371999

Picter Abbeel', Adam Coates” and Andrew Y. Ng*

Abstract
Autonomous helicopter flight is widely regarded 1o be a highly challenging control problem. Despite this fact, human
experts can reliably fly helicopters through a wide range of maneuvers, including acrobatic maneuvers at the edge of
ihe helicopter's capabilities. We present apprenticeship learning algorithms, which leverage expert demonsirations o
efficiently learn good controllers for tasks being demonstrated by an expert. These apprenticeship learning algorithms
have enabled us 1o significantly extend the state of the art in autonomous helicopter aerobatics. Our experimental
results include ihe frst autonomous execution of a wide range of maneuvers, including but not limited o in-place fips,
in-place rolls, loops and hurricanes, and even auto-roiation landings. chaos and tic-toes, which only exceptional human
pilots can perform. Our results also include complete airshows, which require autonomous transitions between many of
these maneuvers. Our controllers perform as well as, and often even better than, our expert pilot.

Pieter Abbeel, Adam Coates, and Andrew Y. Ng, (2010). Autonomous
Helicopter Aerobatics through Apprenticeship Learning. The International
Journal of Robotics Research, 29(13):1608-1639

http://heli.stanford.edu/

1.9:3

Article
Outracing champion Gran Turismo drivers
with deep reinforcementlearning

Rocelved:0 August 2021 " ompot,
Michaet . Thomure, : uota!,Dion Whitshead',
PotorDire, .
2 Ghock forupdtos
Jimiteh Racing simulati i Torismo,

agentsfor Gran Turismorthat can compete withhe world'sbestesportsdrvers.
. modelf

but

under-specifid,
Gran 1 iy

impreciscly defined human norms.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan,
Kaushik Subramanian, Thomas J. Walsh, Roberto Capobianco, Alisa De-
vlic, Franziska Eckert, Florian Fuchs, Leilani Gilpin, Piyush Khandelwal,
Varun Kompella, HaoChih Lin, Patrick MacAlpine, Declan Oller, Takuma
Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon
Barrett, Rory Douglas, Dion Whitehead, Peter Diirr, Peter Stone, Michael
Spranger, and Hiroaki Kitano, (2022). Outracing champion Gran Turismo
drivers with deep reinforcement learning. Nature, 602(7896):223-228

https://sonyresearch.github.io/gt_sophy_public/

1.9:4

Article
Champion-level drone racing using deep
reinforcement learning

Els Kautman™,
avide Scaramuzzs®

s Mallr, Visden Kolur?
Received: S January 2023

Publshod ontine: 0 August 2023

Opanaccess

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Miiller,
Vladlen Koltun, and Davide Scaramuzza, (2023). Champion-level drone
racing using deep reinforcement learning. Nature, 620(7976):982-987

a_Drone racing: human versus autonomous

https://www.youtube.com/watch?v=fBiataDpGIo

1.9:5



https://delete_delete_delete_doi.org/10.1177/0278364910371999
https://delete_delete_delete_doi.org/10.1177/0278364910371999
http://heli.stanford.edu/
https://www.nature.com/articles/s41586-021-04357-7
https://www.nature.com/articles/s41586-021-04357-7
https://sonyresearch.github.io/gt_sophy_public/
https://www.nature.com/articles/s41586-023-06419-4
https://www.nature.com/articles/s41586-023-06419-4
https://www.youtube.com/watch?v=fBiataDpGIo
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Outline
e Some RL application papers
e Offline RL (on-policy vs. off-policy)
e Sim2Real
— Domain Randomization

— Privileged Training & Imitation Learning

— Domain Adaptation

1.9:6

On-Policy vs. Off-Policy Methods

e On-policy: estimate V™ or Q™ while executing m (e.g., Policy Evaluation)
— The value-function updates directly depend on the policy

e Off-policy: estimate Q* while executing © (e.g., Q-learning)
— The actually executed (data-collecting) policy 7 is also called “behavioral policy”
— In contrast, values Q* are estimated for the optimal policy 7*

e Off-policy is considered more efficient, as it can use off-policy-distribution data

[More technically: Consider you have data D = {(s;, ai, 74, Si41,ai41)}}- collected with behavior
policy w. When you make Q- or V-updates, do you take only expectations w.r.t. D? Or do you
take conditional expectations a;+1 ~ 7*(a|s;+1) w.r.t. another policy? (E.g. greedy policy.)]

[SAC is called off-policy, because when training V' it takes expectations w.r.t. a; ~ mg (instead of
w.r.t. data collected previously).]

1.9:7

Offline RL
e Motivation:
— Separation of Concerns!

— Separate thinking about Data Collection, and thinking about what best to make of given data

Real-world data is expensive!

Data collection (exploration) in RL is an issue anyway

— No matter how RL collects data, it makes sense to study what best to make of given data

The data could come from anywhere: huge data sets of other observed agents, of human
behavior, perhaps extracted from abundant video

— The data is not collected by “our Al agent” itself — but can still be used to learn a Q*-function
and train our agent for optimal behavior

1.9:8

Offline RL
o Naive problem formulation: Given data D = {(s;, a,7,5i41)}}_g. find 6 to
min E(s,a,r,s)~n{ [Qa(s,a) =1 —vQa(s',m(s"))]* }
st. O0=~0

T & argmax IE(SYG)ND{QB(& a)}
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In words:
— minimize the empirical Bellman residual, with delayed Qj-target

— ...where eventually m becomes optimal and 6 converges

e That's a well-defined problem
— We have gradients for everything: Bellman gradient, deterministic policy gradient — let’s go!

1.9:9
Offline RL
e Resulting policy fails badly, due to distribution shift, just as in imitation learning:
Also called Compound Error (Shi’s lecture 5)
e In the naive problem formulation
— there is no penalty for “dreaming” crazy Q-values outside the data distribution
— the trained policy is likely to exploit these arbitrary Q-values
e We don’t have the DAgger option: Can't collect more data to cover reached states!
— We need to add a penalty for leaving the data distribution!
1.9:10

Offline RL

e We need to add a penalty for leaving the data distribution...
— Many different ideas, incl. literally penalizing “distribution distance” (divergence regularization)

— Modern versions found simple approaches:

1.9:11

TD3+BC

A Minimalist Approach to
Offline Reinforcement Learning

Scott Fujimoto’ *
Mila, M,

Shixiang Shane Gu”
. sity

“Google Research, Brain Team
scott. fujimototmail.megill. ca

e Use TD3 (twin delayed deep deterministic..)
e Simply add a BC term to the policy objective!

TR argmaxE(sﬂ)ND{)\Qe(S, a) + (m(s) — a)Q}

resulting algorithm is a simple to imj
halving the overall run time by removing the additional computational overheads
of previous methods.

Scott Fujimoto and Shixiang Shane Gu, (2021). A minimalist ap-
proach to offline reinforcement learning. Advances in neural infor-
mation processing systems, 34:20132-20145


https://proceedings.neurips.cc/paper_files/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html
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1.9:12
S4RL

S4RL: Surprisingly Simple Self-Supervision for
Offline Reinforcement Learning in Robotics

Samarth Sinha'**, Ajay Mandlekar”, Animesh Garg**

* Facebook Al Research, *University of Toronto, Vector Institute, *Stanford Uiversity, 'Nvidia

e Include a strong data augmentation in the Q-
function loss

spproximation of the Q-networks

fon space. We experimentally show that u

sion technique in RL (S4RL), we si
Jgorith i

! ming E(s,a,r,s’)ND{ [% Zl Qg(Ti(§|$)a a) -r—- ’7% Zz Qé(qi(§/|5/)’ 7r(‘

bot

ntly improve over
. b ch
Vorld [1] and RoboSuite [2, 3], and benchy

mark datasets such as DARL

where T; generates a variant of s (they propose 7
alternative, including spatial smoothing and adver-
sarial)

Samarth Sinha, Ajay Mandlekar, and Animesh Garg, (2022). S4rl:
Surprisingly simple self-supervision for offline reinforcement learn-
ing in robotics. In Conference on Robot Learning, pages 907-917

1.9:13
Offline RL Application

Pre-Training for Robots: Offline RL Enables
Learning New Tasks in a Handful of Trials

Aviral Kumar*!, An

ingh*", Frederi
Chelsea Finn

1, Mitsuhiko Nakamoto!, Yanlai Yang®,
. Sergey Levine!
Stanfond Uninerity, *New York University

10 Berkl

2AEN

Eaqual contiution)

Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai
Yang, Chelsea Finn, and Sergey Levine, (2023). Pre-Training for Robots:
Offline RL Enables Learning New Tasks from a Handful of Trials

https://sites.google.com/view/ptr-final/

1.9:14
Offline RL Conclusions
e Scientifically important

(separation of concerns)

e Opens new dimension: Train optimal behaviors from any data
e Promising future applications

(leverage massive data, reward re-labelled data)

1.9:15
Outline

e Some RL application papers

e Offline RL (on-policy vs. off-policy)
e Sim2Real (slides based on Shi’s lecture)
— Domain Randomization

— Privileged Training & Imitation Learning


https://proceedings.mlr.press/v164/sinha22a.html
https://proceedings.mlr.press/v164/sinha22a.html
https://proceedings.mlr.press/v164/sinha22a.html
http://arxiv.org/abs/2210.05178
http://arxiv.org/abs/2210.05178
https://sites.google.com/view/ptr-final/
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— Domain Adaptation

1.9:16
e Why train in Simulation?
— Real-world data is expensive!
— Many RL methods require millions of samples
— Simulation is fast
— Simulation is safe, can be fully explored
— Simulation provides ground truth labels (e.g. train priviledged policy)
— Simulations get better and better, including simulating sensors (image rendering)
1.9:17

Robot Simulators

O Simulator taxonomy by simulately.wiki

Physics

Simulator
Engine

Physx 5

PhysX 5, Flex

Phys 5, Warp

Bullet

MuJoCo

MuJoCo;
Bullet; ODE,
Newton;

Vortex
Bullet; ODE;

DART;
Simbody

Rendering

Rasterization;
RayTracing

Rasterization;

Rasterization;
RayTracing,;

Rasterization;

Rasterization;

Rasterization;
RayTracing@;

Rasterization;

Sensor

RGBD; Lidar;

Force; Effort;

IMU; Contact;
Proximity

RGEBD; Force;

Contact;

RGEBD; Force;

Contact,

RGBD; Force;

IMU; Tactile;
RGBD; Force;

IMU; Tactile;

RGBD; Force,
Contact,

RGBD; Lidar;
Force; IMU;

Dynamics

Rigid;Soft;ClothFluid

Rigid;Soft;Cloth

Rigid;Soft;Fluid

Rigid;Soft;Cloth

Rigid;Soft,Cloth

Rigid;Soft;Cloth

Rigid;Soft,Cloth

GPU-

accelerated P
Source
Simulation
v x
v x
x v
x v
v v
x v
x v

from Shi's lecture

1.9:18

e What are Sim2Real issues?

— Simulation never matches real world exactly; policies overfit to simulation and fail in real

— Parameteric mismatches: Other dynamics parameters, e.g. friction, inertias

— Non-parameteric mismatches: Physical effects not simulated: Wind, exact fluids, sand/dust

e Approaches to tackle this:
— Domain Randomization

— Privileged Training & Imitation Learning

— Domain Adaptation

1.9:19
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Domain Randomization

Domain Randomization for Transferring Deep Neural Networks from
Simulation to the Real World

Josh Tobin', Rachel Fong?. Alex Ray?, Jonas Schacider’, Wojcicch Zaremba?, Picter Abbecl*

:

e

e Train a single policy to perform well in many
domain variants

e Original paper focussed on perception, but
works equally for any other parameter ©

L INTRODUCTION

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel, (2017). Domain randomization for transferring deep
neural networks from simulation to the real world. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
23-30

1.9:20

Domain Randomization

e Let O be a simulation parameter: x¢y1 = f(x¢, ut; ©)
e Randomly sample © ~ p(©) at the start of each episode
e Otherwise, use standard RL

— But since the world is “more uncertain”, the RL problem becomes harder

1.9:21

e What if we train a policy #(s¢, ©) that get's © as input?

Is that cheating?  [16]

1.9:22

Privileged Training & Imitation Learning
e Priviledged RL Training:
— We first train #(s¢, ©) using standard RL

— Much easier than without access to ©
e Sensorimotor Imitation using DAgger:
— Then we train a policy 7(s¢) to imitate 7 (s¢, ©)

— As we can query 7(s¢, ©), we can use DAgger! Much more efficient than plain BC

e This approach is a core paradigm beyond RL:
— First develop a method to solve a problem using full information (could be a planner)

— Then train a policy to imitate that method with only available (sensor) information

1.9:23

Privileged Training & Imitation Learning


https://ieeexplore.ieee.org/abstract/document/8202133/
https://ieeexplore.ieee.org/abstract/document/8202133/
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Learning Quadrupedal Locomotion over Challenging Terrain
JOONHO LEE"", JEMIN HWANGBO' ¥, LORENZ WELLHAUSEN', VLADLEN KOLTUN', AND MARCO HUTTER'

" Robatic Systems Lab, ETH Zurich, Zurch, Swizariand
2Robotics and Articalniligerce Lab. KAIST. Dasjoon, Koraa
intligent Systems Lab, nfel, Sants Glara, GA, USA

* Substantal pat of the work was caried out during i siay a1 1
*Corrasponding author: joloo@olhzch

VL5

Some of the most challenging environments on our planet are accessible to quadrupedal animals but remain
out of reach for autonomous machines. Legged locomotion can dramatically expand the operational domains
of raborcs. He Tocomotion are based hat
explicity trigger the execution of motion primitives and reflexes. These designs have escalated in complexity

troler for legzed locomotion i i We

i and lization f
ulation to natural environments. The controller s trained by reinforcement learning in simulation. 1 s based
on a neural network that acts on a strean of proprioceptive signals. The trained controller has taken two gen-

ing training: i a Iynami Fubble, and
overground impediments such as thick vegetation and gushing water. The presented work opens new frontiers
be achieved by 1 "

simpler domains.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and
Marco Hutter, (2020). Learning quadrupedal locomotion over challeng-
ing terrain. Science Robotics, 5(47):eabc5986

https://youtu.be/txjqn8h6pjU
https://youtu.be/Xnn4sVSpSho

1.9:24

Privileged Training & Imitation Learning

e The privileged policy gets full information as input:
Exact © and state s¢, including terrain model

e The sensorimotor policy only sensor obs. y:
— the sensorimotor policy needs to use the sequence
Yo:¢, €.g. recursive or transformer

1.9:25
e The sensorimotor policy uses full observation sequence yg.; to output controls us¢...
— What else could it predict based on yg.+?
The unobserved physics parameters ©!
1.9:26

Adaptive Control

e Large area within Control Theory

e Assumes environment has varying parameters ©

(not directly observed)

e One approach: Estimate © from past observations and use for control

e Robust control: Estimate posterior belief p(©|yg.7) over possible © and use control robust to all

possibilities

1.9:27

Domain Adaptation

e In the Robot Learning community, the word Domain Adaptation is used for any controller that
adapts (to varying unobserved ©) based on past observations yo:¢.


https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/448343/1/2020_science_robotics_lee_locomotion.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/448343/1/2020_science_robotics_lee_locomotion.pdf
https://youtu.be/txjqn8h6pjU
https://youtu.be/Xnn4sVSpSh0
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e Explicit approach:
— Train an estimator ¢ : yo.; — e)

— Then train a policy 7(yo:¢,%¥(yo:¢)) for fixed 9

e Implicit approach:
— As in Lee et al'20

— Just train 7(yo:¢), but potentially imposing a representation that is also predictive for ©

1.9:28

Sim2Real Conclusions

o (Pre-)Training in Sim became a standard in modern Robot Learning

e Sim2Real is not considered a blocker anymore:
— Domain Randomization, Privileged Training & Sensorimotor are powerful approaches

— Even if policies do not directly transfer — Real-World finetuning requires much less data

1.9:29

Side note: Privileged Training for Imitation Learning

e The paper below used same approach, but in the context of Imitation Learning:
— The privileged policy imitated a human demonstrator using full access to the driving simulation

— The sensorimotor policy imitated the privileged policy
Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krahenbiihl, (2020). Learning by cheating. In Conference on Robot Learning, pages 66-75

1.9:30

1.10 Inverse RL

(slides by Marc Toussaint)

Outline

e Value Alignment
e Inverse RL
e Preference-based RL

1.10:1



http://proceedings.mlr.press/v100/chen20a.html
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" Stuart Russell

Human

Compatible e Stuart Russell
— Russell & Norvig: Artificial Intelligence: A
Iha
Alandthe Modern Approach (1995)

— Decision & Game Theory

__ Problem
of Control

Stuart Russell, (2019). Human compatible: Al and the problem of control

‘A must-read:
an intellectual
tour-de-force by

of Al's
true pioneers’
Max Tegmark

1.10:2

Russell: Value Alignment

e “Standard model of Al”
— Define fixed objective; maximize

e Difficulty in defining objectives
— Consequences (aspects of optimal behavior) unclear

— Humans are bad at defining objectives

e Russell's proposal:
— Systems should infer human preferences from behavior
— Avoid overfitting

— Large apriori uncertainty (incl. noise assumption in human behavior) to avoid overfitting

1.10:3

Cooperative Inverse Reinforcement Learning

Dylan Hadfield-Menell Anca Dragan Pieter Abbeel Stuart Russell

Electrical Engincering and Computer Science
University of California at Berkeley
Berkeley, CA 94700

e Game-theoretic formalization of Value Align-

Abstract men t
For an autonomous system to be helpful to humans and to pose no unwarranted P . f .
vicks. it needs t align s values with those of the humans In s environment in — ..is just one possible formulation

such a way that its actions contribute (o the maximization of value for the humans,
We propose a formal definition of the value alignment problem as cooperative
inverse reinforcement learning (CIRL). A CIRL problem is a cooperative, partial-

— example for efforts to make “Value Align-
information game with two agents, human and robot; both are rewarded according
10 the human'’s reward function, but the robot does not initially know what this ment" more rigOrOUS

is. In contrast to classical IRL, where the human is assumed to act opt
isolation, optimal CIRL solutions produce behaviors such as active teachi
learning, and communicative actions that are more cffective in achiev
alignment. We show that computing optimal joint policies in CIRL games can be
reduced to solving a POMDP, prove that optimality in isolation is suboptimal in
CIRL, and derive an approximate CIRL algorithm.

Dylan Hadfield-Menell, Stuart J. Russell, Pieter Abbeel, and Anca Dragan,
(2016). Cooperative inverse reinforcement learning. Advances in neural
information processing systems, 29

1.10:4



https://books.google.com/books?hl=en&lr=&id=Gg-TDwAAQBAJ&oi=fnd&pg=PT8&dq=human+compatible+russell&ots=qoZKXK7gQ0&sig=p4x57HjxfMAVCpQ4O_XcE7J4ECY
https://proceedings.neurips.cc/paper_files/paper/2016/hash/c3395dd46c34fa7fd8d729d8cf88b7a8-Abstract.html
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Outline

e Value Alignment
e Inverse RL
e Preference-based RL

1.10:5

Inverse Reinforcement Learning

e Instance of Imitation Learning; recall:
— Given expert demonstration data D = {(si:T,;vai:Ti)}?:l without external rewards, objectives,
costs defined

— Extract the “relevant information/model/policy” to reproduce demonstrations

e Recap: Types of Imitation Learning
— Behavior Cloning

— Trajectory Distribution Learning (& Constraint Learning)

Direct (Interactive) Policy Learning (DAgger)

Inverse Reinforcement Learning
— Builds on the full formalism of RL

1.10:6

Inverse Reinforcement Learning

e General Idea:
— Given expert demonstration data D = {(s’i:Ti,a'i:Ti)}?:l

— infer the reward function assuming the demonstrated behavior is (approx.) optimal

e Benefits of understanding the reward function behind demonstrations:
— Can apply and generalize to fully different domains, leading to different policy

— Can be better than demonstrator

1.10:7

Inverse Reinforcement Learning
e Methods we discuss:
— Max Margin IRL (Apprenticeship Learning)
— Max Entropy IRL
— Adversarial IRL

1.10:8

IRL: General Approach
e Recall the value of a policy 7
J(m) = Eenp, {32720 7V Rist, at) }
e Given a demonstration policy 7*, we want to find R such that for any other policy 7:

J(@*) > J(m) & Benp . {3207 R(st,a1)} > Eenp, {35207 Rist, at) }
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e To simplify this, let's assume R(s,a) is linear in features ¢(s, a):

R(s,a) = w'¢(s,a) = Zwm(s, a) (5)

= J(m) = wEL {201 6 (se,a0)} S w p(m) (6)
and we want
vﬂ#ﬂ'* : ’u}T/L(T(*) > w—ru(ﬂ')

1.10:9

Apprenticeship Learning

Apprenticeship Learning via Inverse Reinforcement Learning

Pieter Abbeel PABBEEL Q¢
Andrew Y. Ng ANG!
Computer Science Department, Stanford University, Stanford, CA 94305, USA

NFORD.EDU
3S.STANFORD.EDU

Pieter Abbeel and Andrew Y. Ng, (2004). Apprenticeship learning via inverse reinforcement learning. In Twenty-first international conference, page 1

1.10:10

Apprenticeship Learning

e First, 7* is not really given but
— we estimate p(7*) = Eq= {352 7' ¢(st, ar) } from the demonstration data D
— This p(7*) is the only information used from the demonstrations
e Second, we generate a series of other policies m; against which we discriminate 7*
e Third, formulate “discrimination” as a max margin problem:
1: initialize mg
2: fori=0,1,2,... do
3: w,t ¢ argmax,, ;ept st w| <1, Vjeqo,.. i} wlp(m*) > wlp(r;) +t
4 Ti+1 < argmax, J(m) RL problem!
5: end for

1.10:11

Maximum Entropy IRL

Maximum Entropy Inverse Reinforcement Learning

Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
bziebart@cs.cmu.edu, amaas @andrew.cmu.edu, dbagnell @ri.cmu.edu, anind@cs.cmu.edu

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse reinforcement learning

1.10:12

Maximum Entropy IRL

[skipping details]


http://portal.acm.org/citation.cfm?delete_delete_delete_doid=1015330.1015430
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e First, the expert might be noisy, demonstrations & are assumed

) — exp{w'u(€)}
PG = T (e} 4€

e Second, find w that leads to max entropy P(-;w) but matches demonstrations:

min [ P(& w)log P(€ w) de

sit. Egop(ew) {n(€)} = p(m™)

1.10:13

Adversarial IRL
o Recall idea of GANs:

mGin mgx EINPdata {IOg D(m)} + Ey:G(z),z~pz {IOg[l - D(y)}}

— Train a discriminator D to label data positive, and generator’'s samples negative

— Train a generator G' to maximize likelihood of being classified data

lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, (2014). Generative

adversarial nets. Advances in neural information processing systems, 27

e The max margin idea is very similar:
— Find a reward function that discriminates ©* optimal from all others

— Find other policies 7; iteratively to discriminate against

1.10:14

Adversarial IRL

LEARNING ROBUST REWARDS WITH ADVERSARIAL
INVERSE REINFORCEMENT LEARNING

Justin Fu, Katie Luo, Sergey Levine

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720, USA

justinjfu
svlevinele

ley.edu, katieluotberkeley.edu,
du

Figure 3:  Nlustration of the shifting maze Figure 4; Reward learned on the point mass
task, where the agent (blue) must reach the goal - shifting maze task. The goal is located at the
(green).  During training the agent must go  green star and the agent starts at the white circle.
around the wall on the left side, but during test Note that there is little reward shaping, which en-
Reinforcement learning provides a powerful and general framework for decision time it must go around on the right. ables the reward to transfer well.
making and control, but its application in practice is often hindered by the nced
for extensive feature and reward engineering. Deep reinforcement learning meth-
ods can remove the need for explicit engineering of policy or value features, but
still require a manually specified reward function. Inverse reinforcement learning
holds the promise of automatic reward acquisition, but has proven exceptionally
difficult to apply to large, high-dimensional problems with unknown dynamics. In
this work, we propose AIRL, a practical and scalable inverse reinforcement learn-
ing algorithm based on an adversarial reward learning formulation. We demon-

AIRL is able to recover reward functions that are robust to changes
s, enabling us to learn policies even under significant variation in the
environment seen during training. Our experiments show that AIRL greatly out-
performs prior methods in these transfer settings.

ABSTRACT

Figure 5:  Top row: An ant running forwards (right in the picture) in the training environment.

. . . h Bottom row: Behavior acquired by optimizing a state-only reward learned with AIRL on the disabled
Justin Fu, Katie Luo, and Sergey Levine, (2018). Learning robust rewards ant environment. Note that the ant must orient itself before crawling forward, which is a qualitatively
with adversarial inverse reinforcement learning

different behavior from the optimal policy in the original environment, which runs sideways.
Earlier similar work: [37]

1.10:15



https://proceedings.neurips.cc/paper/5423-generative-adversarial-nets
https://proceedings.neurips.cc/paper/5423-generative-adversarial-nets
http://arxiv.org/abs/1710.11248 [cs]
http://arxiv.org/abs/1710.11248 [cs]
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Adversarial IRL

Algorithm 1 Adversarial inverse reinforcement learning

1: Obtain expert trajectories 7,7

2: Initialize policy 7 and discriminator Dy 4.

3: forsteptin {1,..., N} do

4:  Collect trajectories 7; = (sg, ag, ..., ST, ar) by executing 7.

5:  Train Dy 4 via binary logistic regression to classify expert data 7F from samples 7;.
6:  Update reward rg (s, a,s") <= log Dg (s, a,s") —log(1 — Do (s, a,s"))

7 Update 7 with respect to rg 4 using any policy optimization method.

8: end for

e The discriminator Dy 4(s, a,s’) operates on triplets and is parameterized as

exp{fo,s(s,a,s")}
exp{fo,4(s,a,s")} + m(als)
fo,6(s,a,8") = go(s,a) +vhe(s") — hy(s)
~r(s,a) +yV(s') =V (s) = A(s,a)
Q(s,a)

Dy (s, a, s =

— This particular decomposition is crucial!

— Training this way gg(s, a) automatically gets “reward semantics”, and hy “value semantics”

— A(s,a) is called advantage function

1.10:16

Inverse RL Summary

o Conceptually highly interesting
e The max-margin/discrimination/adversarial idea is core to many approaches
— Max entropy is alternative way of thinking

1.10:17

Outline

e Value Alignment
e Inverse RL
e Preference-based RL

1.10:18

Preference-based Learning
e In ML:

— Given data of preference tuples D = {(z} > z£)}?_, (each tuple means a user preference )
— learn a mapping f : X — R to minimize, e.g.

S If(ah) = f=)]x
=1

— Read about label ranking, instance ranking, object ranking

1.10:19
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Preference-based RL

e Given trajectory segment data D = {(s{ ;. ,al . )}* ; = {¢}?; and preferences £ > &I for

some pairs (%, ), find a reward function s.t.

T T
¢-¢ = > R(sj,ai) > R(s],al)
t=1 t=1

e Long history, e.g.

Riad Akrour, Marc Schoenauer, and Michéle Sebag, (2012). APRIL: Active preference learning-based reinforcement learning. In Peter A. Flach, Tijl De Bie,
and Nello Cristianini, editors, Machine Learning and Knowledge Discovery in Databases, volume 7524, pages 116-131

1.10:20

Deep RL from Human Preferences

Deep Reinforcement Learning
from Human Preferences

Paul F Christiano Jan Leike Tom B Brown
OpenAl DeepMind Google Brain®
paulGopenai.com LeikeGgoogle. com Te.com
Miljan Martic Shane Legg Dario Amodei

DeepMind DeepMind OpenAl

miljanmegoogle. con 1egg@google . con damodei@openai . con

Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and
Dario Amodei, (2017). Deep reinforcement learning from human prefer-
ences. Advances in neural information processing systems, 30

beamvider breakout

revard

spaceiny 17

/J»f )
fotenl MM i

B ] EE SR
tmestep 167 tmestep 167 tmestep 167

reward

Figure 2: Results on Atari games as measured on the tasks” truc reward. We compare our method using
real human feedback (purple), our method using synthetic feedback provided by an oracle (shades of
blue), and reinforcement learning using the true reward function (orange). Al curves are the average
of 3 runs, except for the real human feedback which is a single run, and each point is the average
reward over about 150,000 consecutive frames.

1.10:21

Deep RL from Human Preferences

e lteratively update a policy 7 and reward function Ry:
— Run RL algorithm to update m with R; collect episodes

— Select segments £* from these episodes; let a human specify preferences &% > ¢7

— Update R to minimize “preference loss”

e Assume human preferences are noisy (Bradley-Terry model)

P& = ¢ R) =

exp{}i_, R(s},ap)}

exp{37_; R(s},al)} +exp{>°1_; R(s],a})}

— Maximize likelihood max,, Z§i>€]’ log P(&* = &7, R,) for all human provided preferences

1.10:22

Robotics Application

Few-Shot Preference Learning for
Human-in-the-Loop RL
Joey Hejna

Stanford University
jhejna@cs.stanford.edu

Dorsa Sadigh
Stanford University
dorsa@cs.stanford.edu

Donald Joseph Hejna |1l and Dorsa Sadigh, (2023). Few-shot preference

learning for human-in-the-loop rl. In Conference on Robot Learning, pages
2014-2025

Pre-training Online Adaptation

Rhgle PR B

2

T I
"

V) —

p(als) P

Segments 33,0,

Wincow Open Bt Pres.

Segments ay, 6,

Figure 1: An overview of our method. Pre-training (left): In the pre-training phase we generate
trajectory segment comparisons using data from a family of previously learned tasks and use them to
train a reward model. Online-Ad: (Right): After 1 the reward model, we adapt
it 10 new data from human feedback use it to train a policy for a new task in a closed loop manner.

https://sites.google.com/view/

few-shot-preference-rl/home



http://link.springer.com/10.1007/978-3-642-33486-3_8
https://proceedings.neurips.cc/paper/7017-deep-reinforcement-learning-from-
https://proceedings.neurips.cc/paper/7017-deep-reinforcement-learning-from-
https://proceedings.mlr.press/v205/iii23a.html
https://proceedings.mlr.press/v205/iii23a.html
https://sites.google.com/view/few-shot-preference-rl/home
https://sites.google.com/view/few-shot-preference-rl/home
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1.10:23
.
1.11 Safe Learning
(slides by Wolfgang Hénig)
Safety
What might “safety” refer to in safe learning?
1.11:1
Motivation
Model-driven approaches Data-driven approaches Combined approaches
Safe
N -
L Model
Only a small part of the world
can be accurately modeled.
There is a clear boundary
between what can be
accurately modeled (and is
safe) and what cannot be
accurately modeled (and is
unsafe).
Unsafe
fi Strong within specific contexts Highly generalizable to new contexts Generalizablebz:,r:ﬁl‘;aaf:ev: ki G|
Chall Generalization to new contexts Providing hard guarantees Safely and etlﬁr::li(irg‘lynesxploring the

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Sigi Zhou, Jacopo Panerati, and Angela P. Schoellig, (2022). Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411-444

1.11:2
Outline
e Definitions of Safety and Safe Learning
e Overview of Existing Solutions (& Case Studies)
e Discussion / Open Challenges
1.11:3

environment/task parameters

instructions/lang./goal info g
physics parameters ©

What is learned?

state evaluations state controls plans/anticipatior
@ u,

rewards 1y ) »

value V () waypoints/subgoals :

trajectory (e,v. 1)

Quvalue Q(x, u) observations acton plan ook

‘constraint ¢(x) Y


https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
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e Consider policy 7 : &t — ut

e Safety means (intuitively) that if we rollout 7 (z¢41 = f(z¢,m(x¢)) Vt), we never end up
in a “bad” state (e.g., collision, crash, stability/tracking) for “valid” start states zo

e In some cases, safety should apply while learning as well

1.11:4
Definition of Safety (1)
e Dynamics 241 = fi (@, uk, wi)
oz, € X (state)
e u € U (action)
e wi ~ W (process noise)
e Why fi and not f7?
. . N-1
e Objective J(zo.n,uo:n—1) = IN(zN) + D210 lk(Tr, ug)
e Safety constraints
e State constraints (e.g., no collisions)
e Input constraints (e.g., actuation limits)
e Stability guarantees (e.g., robot converging to desired reference path)
1.11:5
Definition of Safety (2)
Soft constraints Probabilistic constraints Hard constraints
Safety level | Safety level Il Safety level lll
Possible No violations No
minimal with high violations
violations probability L
Distribution
of possible Path
| pathsthe — ) | traversed by — |
robot could the robot
traverse

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and Angela P. Schoellig, (2022). Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411-444

1.11:6

Definition of Safety (3)

e Hard constraints (safety level 3)

o (wk, up, wp) <O Yk Vj


https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
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e Chance constraints (safety level 2)

Pr(c] (zk, up, wp) <0) >p' Yk Vi p? €[0,1]

e Soft constraints (safety level 1)

c{;(xk,uk,wk) <e Vk Vj
le(€) > 0 (Cost function term)

1.11:7

Definition of Safe (Control) Learning

Safe Robot Control Problem

min J(X0:n, Wo:n—1) + le(€)
TO:N 1,€
s.t. Xg41 = fi. (Xk, Uk, W), Wi ~ W, Vk € {U\ 1}

hard, probablistic, or soft safety constraints c,
& Dynamics

Xy = X, Uncertainty

0 = 20, Each component may be
up = e (Xk) unknown or partially known!

1. System Model f
Safe Learning Control (SLC) Design
SLC : (P,D) —

Prior Knowledge J L Data
P={J.f,c} D = {x®,u®, M, 10}i=D

3. Safety Constraints ¢

2.Task J
(e.g. following a desired path)

1.11:8

Relationship to (Classic) Controls

e Robust control
e Assume disturbance bounds known
e Find fixed controller that works even in the worst-case
e Adaptive controls
e Assume environment has varying parameters © (not directly observed)
e Controller changes online (e.g., by estimating ©)

e Tube-based Model Predictive Control (MPC)

e Robust control in MPC framework: use tighter constraints to account for unmodeled dynamics

1.11:9
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Relationship to (Classic) Controls
Control Approach
Hard Constraint
Satisfaction s prior model
(Safety Level Il / (possibly with
/ bounded
2 uncertainties,
Probabilistic model )
Constraint * MPC
_‘?_{ - Satisfaction + adaptive control
:ZB, g (Safety Level II) * robust control
£ ’
g3 )
S Soft Constraint
- Satisfaction
(Safety Level |)
No Guarantees
Known Imperfect Knowledge of the Dynamics Model Unknown
Dynamics (Increasing Unstructuredness of the Problem) Dynamics
1.11:10
Relationship to (Classic) RL
Control Approach
Hard Constraint
Satisfaction ~ prior model
(Safety Level lll) / (possibly with
/ bounded
> model uncertainties)
Probabilistic
Constraint A
5 Satisfaction + adaptive control
3 g (Safety Level Il) * robust control
- .
g3 .
S Soft Constraint
- Satisfaction
(Safety Level )
' data datacollected
/N from interacting
No Guarantees e with the
Known Imperfect Knowledge of the Dynamics Model Unknown RL Approach
Dynamics (Increasing Unstructuredness of the Problem) Dynamics PP
1.11:11

Outline

e Definitions of Safety and Safe Learning
e Overview of Existing Solutions (& Case Studies)

e Discussion / Open Challenges

1.11:12
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Existing Solution Strategies

(i) Safely Learn Uncertain Dynamics
(if) RL that Encourages Safety and Robustness
(iii) Safety Certification

[Online Adaption/Learning (dynamics, cost function, constraints, control parameters) vs Offline
(update in batches)]

1.11:13

Existing Solution Strategies

Increasing safety
guarantees

Hard constraint gerfiaﬁ':tyion
satisfaction Safely learning Stability
(safety level Ill) uncertain dynamics

Probabilistic
constraint
satisfaction
(safety level Il)

(Section 3.3.1)
Constraint set (Section
332

Learning adaptive
control (Section 3.1.1)
Learning robust
control (Section 3.1.2)
Learning robust MPC (Section 3.1.3)

Standard Safe model-based RL (Section 3.1.4)
control
approaches RL that safety and rok
Soft constraint Safe exploration and optimization (Section 3.2.1)
satisfaction Risk-averse and uncertainty-aware RL (Section 3.2.2)
(safety level I) Constrained MDPs and RL (Section 3.2.3)
Robust MDPs and RL (Section 3.2.4)
No Standard RL
guarantees
Increasing
reliance
Known Prior linear  Prior control- Prior structured Prior generic  Unknown on data
dynamics dynamics affine nonlinear nonlinear dynamics
dynamics dynamics dynamics

Imperfect prior knowledge/model
(i.e., dynamics uncertainty)

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and Angela P. Schoellig, (2022). Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411-444

1.11:14

Strategy lll: Safety Certification: Constraint Set
o Key idea
e Learn policy “as usual”
o At runtime, apply a safe action ugfe = argmin,, |t — Uearmed||? such that z 1 is safe
e Safe states can be computed by
e Control Barrier Functions (CBFs)
o Hamilton-Jacobi Reachability Analysis

e Predictive safety filters
[keep track of safe control inputs that could steer back to a known safe state]

1.11:15



https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211
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Strategy llI: Safety Certification: Constraint Set
e More Advanced
o If safety layer is differentiable — end-to-end training (e.g. [90])
o Learn safety filters directly

Data-Driven Safety Filters

HAMILTON-JACOBI REACHABILITY, CONTROL BARRIER FUNCTIONS,
AND PREDICTIVE METHODS FOR UNCERTAIN SYSTEMS

P WABERSICHS, ANDREW . TAYLOR, JASON L. CHO,
KQUSHIL SREENATH, CLAIRE J. TOLIN. AARON D. ANES,
nd NELANE 1 ZELINGER

Kim P. Wabersich, Andrew J. Taylor, Jason J. Choi, Koushil Sreenath, Claire J. Tomlin, Aaron D. Ames, and Melanie N. Zeilinger, (2023). Data-Driven Safety
Filters: Hamilton-Jacobi Reachability, Control Barrier Functions, and Predictive Methods for Uncertain Systems. IEEE Control Systems, 43(5):137-177

1.11:16

Strategy lll: Safety Certification: Stability

e Stability: (informal) Can the robot track the reference, even with (small) disturbances? [Formal
proofs via Lyapanov functions or contraction theory]
e Typical assumptions:
e Bounded disturbance
e Bounded change in disturbance (Lipschitz continuous with known Lipschitz bound)
e Unbounded control authority
e Lipschitz-based: Treat neural network as “disturbance”; limit magnitude and Lipschitz bound during
training (Spectral Normalization) (e.g., [100])
e Region of Attraction: Lyapunov Neural Networks [88]

1.11:17

Case Study: Neural Lander (based on slides from Shi)

| MG +C@.d)q+9(@ =u+ /(0.0 |

U f(qg,q,u) is the unknown aerodynamics depending on u
0 Idea: use a DNN f (g, ¢, ) to approximate f (g, d, 1)
O Q: How to guarantee stability?

L

e
easy to model
and symbolic

much harder to
model!

Neural-Lander
[Shi et al., ICRA'19]

Video: https://youtu.be/FLLsGOS78ik

1.11:18
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Case Study: Neural Lander (based on slides from Shi)
U Do we have to constraint the DNN? Yes! If we don't:

Learning perspective: f can not generalize ‘ ‘ Control perspective: closed-loop instability

training set .
Lipschitz constrained ~ w/o constraint
15
2D heatmaps of w0z
the learned f 05 w8
i 0.0
W o S s
-2 -1 0 1 -2 -1 0 1
vz (m/s) vz (m/s)
1.11:19
Strategy Il: RL that Encourages Safety and Robustness
e 1. Safe Exploration and Optimization
e 2. Risk-averse RL and uncertainty-aware RL
e 3. RL for Constrained MDPs (CMDPs)
e 4. RL for Robust MDPs
1.11:20

Strategy Il: RL that Encourages Safety: Safe Exploration

e Safe Exploration: only allow the policy to explore safe states

Safe Exploration in Markov Decision Processes

Teodor Mihai Moldovan MOLDOVAN@CS.BERKELEY .EDU
Pieter Abbeel PABBEEL@CS.BERKELEY.EDU
University of California at Berkeley, CA 94720-1758, USA

a.2

Figure 1. Starting from state S, the policy (aababab. ..) is
safe at a safety level of .8. However, the policy (acccc...)
is not safe since it will end up in the sink state E with
probability 1. State-action Sa and state B can neither be
considered safe nor unsafe, since both policies use them.

Teodor Mihai Moldovan and Pieter Abbeel, (2012). Safe exploration in Markov decision processes. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, ICML'12, pages 1451-1458

1.11:21
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Strategy Il: RL that Encourages Safety: Safe Exploration

e Safe Exploration: only allow the policy to explore safe states

Dl ity -

(a) Based on the available infor- (b) The safe explorer successfully (c) The adapted R-mAX explorer
mation after the first step, moving uncovers all of the map by avoiding gets stuck before observing the en-
South-West is unsafe. irreversible actions. tire map.

Teodor Mihai Moldovan and Pieter Abbeel, (2012). Safe exploration in Markov decision processes. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, ICML'12, pages 1451-1458

1.11:22

Strategy Il: RL that Encourages Safety: Safe Exploration

e Safe Optimization: Minimize cost function without sampling inputs that violate safety constraints,
e.g., SafeOpt [7]

Pertormance J(a)

Inputs a Inputs a Inputs a

(a) Initial, safe parameters. (b) After 5 evaluations: local maximum found.  (c) After 13 evaluations: global maximum found.
Safe set 8, (red): Could be potential maximizers M,, (green) or expanders G,, (magenta)

1.11:23

Case Study: SafeOpt

Algorithm 1: Modified SAFEOPT algorithm

Inputs: Domain A
Safe threshold Jiin
GP prior (k(a;, a;), ¢2)
Initial, safe controller parameters a;
1 Initialize GP with (a9, J(a)) e Update sets using GPs
2 forn=1,... do
3 S,+—{acAll, = Jun}
4 M, — {a€ S, | uy(a) > maxa l,(a’)}
5 Gn {a €S, ‘ gn(a) > ﬂ}
6 a, ¢ argmaX,cg, uaq, Wnla)
. 1
8
9

e From the union of safe potential maxi-
mizers or expanders, measure where the
uncertainty is highest

Obtain measurement .J(a,,) + J(a,) + w,
Update GP with (a,,, .f(a”))
end

1.11:24

Case Study: SafeOpt

Application: Safe controller gain tuning
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Video: https://youtu.be/GigNQdzc5TT

1.11:25

Strategy Il: RL that Encourages Safety: Safe Exploration

e Learning a safety critic: learn a Q-function that predicts “safety”, e.g., [114]

Pretrain Q] iy, Online RL

Dotfline Execute Recovery Policy

8t Query a; ~ Taax(*[8¢)  Evaluate Safety |

(unsafe)
!
O N ml.

> Erisk

Execute Task Policy

AT = Erigk
Q"-""“(.' 8 (saf]e)

Recovery RL: For intuition, we illustrate Recovery RL on a 2D maze navigation task where a constraint violation corresponds to hitting a wall. |

1.11:26

Strategy II: RL that Encourages Safety: Risk-averse RL

e Learn/estimate risks (e.g., probability of a collision)
e At runtime, prefer actions with low risk (e.g., MPC planner)

1.11:27



https://youtu.be/GiqNQdzc5TI
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Case Study: Agile But Safe [52]
(i) Stage 1: Policy training. (a) Training | (b) Deployment
Ground Truth ‘ | Joi
: Joint Targets
Proprioception ——, Joint Targets \
- Exteroception Agile \
Navigation Policy ' PD Controller
Command RL Optimizer | st
< !
" ‘ 3 Twist
ot Joint Targets | A A « Command
. . Policy 1
Proprioception RL Optimizer 1
(ii) Stage 2: Network training from agile policy rollout data. somtne |
Reach, | -
igation  Twist - B AN Safe Twist
Command Command PHOCEr s Safe 1
— Reach-Avoid Vzlue Network
Agile Train
_ Policy Dataset Value Network oy
Rollout t
Train dicti : ’
P epnon 1 P
T i le Ray Prediction
1 Esuma(or Network
' I L3 1
( ) ) (— ) ) i ( Robot )
Web: nttps://agile-but-safe.github.io/

Strategy II: RL that Encourages Safety: RL for CMDPs

“However, most of the work in this area remains confined to naive simulated tasks, motivating
further research on their applicability in real-world control.”

1.11:29

Strategy Il: RL that Encourages Safety: RL for Robust MDPs

e Robust Adversarial RL [84]

HalfCheetah

o to disia

085 10 i S
Frcton costicant

e Domain Randomization

Train two policies: a robust policy and a
destabilizing adversary (that can apply
random forces on the robot)

Trained iteratively

1.11:30

Strategy |: Safely Learn Uncertain Dynamics

e 1. Learning Adapative Control
e 2. Learning Robust Control

e 3. Learning Robust MPC

e 4. Safe Model-based RL

1.11:31



https://agile-but-safe.github.io/
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Outline

o Definitions of Safety and Safe Learning
e Overview of Existing Solutions (& Case Studies)

e Discussion / Open Challenges

1.11:32

Open Challenges

e Broader class of robots (hybrid dynamics, multi-robot, soft-robot, ...)
e Scalability & Sampling/Computational Efficiency

e Imperfect State Measurements

e Verification of Safety-Related Assumptions

e Automatic Inference about What is Safe

1.11:33

Discussion

e What about other learning problems?

e Learning planners that output waypoints/trajectories (rather than a policy that outputs one
action)?

e Using humans as input (e.g., through language)?
e Including perception (e.g., y — u)

e We discussed Safe RL and safe dynamics learning; What would Safe Imitation Learning be?
What would Safe Inverse RL be?

e How would you safely learn how to fly from scratch?

1.11:34
Conclusion
e Three Safety Levels: soft constraints, chance constraints, hard constraints
e Safety filters can be easily used, but are difficult to design for uncertain dynamics
e Encouraging safety has other advantages (e.g., sim-to-real transfer)
e Many practical challenges remain, especially for full robotic solutions
1.11:35

1.12 Manipulation & Grasp Learning

(slides by Marc Toussaint)
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Outline
e Manipulation Intro
e Background on Grasping
e Grasp Learning Methods
e Briefly: Other Manipulation Learning

1.12:1

Manipulation is a Core Challenge in Robotics!
o Recall the "Robotics Essentials Lecture”
— Robotics is about Articulated Multibody Systems

— Objects in the environment are part of the “multibody system” (slide 21); have their own DOFs,
but are not articulated

— hybrid dynamics: on-off switching of manipulability; friction, stiction, slip, non-point contacts

e Think back about the last 5 lectures & exercises
— dynamics learning, imitation learning, RL, InvRL, safe learning
— Most work: state space <+ robot configuration (Hopper, Walker, helicopter, UAVs, quadropeds)
— Few works involved game environments: Spacelnvaders, Pong

— Some works about image-based manipulation of single object: image <> state

1.12:2

Manipulation — Definition

e Matt Mason:
Manipulation is when an agent moves things other than itself.
Matthew T. Mason, (2018). Toward Robotic Manipulation. Annual Review of Control, Robotics, and Autonomous Systems, 1(1):1-28

e My view: General-purpose Manipulation <> Ability to reach any physically possible environment
configuration

e Earlier work/definitions was fully focussed on grasping; now includes pushing, throwing, sticking,
tools, ropes, any means...

e Great Lecture:
Russ Tedrake, (2023). Robotic Manipulation - Lecture Website

1.12:3

instructions/lang./goal info ¢
physics parameters ©

Manipulation Learning

. state controls
e What is learned?
rewards ry
value V()
Q-value Q(z, u) observations.
constraint ¢ () e

waypoints/subgoals z¢,
trajectory (41
action plan a1,

e Policy: Image — Controls
— Grounded in MDP formalism: x¢,ut — 7¢, 41

— is about the control process in fine time resolution

e Solutions/Constraints: Image — grasp pose, push pose
— Not about the control process; no MDP formalism; no rewards, but x +—>success/no-success

— The learned model predicts successful grasps, push poses, throw parameters, etc


https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-060117-104848
https://manipulation.csail.mit.edu/index.html

94 Robot Learning, Marc Toussaint

— These are then executed using standard control theory

1.12:4

Outline
e Manipulation Intro
e Background on Grasping
e Grasp Learning Methods
o Briefly: Other Manipulation Learning

1.12:5

Grasping Background

See also Chapter 12 of
Kevin M. Lynch and Frank C. Park, (2017). Modern Robotics

1.12:6

Contacts
e Contact between two bodies — definitions:
— configuration ¢ = (q1,g2) (with g; € SE(3) pose of ith body)
— Their shapes define the pairwise signed-distance di2(q1, ¢2) (and its gradient)
— Two nearest points p1, p2 are called witness points
— We also have the contact normal n € R3
1 P
Lyt
e Multiple contact forces on one body:
— One body, C contact points at position p;, each creates wrench (f;,7;) € RS at p;, totals:

c C
ftotal _ ZfZ 7 total _ Z” + fi X (pi — ¢)
i=1 i=1

— Newton-Euler equation describes the resulting acceleration:
ftotal mo
(T‘Ota'> B (Iu';er X Iw)

1.12:7

Since “Manipulation is when an agent moves things other than itself” these equations “fully de-
scribe” what manipulation is about: Creating contact forces to appropriately accelerate objects.

1.12:8

Contacts

e Contact Friction:
— Point finger can not transmit torque == 7; =0 (better: patch models)

— Point finger sticks only when tangentil force f= < uft (f+=nn"f, f==f—f4


https://books.google.com/books?hl=en&lr=&id=5NzFDgAAQBAJ&oi=fnd&pg=PR11&dq=modern+robotics+book&ots=qsJmY4kXPh&sig=o1uhr6h_eJKF33_HBe2xZaT32Ow
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— The set F; = {f; : f7 < puf;i-} is called the friction cone

LS T
1 f) 1,
tan™
[z
e Force closure:
— A contact configuration {(p;,n;)}<_, with friction coeff ;i creates force closure

< we can generate (counter-act) arbitrary f°2! and 7t by choosing f; € F; appropriately.
& The positive linear span of the fiction cones covers the whole space of (ftot2l rtotal) ¢ RS

1.12:9

Force Closure & Force Closure Metric & Form Closure & Caging

e Force closure: The contacts can apply an arbitrary wrench (=force-torque) to the object.

e Force closure metric: Limit finger force |f;| < 1 and compute radius (=origin-distance) of convex
hull

e Form closure: The object is at an isolated point in configuration space. Note: form closure <<
frictionless force closure

e Caging: The object is not fixated, but cannot escape

1.12:10
Outline
e Manipulation Intro
e Background on Grasping
e Grasp Learning Methods
e Briefly: Other Manipulation Learning
1.12:11

Grasp Learning

e What is learned?
— Simplified parallel gripper:

— Input: RGB-D image of scene
— Output: Set of grasps (=gripper poses ¢&PPe" € SE(3)) in the scene:

— Alternative output: A network that can score any proposed grasp

e Training data: pairs of scene (usually converted to point cloud P;) and grasps

D ={ (Ps,{g:,:}) }f=1
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1.12:12

GraspNet 1

e Focusses on data collection (details later)

GraspNet-1Billion: A Large-Scale Benchmark D= {(P s {(P € P, U, D ) R’ w)z})}
for General Object Grasping N v
qeripper ESE(3)
Hao-Shu Fang, Chenxi Wang, Minghao Gou. Cewu Lu’ e Given data, they propose architecture

Shanghai Jiao Tong University
fhacshuGgnail.con, {wex1997,gmh2015, lucewn)s st edu.cn
Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu, (2020).
Graspnet-1billion: A large-scale benchmark for general object grasping. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11444-11453

— First PCL — v/success classifier per point
p
— Then predict D, R, w

— with separate loss functions for each part

ApproachNet —>

Point
Enconder

nux (3+C)

n2x (3+4C)

OperationNet

= | U"
e SR
! ToleranceNet — & [ Grasp)
N— »

i (3+€)
(a) (d) —
Input: M samples /’\pproafh scores K grouped - - Output:
N points w. features clusters. — gty Operation K’ Grasps

1:5,
. v/w

= _ objectness Vzppma:hlng
vectors

L parameters
by

1.12:13

GraspNet 2

AnyGrasp: Robust and Efficient Grasp Perception in
Spatial and Tempnml Domains

e Much more complex architecture
b 1655 https://youtu.be/dNnLgAGreec

Hao-Shu Fang, Chenxl Wang Hong_ue Fang Mlnghao Gou, Jirong Liu, H e .
Hengxu Yan, Wenhai Liu, Yichen Xie, and Cewu Lu, (2023). Anygrasp:  © Also dynamic (temporally stable) predictions:
Robust and efficient grasp perception in spatial and temporal domains. https://www.youtube.com/watch?v=207Uo0xeL1lk

IEEE Transactions on Robotics

.

Cosine Simlriy
Orxan

Consspondenes Mam

Gmmﬂry Processing Module ‘Temporal Association Module

1.12:14

Other Grasp Learning Work

e Classic: Identifying “antipodal” grasps in point clouds:
Andreas Ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt, (2017). Grasp Pose Detection in Point Clouds. The International Journal of Robotics

Research, 36(13-14):1455-1473

e Classic: DexNet family:
Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu

Liu, Juan Aparicio Ojea, and Ken Goldberg, (2017). Dex-Net 2.0: Deep

Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics

https://www.youtube.com/watch?v=i6K3GI2_EgU


http://openaccess.thecvf.com/content_CVPR_2020/html/Fang_GraspNet-1Billion_A_Large-Scale_Benchmark_for_General_Object_Grasping_CVPR_2020_paper.html
https://ieeexplore.ieee.org/abstract/document/10167687/
https://ieeexplore.ieee.org/abstract/document/10167687/
https://youtu.be/dNnLgAGreec
https://www.youtube.com/watch?v=2O7UoOxeLlk
http://journals.sagepub.com/delete_delete_delete_doi/10.1177/0278364917735594
http://arxiv.org/abs/1703.09312
http://arxiv.org/abs/1703.09312
https://www.youtube.com/watch?v=i6K3GI2_EgU
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e More from the “RL” side (“closed loop grasping”):
Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser, (2020). Grasping in the wild: Learning 6dof closed-loop grasping from low-cost demonstrations.
IEEE Robotics and Automation Letters, 5(3):4978-4985
https://www.youtube.com/watch?v=UPJjpIhXpZ8

Contact-GraspNet

Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox, (2021). Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes. In
2021 IEEE International Conference on Robotics and Automation (ICRA), pages 13438-13444

https://www.youtube.com/watch?v=qRLKYSLXEIM

Using Diffusion Models
Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki, (2023). Se (3)-diffusionfields: Learning smooth cost functions for joint grasp and motion
optimization through diffusion. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 5923-5930

https://www.youtube.com/watch?v=Tk613WsPGMY

1.12:15

Grasp Data Collection

o My view:
— All of the above papers show: If we have good data, we have good ideas on how to design ML
architectures to predict grasps

— Data Collection is the key!

e Two approaches:
— Model-based labels (grasp theory, force closure)

— Simulation-based labels

1.12:16

Model-based Grasp Labels

e GraspNet-1Billion and DexNet 2.0 papers:
— For every point in the scene, for every (or sampled) approach direction, every offset/roll/width

— Compute a classical grasp score: Force closure metric

— Requires knowledge of ground truth object poses and shapes — precise object pose estimation

Object Models

6D-Pose 6DoF Grasp Poses

o %
‘ KinectdA  Realsense

Multi-Cam

Rectangle-based
Grasp Poses

Instance Masks

Point Clouds

Rich Data Dense Annotations

1.12:17

Model-based Grasp Labels

e So, force closure theory is the origin of wisdom here!

e The learning machinery “only” transfers it to the real world — predicting force closure grasps based
on real RGB-D


https://ieeexplore.ieee.org/abstract/document/9126187/
https://www.youtube.com/watch?v=UPJjpIhXpZ8
https://ieeexplore.ieee.org/abstract/document/9561877/
https://www.youtube.com/watch?v=qRLKYSLXElM
https://ieeexplore.ieee.org/abstract/document/10161569/
https://ieeexplore.ieee.org/abstract/document/10161569/
https://www.youtube.com/watch?v=Tk6l3WsPGMY
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e Cp. to imitation learning from a privileged expert! Here the privileged expert is the force closure
metric assuming known object shapes.

1.12:18
Simulation-based Grasp Labels g
wonl MR GO g el ; &
Clemens Eppner, Arsalan Mousavian, and Dieter Fox, (2021). Acronym: A large-scale gra # = s Stes . sam 1 s ¥ «w EEE International Conference
on Robotics and Automation (ICRA), pages 62226227 T E 2 ‘_' ¥ - m"x; § we
® echw =3 ﬂ» wm g i

i ?ﬁn“‘hﬁ :;’:x‘ ;
e Use generic rigid body physics simulator: e
— Throw random objects (from ShapeNet) into a scene (and render RGB-D image)
— generate random grasps — smartly engineered!
— Close and lift gripper — measure in-hand motion during both phases
— “we simulate 17.744 million grasps, out of which 59.21% (ap- proximately 10.5 million grasps)
succeed.”

e So, the physics simulator (=Newton-Euler equations + contact models) is the origin of wisdom
here!
— Again, cp. to imitation learning from privileged expert (=simulation)

1.12:19

Grasp Learning Summary

e Rather advanced for standard parallel gripper; less for more complex hands
e In my view, proper data generation is key — existing methods still have deficits
e Given proper data, the advances in learning are unstoppable (stronger architectures, diffusion, etc)

1.12:20
Manipulation Learning
e Manipulation is more than “pick-and-place”
— manipulating articulated objects
— pushing, throwing
— rolling, spinning, balancing/stacking, etc.
1.12:21

Recall: Extracting Constraints in Imitation Learning


https://ieeexplore.ieee.org/abstract/document/9560844/
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Deep Visual Constraints: Neural Implicit Models
for Manipulation Planning from Visual Input

Jung.Su s Danny Driess M
Learming & Ineli

Neural Descriptor Fields:
F(3)-Fqui Object for

KPAM: KeyPoint Affordances for
Category-Level Robotic Manipulation

s Manueli®, W G, Petr Horence, Russ Tecrake

e Extract “constraints of success”, but eventually pick-and-place

1.12:22

Manipulating Learning for Articulated Objects

FlowBot3D: Learning 3D Articulation Flow to e Assumes ‘“gripper can be attached to any point on sur-
Manipulate Articulated Objects face”
. . ® Learn a mapping P — flow field F}, € R3 for each p € P
Ben Eisner, Harry Zhang, and David Held, (2024). Flow-

Bot3D: Learning 3D Articulation Flow to Manipulate Ar- https://drive.google.com/file/d/
ticulated Objects 1jiEHT--WQec5diEJE6a4dMJkBnP3d36B/view

Gt partial point oloud observetion  Preciot 3D Artolation Flow Low-Level Actions Start (Pre-Contact) Make Contact Execution (Post-Contact) Done

AERIT.

1. Grasping Phase — il
= & ] '
Diroction’ [l Planning ]
g:*? ja
1.12:23

2. Ariculation Phase

Repeat Mini Fridge

= | Da=k m,  edievsmEBER

e Similar earlier work:

UMPNet: Universal Manipulation Policy Network
for Articulated Objects

Zhenjia Xu  Zhanpeng He  Shuran Song
Columbia University
https://ump-net.cs.columbia.edu/

Zhenjia Xu, Zhanpeng He, and Shuran Song, (2022). Universal manipulation policy network for articulated objects. IEEE robotics and automation letters,
7(2):2447-2454

Init Target Position Middlel Middle2 Full  Inverse

LA
Al ER R ? ?
SHSHHGYSNRS -


http://arxiv.org/abs/2205.04382
http://arxiv.org/abs/2205.04382
http://arxiv.org/abs/2205.04382
https://drive.google.com/file/d/1jiEHT--WQec5diEJE6a4dMJkBnP3d36B/view
https://drive.google.com/file/d/1jiEHT--WQec5diEJE6a4dMJkBnP3d36B/view
https://ieeexplore.ieee.org/abstract/document/9681198/
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1.12:24

Conclusions

e Manipulation Learning is often beyond the MDP and RL framework!
e We often don't learn low-level policies, but:
— Predicting grasps in an RGB-D scene
— Predicting manipulability (flow) of articulated objects from RGB-D

— Predicting keypoints/waypoints of interaction

e BUT, | think this is sooo far away from truely understanding/learning General-purpose Manipulation!

1.12:25

1.13 TAMP & Language

(slides by Marc Toussaint)

Remaining Lectures

e June 25: TAMP & Language
e July 2: Multi-Robot Learning
e July 9: Robot Learning Discussion — Lecture Feedback — Exam Info

1.13:1

Outline

Background on Task and Motion Planning (TAMP)
Learning in TAMP

Language in Robotics

e LLMs & TAMP

1.13:2
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Task and Motion Planning (TAMP) examples:

Hartmann et al. (IROS 20)

1.13:3
Task and Motion Planning (TAMP)
e What is the right level of “abstraction” to reason about manipulation?
— Low-level motor commands? (Torques?)
— Mid-level kinematic commands? (6D endeff target position/velocity)
— Actions/skills? (Pick, place, push, throw, hit, how long is the list?)
1.13:4

Abstractions
e What does the Al/RL researcher say about abstractions?
— Hierarchical MDPs, Options, Hierarchical RL
— (Classical Al: Landmarks in A* search)

— Abstraction learning is hard:
— Given action primitives — state abstractions clear (Konidaris' work)

— Given state abstractions — action primitives clear (“skill discovery”)

— Classical ideas for state abstractions: identifying bottlenecks (=doors in configuration space;
McGovern, Barto 2001)

— Modern view: Data-driven: Assume tons of demonstrations and cluster-segment them

e What does the Roboticist say about abstractions?
— Force level, motion level, task level
— Task level: discrete symbolic state and actions (STRIPS/PDDL)

1.13:5
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STRIPS/PDDL

(:action move

:parameters (?r ?locl ?loc2)

:precondition (and (Robot 7r)
(Location ?locl)
(Location ?loc2)
(At 7r 7locl))

:effect (and (At ?r ?loc2)

(not (At ?r ?locl)))

(At robot shelf)
(At apple shelf)
(At banana shelf)
(HandEmpty robot)

Move (shelf, table)
Move (shelf, Pick(apple,
desk) shelf)

(At robot shelf)
(At banana shelf)
(At banana shelf) (At banana shelf) (Holding robot apple)

(At robot table)
(At apple shelf)

(At robot desk)
(At apple shelf)

rabot) robot)

— A symbolic state s; is a set of grounded literals

Pick(banana, shelf)

(At robot shelf)
(At apple shelf)
(Holding robot banana)

— A symbolic action operators defines a precondition and effect

— Eventually, his defines the set of possible successor states s:41 € succ(sy)

1.13:6

Task and Motion Planning

e Task-level is defined by

— symbols (predicates), objects (constants), and action operators

— initial state sg, goal sentence, action operators imply succ(s¢)

e Motion-level is defined by

— world configuration space X, goal configurations Xgoa C X

— feasible space X; 9 C X depending on logic state s and entry point 6 (action parameter)

[Xs,¢ is called foliation, or multi-modal space

e Path-Finding formulation of TAMP:

—  multi-modal motion planning (MMMP)]

— Find sequence of (s;, ;) of symbolic states and continuous feasible paths 7; that lead to goal:

- Paths: 7; : [0,1] = X, g,
— Continuity: 7;(0) = 7-1(1)

— Entry points: 0; = 7;.1(1) (e.g. action parameter, grasp, lower-dim feature of 7;.1(1))

- Goal: sk |=goal, 7k (1) € Xgoal

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and Tomas Lozano-Pérez, (2021). Integrated Task
and Motion Planning. Annual Review of Control, Robotics, and Autonomous Systems, 4(1):265-293

1.13:7



https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-091420-084139
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TAMP as Logic-Geometric Program (LGP)

1 skeletons geometry,
min c(z(t)) dt Kinjphysics
S1K 0 - Constraints
z:[0,KT]—=X NLP

s.t.  z(0) = zo, tome H
Yecio,r) 1 P(a(t), sp(e)) <O ot
Vieft,..,k} ¢ P@(tr), sp1,5%) <0
SK ': goal’ Vke{l""K} P Sk € SUCC(Sk_l) infeasible subgraphs -> skeleton parts -> actions

A* heuristics from NLP bounds & geometry
o Skeleton s1.¢ defines schedule of physical modes
o Constraints ¢, ¢ define correct physics differentiable e Solving implies searching over s1.x and
[inequalities subsume equalities; z = (z, &, &)] solving the corresponding NLP

Marc Toussaint, (2015). Logic-Geometric Programming: An Optimization-Based Approach to Combined Task and Motion Planning. In [JCAI, pages 1930-1936
Marc A. Toussaint, Kelsey Rebecca Allen, Kevin A. Smith, and Joshua B. Tenenbaum, (2018). Differentiable physics and stable modes for tool-use and

manipulation planning

1.13:8

renderings(!) of example solutions...

(IROS 20) | -

(R:SS 20)

-

[}
(IROS 20) 1.13:9

Abstractions

e What does “LGP" say about abstractions?
— There are two levels: the convex level (NLP), and the non-convex (discrete decisions)

1.13:10

QOutline

e Intro to Task and Motion Planning (TAMP)
e Learning in TAMP


https://argmin.lis.tu-berlin.de/papers/15-toussaint-IJCAI.pdf
https://dspace.mit.edu/handle/1721.1/126626
https://dspace.mit.edu/handle/1721.1/126626
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e Language in Robotics
o LLMs & TAMP

1.13:11

Is model-based TAMP a dead end?

e LGP formulates TAMP as model-based optimization problem
— Assumption of having a world model is unrealistic (state estimation from vision ill-posed...)

— High computation time for large problems — why plan from scratch every time?

e Opportunities for learning:
— Replace exact model by learned constraints ¢(z)
— The LGP definition actually only needs constraints ¢(z), no explicit world model
— Instead of hand-defining these from a model — image-conditional neural models ¢g(x;J)
— Learn to predict plans
— Instead of solving from scratch, learn to predict promising actions ai.x from the scene

image
1.13:12
e Replace exact model by learned constraints ¢(x):
1.13:13
Deep Visual Constraints: Neural Implicit Models
for Manipulation Planning from Visual Input
Jung-Su Ha Danny Driess Marc Toussaint
Learning & Intelligent Systems Lab, TU Berlin, Germany
(a) No object model (b) See (c) Plan (d) Act
e Learn ¢(z,J) with V inp_ut images J s.t.: e Data generating in simulation:
- ¢(z;9)=0 <z is correct grasp — Collect trial-and-error data on correct
- ¢(x;9) =0 <« is correct hanging grasps and hanging

Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022). Deep visual constraints: Neural implicit models for manipulation planning from visual input. IEEE
Robotics and Automation Letters, 7(4):10857-10864

1.13:14



https://ieeexplore.ieee.org/abstract/document/9844753/
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Deep Visual Constraints: Network Architecture

interaction points
Py i}

Fig. 2: The interaction feature prediction scheme of DVC

Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022). Deep
visual constraints: Neural implicit models for manipulation plan-
ning from visual input. /EEE Robotics and Automation Letters,

7(4):10857-10864

sim)]

e Camera views J = {(I', K1), ..., (IV,KV)}
Wanted: image-based constraint model

#(z;9)

e First train a d-dimensional field representation
y(p;9) = 3 32, MLP(UNet(I*, K'(x)), K*(x))

[p € R3, pre-trained for shape decoding (SDF pre-
diction)]

e Function is queried at finite set of interaction points

p1(z),..,pr () to get the feature
&(z;9) = MLP(y(p1(2);9), .., y(pi (2);9))

[fine-tuned for manipulation success (trial & error in

1.13:15

Deep Visual Constraints

(No search over skeletons, no reactive MPC, just optimal path for given sequence

of constraints.)

1.13:16

Similar: Learn Dynamics Constraints

Learning Multi-Object Dynamics with Compositional
Neural Radiance Fields

Marc Toussaint
TU Berlin

Danny Driess Zhiao Huang Yunzhu Li Russ Tedrake

TU Berlin UC San Diego MIT
Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint,
(2023). Learning multi-object dynamics with compositional neural radiance
fields. In Conference on Robot Learning, pages 1755-1768

https://dannydriess.github.io/compnerfdyn/

T e

Ay

(a) Bottom row renderings of forward predictions with dynamic model, top row ground truth (b) novel view

1

reconstruction

for arbitrary views
R at any predicted
time-step with
setof. compositional
latent vectors NeRF decoder

hservations of

the nital scene
from multiple views
estimate adjacency

estimate adjaceney
marix A from NeRF

matex A from NeRT*

Figure 2: Overview of the dynamics prediction framework. The initial scene observations are encoded with 2

ting the objects individually. Th mics model predicts

the evolution of the latent vectors. At each step, the predicted latent vectors rendered into an arbitrary
view with the compositional NeRF decoder. Refer to the appendix for visualiza of 2 and the GNN.

e Each object has a latent code zf

e learn dynamics 2%, +— zf“!

1.13:17

e Learning to predict plans..


https://ieeexplore.ieee.org/abstract/document/9844753/
https://ieeexplore.ieee.org/abstract/document/9844753/
https://ieeexplore.ieee.org/abstract/document/9844753/
https://proceedings.mlr.press/v205/driess23a.html
https://proceedings.mlr.press/v205/driess23a.html
https://dannydriess.github.io/compnerfdyn/
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1.13:18

Deep Visual Reasoning: Learning to Predict Action Sequences
for Task and Motion Planning from an Initial Scene Image

Danny Driess Jung-Su Ha Mare Toussaint

Machine Learning and Roboics Lab, Universiy of Stitgart, Germany
Max-Planck Instiute for Intellig Stutigar, Germany
Leaming and Inteligent Sysiems Group, TU Berln, Germany

- el
(d) action 3 (grasp) (e action 4 (grasp) (f) action 5 (place)
Typical scene: The yellow object should be placed on the red spot,
Howener, occupicd by the blue object. Furthermore, the yellow object
ched by the robot arm that i abl to place it on the red spot.

Danny Driess, Jung-Su Ha, and Marc Toussaint, (2020). Deep
Visual Reasoning: Learning to Predict Action Sequences for Task
and Motion Planning from an Initial Scene Image

— random generated

e Data collection D = {(S",gi,aizKi,Fi) ”

— with scene S?, goal g%, actions a’ feasibility

1: K’
Fi
“in simulation”, model-
based TAMP solver used to label feasibility

e Train a sequential policy:
m(ag; g, a1:k-1,5) =
P(3k>KJayi1.x ¢ a1k feasible] ak, g, a1:5-1, 5)
— Similar to language model: Predict next “token”

ap given previous aj.x.1 conditional g, S

1.13:19

Deep Visual Reasoning: Network Architecture

Figure 3. Proposed neural network architecture.

(a) Initial scene

depth image depth image

object mask target object mask

object mask

empty channel goal location mask

(b) Action-object image for 52p (c) Action-object image for p1ace (d) Goal- and action-object image
action with the left robot arm and  action with the left obotarm  (for pLace action) representing
the blue object that occupies the  representing placing the blue
red goal location object on the table

placing the yellow target object on
the red goal location

e Uses RNN — modern version would use transformer

e Special encoding of predicates a, g and references O (as masks)

1.13:20

Deep Visual Reasoning: Results

Generalization to Multiple Objects

One can add more objects
to the scene and still

the first action sequence
that is predicted by the
network is feasible,
although it has

never seen more than two
objects during training
(the colors are just for
visualization purposes)

Number of solved NLPs: 1
Total solution time: 1.0 s

Number of solved NLPs
Ehws e N

5 6 2 3 4 5 6
Action sequence length
Deep Visual Reasoning.

Time (total solution time) [s]

ﬂ*%%

Action sequence length
LGP Tree Search

3,000 3,000

2,000 2,000

1.000 1.000

__zd

2 3 4 5 6

Action sequence length

Time (total solution time) [s]
Time (total solution time) [s]

2 3 4 5 6
Action sequence length

e Often, the first proposed action sequence is
feasible


http://arxiv.org/abs/2006.05398
http://arxiv.org/abs/2006.05398
http://arxiv.org/abs/2006.05398
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1.13:21
Outline
e Intro to Task and Motion Planning (TAMP)
e Learning in TAMP
e Language in Robotics
e LLMs & TAMP
1.13:22

Robots That Use
Language: A Survey

Stefanie Tellex!, Nakul Gopalan?, Hadas
Kress-Gazit3, and Cynthia Matuszek*

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek,

Great survey on Natural Language Robot In-
teraction
— Using natural
robots, set tasks

language to command

— Using natural language to instruct robots,
e.g. as part of demonstrations

— Different to standard NLP or dialog sys-

(2020). Robots That Use Language. Annual Review of Control, Robotics, tems: language needs to be physically
and Autonomous Systems, 3(1):25-55 grounded
1.13:23
Natural Language Robot Interaction: Examples

Hand me the |
white table log

) Using language to ask  (d) The Gambit manipulator
or help with a shared task. follows multimodal pick-and-
ellex et al plac tions. Matuszek

(g) TUM-Rosie making pan-
cakes by downloading recipes
from wikihow.com.  Nyga

on
and Beetz (134)

b) A Baxter robot learns
da dialog, demonstrations
wd performing actions in
he world. Chai et al

©) A Pioncer AT achicving
goals specified as “Go to the
room and report the
location of the blue box.”
Dzfcak et al.

or-

forming  physic
Fasola and Matari

(i) A Bater performing a
sorting task synthesized from

©) A Jaco arm identify
ibjects from attributes, he
silver, round, and empty.”  the meeting room.”
Thomason et al et al

(1) CoBot learning to follow
© commands like “Take me to

natural language. Boteanu

Kollar oy o) ()

Figure 1: Robots used for language-based interactions

from [112]

robot asks for help

human sets task (with language & gesture)
robot “reads/comprehends” wikihow
demonstrations via dialog

human sets task (nagivation)

human sets task (object identification)

human sets task (navigation)
human sets task (manipulation)

1.13:24



https://www.annualreviews.org/delete_delete_delete_doi/10.1146/annurev-control-101119-071628
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Natural Language Robot Interaction: Datasets

Dot Type of Data [rae—
MARGO dvame | Navigeton mereromn gn s | - o
am robot to navigate a map, and the route | users/al/clasp/navigation/
followed.
Scone dnanck(@) | g and desciptions o objcts in | e . cmn. e
the image. tac12013 1sp/
Comal NIVR | Paim of tmages s logieal sagamants | 14c.p.comi. oty
T | Sk st o
CLEVR.datssst | g snd i -
@ et
— Pars of quetions nd anewre n i | ebttadan.rg
Question ulated 3D environments. The agent
Answering (A7) ;;?:“(l:h‘(oymi\‘lﬁl: the environment to “Data Sets typ|ca”y Con5|st of natu—
o aeee N huie oo r-parmi Al [ e Rl ral language paired with some form
Environmonts @) of sensor-based context information
(AR Navigution | ptred it omraeons o b oo, | 0T T about the physical environment”
@
Pracicte based mb ol concitons | gtes.camie?

paired with language instrue- | langiage.datasets

@D tions.

Cornell Instruction | Data for three separate navigation do- | github. con/clic-Lab/cits
Following mains in 3D environments, containing

Framework instructions paired with trajectories,

filivs)
command and tra- | pecple.ceail.nit.edu/
ion and mobile stetiolo/s1e/

Pairs of lan

jector
‘manipulation

Table 2: Datasets used in Language Grounding and Robotics

1.13:25

e Previous survey highlights substantial literature on Natural Language Robot Interaction before rise
of LLMs

Example: https://youtu.be/VqSb-ZZuIwI?t=2523

1.13:26

CLIP (Contrastive Language-lmage Pre-training)

“We demonstrate that the simple pre-training
task of predict- ing which caption goes with
which image is an efficient and scalable way
to learn SOTA image representations from
scratch on a dataset of 400 million (image,
text) pairs collected from the internet.”

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford " Jong Wook Kim ! Chris Hallacy ' Aditya Ramesh ' Gabriel Goh' Sandhini Agarwal'

Girish Sastry! Amanda Askell'Pamela Mishkin ! Jack Clark!Gretchen Krueger | Ilya Sutskever ) Contasive re-vaning (@) Cratedataset casifr from el e
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, W 111 B - ey
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, and Jack nnn ™
Clark, (2021). Learning transferable visual models from natural language o i [ 47| s ozt rcicton

supervision. In International Conference on Machine Learning, pages 8748—
8763

[Contrastive Training: “maximize the cosine similarity of the image and text embeddings of the N
real pairs in the batch while minimizing the cosine similarity of the embeddings of the N2 — N
incorrect pairings.]

1.13:27

CLIPort


https://youtu.be/VqSb-ZZuIwI?t=2523
http://proceedings.mlr.press/v139/radford21a
http://proceedings.mlr.press/v139/radford21a
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CLIPORT: What and Where Pathways
for Robotic Manipulation

Mohit Shridhar ' Lucas Manuelli * _Dieter Fox '* “CLIPort: a Ianguage_conditioned imitation-
sehetcs vashington.obs | BommuetsOmiAin,con | fosbes. ashisgion. o learning agent that combines the broad seman-
tic understanding (what) of CLIP with the spa-
Mohit Shridhar, Lucas Manuelli, and Dieter Fox, (2022). Cliport: What H P ”
and where pathways for robotic manipulation. In Conference on Robot tlal precision (Where) Of Transporter
Learning, pages 894-906

https://cliport.github.io/

e Trains a policy 7 : (yi,1;) — at

— top-down orthographic RGB-D y¢, language instruction [¢, pick-n-place 2D coordinates a

1.13:28

SayCan

Instruction Relevance with LLMs Combined Skill Affordances with Value Functions

6 Findanapple 05
-30 Find a coke. 06 \\\ K
. - E Find a spon 0 \
Do As | Can, Not As | Say: Grounding Lan- How would you put e |
. X an apple on the 4 Pekwheaple 02 |
guage in Robotic Affordances table? s Pkwwecsks 02 | a
y \
Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexan- 14 N et \
der Herzog, Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, and Ryan Julian, Q %0 Flace the coke ot \\ Velus
(2023). Do as i can, not as i say: Grounding language in robotic affordances. LLM : EBEAED ¥ " Functions
In Conference on Robot Learning, pages 287-318 — 20 Gotothecounter 08 -

https://say-can.github.io/

I would: 1. Find an apple, 2. ___

A
Ll e

e Use a LLM (PaLM) to predict multiple actions (with probabilities)
e Multiply each option with affordance prediction (= probability of success)

1.13:29

PaLM-E

Given <embs ... <img> Q: How to grasp blue block? A: First, grasp ye

? viT

PaLM-E: An Embodied Multimodal I

Model

Danny Driess'> Fei Xia' Mehdi S. M. Sajjadi’® Corey Lynch! Aakanksha Chowdhery * Control A:First, grasp yellow block and
Brian Ichter! Ayzaan Wahid' Jonathan Tompson' Quan Vuong' Tianhe Yu' Wenlong Huang '
Yevgen Chebotar ' Pierre Sermanet' Daniel Duckworth® Sergey Levine' Vincent Vanhoucke '
Karol Hausman ' Marc Toussaint> Klaus Greff® Andy Zeng' Igor Mordatch® Pete Florence '

Robotics at Google *TU Berlin  *Google Rescarch

e Input: Multi-modal sentence:

) - , o — Interleaves words, images (with segmenta-
Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha .
Chowdbhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, tIOn), vectors, reference—keywords
Tianhe YU, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel
Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Tou- — All token-encoded
ssaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence, (2023).
PaLM-E: An Embodied Multimodal Language Model _ Various image encodings (VIT object—
,
https://palm-e.github.io/ centric ViT, OSRT, NeRFs pre-trained)
e Output:

— Sequences of action primitives (previously
trained, RT-1)

1.13:30



https://proceedings.mlr.press/v164/shridhar22a.html
https://proceedings.mlr.press/v164/shridhar22a.html
https://cliport.github.io/
https://proceedings.mlr.press/v205/ichter23a.html
https://say-can.github.io/
http://arxiv.org/abs/2303.03378
https://palm-e.github.io/
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“Bring me the green star” “Push green blocks to the turtle”
1.13:31

Example input/output

e Prompt: Given <img>. Q: How to grasp the green object?.
Target: A: First grasp the orange object and place it on the table, then grasp the green
object.

e Prompt: Given <img>. Q: How to stack the white object on top of the red object?.
Target: A: First grasp the green object and place it on the table, then grasp the white
object and place it on the red object.

1.13:32

PaLM-E Evaluations

e Data sets:
— TAMP data (generated by our LGP-TAMP planner)
— Table data (previous RT1 paper)
— SayCan data
— Other visual/language data: WebLl, VQA, COCO, etc.
e Pre-taining:
— LLM backbone: language, VQA (WebLl, VQA, COCO)
— Encodings: reconstruction, auto-encoding
e Ablation studies:
— Varying transformer sizes
— generalization (to unseen object situations, esp. higher number of objects)
— freezing, refining, full-learning of backbone LLM or encodings
— with full/partial choice of data sets & sizes

— various image encodings

1.13:33
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PaLM-E evaluations

100%
z LLM finetune (full mixture)
g
&
5 LLM finetune (single rabot)
£ 5w
H
H L
§ 2w without pretraining
’ J [
O P pata Only  Lang. Table DataOnly ~ SayCan Data Only Full Mixture. LLM frozen (full mixture)
i (Al robols + WebL,
- m = o
Data ﬁ
i = LLM frozen (single robot)
]
oiferent modes or one model ol o 5%
Object- LLM Embodied VQA Planning Baselines Failure det.  Affordance
i e % e 6 B R PaLl (Zero-shoy) (Chen et al.[2022] 0.73 0.62
SayCan (oracle afford.) (Ahn etal [2022) v - - - - 38133 = 5B T g'gg .
PaLlI (zero-shot) (Chen etal.[2022) v - 00 00 - - - =el = = - 3
PaLM-E (ours) w/ input enc: QT-OPT Kalashnikov et al.j2018] e 0.63
State V(GT) X 994 89.8 903 883 45.0 46.1 PalM-E-12B  from  LLM+ViT LLM
State V(GT) v 1000 963 95.1 93.1 55.9 49.7 trained on scratch  pretrain  frozen
VIT+TL /(GT) V347 546 746 916 240 147 =
ViT-4B single robot X v 459 784 922 30.6 329 Singlé robot 4 X n/a 0.54 046
ViT-4B full mixture X v 70.7 934 021 4.1 746 Single robot ¥ v v 0.91 0.78
OSRT (no VQA) P o ¥ - 719751 Full mixture X v v 091 0.87
OSRT v 7 997 982 1000 937 825 76.2 Full mixture X v X 0.77 0.91
Follow Up: RT-2
et

Closed-Loop
Robot Cantrol

B
Transfer Web Knowledge to Robotic Control [ N ,—1
e B, e, e e et o .

it e

RT-2: Vision-Language-Action Models

o .
el el b I iy sl e
e e A e (R

. Levine, Yao L. Henryk Michakews g Mordatch, Kar Perteh. Kanibks Ran. A BT
Sinah =R mmm,s

Aniat Singh, Radu Sorcut, Hoong Tran, Vincent Vanhoueke, Quan m‘-v,\vmn\\M‘ktht:lhr
P Wobibart, Jiali W, e Xi, Ted Xiso, Peng Xo, Sichun Xu, Tasbe Y.

Figure 1: RT2 overview: we represent robot actions as another language, which can be cast into text tokens and trained
together with Intemetscale vision-Tanguage datascts, During inference, the (ext tokens are de-tokenized into robot
actions, enabling closed loop control. This allows del

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, in learning robotc policies, ransferting some of their generalization, semantc understanding, and reasoning o mbonc

. pe N control. roject website:

Jialin Wu, Paul Wohlhart, Stefan Welker, and Ayzaan Wahid, (2023). Rt-2: pret

Vision-language-action models transfer web knowledge to robotic control.

In Conference on Robot Learning, pages 2165-2183

® quasi-continuous actions (trained end-to-end):
“terminate Apos, Apos, Apos. Arot, Arot, Arot. gripper_extension”.

A possible instantiation of such a target could be: *1 12891 2415 101 127”. The two VLMs that we
finetune in our experiments, PaLI-X [16] and PALM-E [17), use different tokenizations. For PaLl-X,

1.13:35

Conclusion

e Levels of abstraction: Force, motion, task
e Task and Motion “Planning”: Core problem formulation of robotic Al
— TAMP theory & solvers are fully model-based
— Clear opportunities for learning: constraint learning, learning to predict plans
e Language <> task & action level
— Lots of classical literature on language grounding
— Connecting natural language with typical robot task descriptions (STRIPS/PDDL)
e Huge recent focus on marrying LLMs + TAMP + robotics

1.13:36



https://proceedings.mlr.press/v229/zitkovich23a.html
https://proceedings.mlr.press/v229/zitkovich23a.html
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1.14 Multi-Robot Learning

(slides by Wolfgang Honig)

Motivation: Multi-Robot Systems
e Multiple robots (typically in a team) with a common goal
e Typical promises:
e Achieve goal faster
e Achieve goal more robustly

o Higher flexibility (esp. heterogeneous systems)
Cheaper (?)

1.14:1
Motivation: Multi-Robot Systems
e Successful (industrial) solutions
e Warehouse logistics (Amazon Robotics, former Kiva systems)
o Aerial Drone shows (Intel, Verity Studios)
1.14:2

Motivation: Multi-Robot System Challenges

e Controls: additional constraint for inter-robot collision avoidance

e Decision Making: information sharing, task assignment, curse-of-dimensionality for centralized ap-
proaches, safety/robustness for decentralized systems

e Perception: sensing team members, sensor fusion

1.14:3

Outline
e Handling Dynamic Neighbors

e LSTMs
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e CNNs

e DeepSets

e Graph Neural Networks

e Multi-Agent Reinforcement Learning (MARL)
e Discussion / Open Challenges

1.14:4

Dynamic Neighbors
e Team of robots has time-varying neighbors/observations/communication links

e Often need to learn with time-varying input dimensionality

e Example: (Distributed) collision avoidance maps observation of neighboring robots to actions

F¥) =

e Learned functions need to be permutation-invariant and support dynamic domain cardinality

1.14:5

LSTMs [32]

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018

Motion Planning Among Dynamic, Decision-Making Agents
with Deep Reinforcement Learning

Michael Everettf, Yu Fan Chen', and Jonathan P. How}

e Key idea: Feed observations of neighbors into an LSTM (closest neighbor last)

n # const.

Fig. 3: Network Architecture. Observable states of nearby agents, 57,
are fed sequentially into the LSTM, as unrolled in Fig. 2. The final

1.14:6
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CNNs [94]

World state 2 4

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 3, JULY 2019

PRIMAL: Pathfinding via Reinforcement and
Imitation Multi-Agent Learning

Guillaume Sartoretti @, Justin Kerr ©, Yunfei Shi, Glenn Wagner, T. K. Satish Kumar,
Sven Koenig, and Howie Choset

o Key idea: Encode neighbor information as a picture

o Videos: https://goo.gl/T627XD

I

vl

Magnitude

&
v

Unit vector

¥
Obstacles Agents'  Neighbors'  Agent's

positions goal
1.14:7
Deep Sets [131]
e Any continuous, permutation-invariant function f(X) can be approximated:
tion of hidden state Learns representation of each element ]
FO=p| > o)
reX
[superposition in hidden state ]
e Improvement over Convolutional NN (CNN): continuous space, efficiency
e Example:
N
A.B_.
1.14:8

Case Study: GLAS [90]

e Goal: imitate (slow) centralized controller using only local observations: 7 : y — u

e Data: Example trajectories by solving many multi-robot motion planning instances with a centralized

planner

e Approach: Behavior Cloning + Privileged Teacher

1.14:9



https://goo.gl/T627XD
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Case Study: GLAS [90]

1. We generate trajectories using a global motion planner

10 %
obstacles

20 %
obstacles

4 robots 8 robots 16 robots
1.14:10
Case Study: GLAS [90]
2. We extract local observations and actions

" " mm >
’ 1
A0
/’ !
, }
/, |

1.14:11

Case Study: GLAS [90]

e Train (5 small feedforward networks trained jointly)
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Input

Deep Set (Obstacles)

1.14:12

Case Study: GLAS [90]

e How would one train this in practice in pyTorch? [variable number of neighbors vs. batching]

1.14:13

Case Study: Neural-Swarm2 [98]

e Goal: predict aerodynamic interaction [unmodeled physics, as a function of neighbors’ positions]

Small Robot

111

Ground Effect

e Data: Real flight tests (synchronized trajectories with poses of robots and measured accelerations
and motor commands)

e Approach: Behavior Cloning
1.14:14
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Case Study: Neural-Swarm2 [98]: Heterogeneous Deep Sets

type I(7) rom type J(j) neighbor

[Learns aggregation for }earns representation }

Inputs Heterogeneous Deep Sets
1 2

K
FRED 08 DR DR STCD

3 - X
= el \@/ > s Al
) Y

[superposition in hidden} t { , )
4 Plarge
state 3

3
fa(, ) ~ plarge (¢small(x<31>)+

¢small (x(32) ) + d)env (x(34) )

o Expressiveness: can approximate any K-Group permutation-invariant function

e Efficient: only 2K networks need to be trained

1.14:15
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Case Study: Neural-Swarm2 [98]

{Small,Smal a?ge} - SMe

(h)

—-0.4

1.14:16

Case Study: Neural-Swarm2 [98]
https://youtu.be/Y02juH6BDxo
1.14:17



https://youtu.be/Y02juH6BDxo
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Graph Neural Networks (GNNs)
e Inspiration: CNNs as graph

l I+1
(@) (b)

Christopher M. Bishop and Hugh Bishop, (2024). Deep Learning: Foundations and Concepts

1.14:18

Graph Neural Networks (GNNs)

e Graph § = (V,€)
e Basic case: learn features for each node n € V

e Use L layers with D-dimensional vector hg)

1.14:19

Graph Neural Networks (GNNs)

Algorithm 13.1: Simple message-passing neural network

Input: Undirected graph G = (V, &)
Initial node embeddings {hﬁf‘) =Xp}
Aggregate(-) function
Update(-, -) function

Output: Final node embeddings {h#)}

// Iterative message—passing
forl€{0,....,L —1} do
2l « Aggregate ({hs{? ime J\f(n)})
thl) + Update (h,({!), ZE{!))
end for
return {h&L)}

1.14:20

Graph Neural Networks (GNNs)
e Examples for Aggregate/Update:

o Aggregate({n{) : m € N(n)}) = MLP, (zmeN(n) MLPd,(hSQ))


https://link.springer.com/10.1007/978-3-031-45468-4
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M Update(h%)fzél)) = f(Wselfhﬂ('ll) + Wneighzv(%l) + b)

e Extensions to have input/output features per edge and graph [See e.g., [8]]

e Training “as usual” (on whole graphs)
e In practice: PyG nttps://www.pyg.org/ or DGL https://www.dgl.ai/

1.14:21

Case Study: Learning to Communicate for Multi-Robot Path Finding [68]

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Graph Neural Networks for Decentralized Multi-Robot Path Planning

Qingbiao Lil, Fernando Gamaz, Alejandro Ribeiroz, Amanda Prorok!

e Goal: Learn how to communicate to imitate a centralized Multi-Agent Path Finding expert
e Data: Trajectories computed by a centralized expert
e Approach: IL w/ DAgger

1.14:22

Case Study: Learning to Communicate for Multi-Robot Path Finding [68]

_____ —————— ——————— ————— ——————

" - A ———— == 1
i Dataset Generation 1 Pre-Processing i Decentralized Framework ! Training !
I Compute target path in map (W x H) ! Input tensor (Wyoy x Hroy x 3)! Encoder Communication  Action l’oliqI Predict Target!
Set up — Case #1 Stafe ij Map CNN GNN MLP 1 u(t,) u(ty)
3ed ond st

I I i(tl) ?
[
& [ 1z
Fldie Vo0 |2

Robot B
-

For n robots :
Lz

1.14:23



https://www.pyg.org/
https://www.dgl.ai/
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Case Study: Multi-Robot Perception [134]

Multi-Robot Collaborative Perception With Graph

Neural Networks Output
Yong Zou, Gr Saong Xiao©, Yue Zhu.
e Goal: Learn what to communicate for Seaph
depth estimation or segmentation > Network

e Data: Labeled Data mostly from simula-
tor; some from real flights
e Approach: Behavior Cloning

e Video: https://youtu.be/2bdhLI3dqo0

1.14:24

GNN Applications

e Flocking (in simulation) [116, 64, 42]

e Navigation (simulation + RL) [128]

e Graph Control Barrier Function (simulation + IL w/ DAgger) [132]
e Learning to Communicate Variations [69, 42]

1.14:25

Outline
e Handling Dynamic Neighbors
e LSTMs
e CNNs
e DeepSets

Graph Neural Networks

e Multi-Agent Reinforcement Learning (MARL)
e Discussion / Open Challenges

1.14:26

MARL Definition

e Single Robot: MDP (8, A, P, R, Py, ~) with state space 8, action space A, transition probabilities
P(sty1 | st,at), reward fct 74 = R(s¢, at), initial state distribution Pp(so), and discounting factor
~v € [0,1].

e Multi-Robot: Markov game (N, 8, A, P, R, Py,v) with N robots, 8 joint state space, A = A; X
Az X ... x AN joint action space, reward fct r1,...,rny = R(s,a)

e Goal: Find policy (or policies) that maximize expected reward

1.14:27



https://youtu.be/2bdhLI3dqo0
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Rewards
e Fully cooperative: 71 = ro = ... =ry [No credit assignment; difficult to train]

e Competitive: zero-sum games (3, r; = 0), prey-predator games (cooperative per team; competi-
tive per game)
e Mixed Cooperative-Competitive: (local) reward shaping, to achieve a common goal

1.14:28
Learning
e Centralized model as stacked robot (centralized training & inference)
e Independent Learning each robot learns own policy (decentralized training & inference)
e Centralized Training Decentralized Execution (CTDE)
1.14:29

Challenges
e Non-Stationarity: if policy of other agents can't be observed, the Markov assumption is violated
(e.g., distributed Q-Learning)

e Scalability: in standard policy gradient algorithms, the probability of estimating the policy gradient
correctly might decrease exponentially with the number of agents [Concrete example: appendix of

[71]]

1.14:30
Approaches
e Centralized critic, e.g., Multi-Agent deep deterministic policy gradient (MADDPG, [71])
e Factorized value functions, e.g., Value Decomposition Networks (VDN, [110])
e Communication Learning
1.14:31

Practical Considerations

e VMAS (Vectorized Multi-Agent Simulator for Collective Robot Learning) nttps://github. con/proroklab/
VectorizedMultidgentSimulator [Simple 2D physics engine build in pyTorch]

e MARLIib nttps://github.com/Replicable-MARL/MARL1ib
e More Details/Overview about MARL:

Yutong Wang, Mehul Damani, Pamela Wang, Yuhong Cao, and Guillaume Sartoretti, (2022). Distributed Reinforcement Learning for Robot Teams: A Review.
Current Robotics Reports, 3(4):239-257

James Orr and Ayan Dutta, (2023). Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey. Sensors, 23(7):3625

1.14:32



https://github.com/proroklab/VectorizedMultiAgentSimulator
https://github.com/proroklab/VectorizedMultiAgentSimulator
https://github.com/Replicable-MARL/MARLlib
https://delete_delete_delete_doi.org/10.1007/s43154-022-00091-8
https://www.mdpi.com/1424-8220/23/7/3625
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Case Study: Distributed Collision Avoidance (Ground) [33]

"

Article

Distributed multi-robot collision avoidance
via deep reinforcement learning for
navigation in complex scenarios

Tingxiang Fan'", Pinxin Long” , Wenxi Liu® and Jia Pan'

Z2
(0] of ComiD |/ ConviD.
Environment ser

Agents with shared policy 7

|_>
s
2
Policy Optimization

sampling

1.14:33

Case Study: Distributed Collision Avoidance (Ground) [33]

Goal: find decentralized policy: 7 :y,g+— u
Data: Collected in simulation during RL (input LIDAR, relative goal, velocity; output: action)
Approach: PPO (centralized learning, decentralized execution; shared policy)

Video: https://sites.google.com/view/hybridmrca

1.14:34

Case Study: Distributed Collision Avoidance (UAVs) [57]

e Goal: find decentralized policy: 7:y,g+— u

e Data: Collected in simulation during RL (input state, nearby obstacles, nearby neighbors; output:
thrust per rotor)

e Approach: IPPO (centralized learning, decentralized execution; shared policy)

e Video: https://sites.google.com/view/obst-avoid-swarm-rl

1.14:35

Case Study: Neural Tree Expansion [89]

e Goal: find decentralized policies for multi-team games (e.g., reach-target avoid)


https://sites.google.com/view/hybridmrca
https://sites.google.com/view/obst-avoid-swarm-rl
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‘ Offline Training Loop |
Policy
< Learner ~k5xpert
K 7 SN *s e Data: Collected with a neural-
mil (‘% >}$ biased ‘“expert” (large Monte-Carlo
¥ i Tree Search)
Self-Play e Approach: MCTS + IL + DAgger (es-
Samples sentially: AlphaZero in continuous state
spaces)
Online Decentralized Deployment
7 T W ,8° e Video: https://youtu.be/mk1bTEW17DE
1.14:36
QOutline
e Handling Dynamic Neighbors
e LSTMs
e CNNs
e DeepSets
e Graph Neural Networks
e Multi-Agent Reinforcement Learning (MARL)
e Discussion / Open Challenges
1.14:37

DiNNO: Distributed Neural Network Optimization [129]

4
A
5%

e Collect data locally, local augmented Lagrangian update, share resulting weights via consensus

e Works for IL and RL

o Web: nttps://msl.stanford.edu/projects/dist_nn_train

1.14:38



https://youtu.be/mklbTfWl7DE
https://msl.stanford.edu/projects/dist_nn_train
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LLMs and Multi-Robots [18]

Why Solving Multi-agent Path Finding
with Large Language Models has not Succeeded Yet

Weizhe Chen' Sven Koenig' Bistra Dilkina'

o (Arxiv, Jan. 2024)

Complete
p Solution
[[System Prompt]] [[User Prompt]] . [user Prompt]] | Valid but not finished t
Task Description Scenario description Step Description
' " ' Finished
. S —
LLM as Solver . One-step .| Solution
Solution Checker
[[User Prompt]] Invalid
Error Information
1.14:39
LLMs and Multi-Robots [18]
Agent 1 is currently in (0,2), and wants to go to (3,1).
Agent 2 is currently in (1,3), and wants to go to (2,0).
The map is as follows, where @’ denotes a cell with an
obstacle that an agent cannot pass, and ’." denotes an empty
cell that an agent can pass.
In the next step:
Agent 1 can move [’stay at (0, 2)°, 'right to (1, 2)°, "up to (0,
3)". 'down to (0, 1)7].
Agent 2 can move [’stay at (1, 3)’, "left to (0, 3)’, ‘right to
(2,3)", 'downto (1,2)].
1.14:40

Open Challenges

e Deployment to real robots (especially RL)

e Safety (esp.

partially unknown dynamics, perception)

e Interpretability (of communication)

1.14:41
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Conclusion
e Multi-Robot brings new challenges
e Large state space (or violation of Markov assumption)
e Dynamic number of neighbors
e Reasoning about communication

e Deep Sets: permutation invariant architecture that is easy to train and computationally efficient
[useful for 7 : 2, N +— u]

e GNN: Generalization of deep sets [useful for learning communication]

e Learning a decentralized policy from a centralized expert works well (IL 4+ DAgger)
e Deployment to real robot teams remains challenging

1.14:42
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2 Exercises

2.1 Weekly Exercise 1

All 4 exercises are a bit too much for a start. Question 3 is bonus.

2.1.1 Basic Inverse Kinematics
(i) Inverse kinematics (or general constraint solving) can be framed as the optimization problem

min g — g0l + ulé(@)]? )
qeR™

for some constraint function ¢ : R® — R?%. Assuming linear ¢(¢q) = ¢(q0) + J(q — qo) with
Jacobian J, the solution is

¢ =q— (T + ;DI 6(q0) - (8)
Verify this by deriving it step by step.
(ii) To enforce a hard constraint, we want to take the limit u — oco. But J'.J is typically not

invertible (e.g., d < n), and you can't directly take the limit in the above solution. However, the
solution to this limit is

q* =q0—J(JI) " (qo) - (9)

Derive this from the above. Tip: Learn about the Woodbury identity.

2.1.2 Point mass under PD control

m i

Consider a point mass in a 1D space together with a PD control law:
e The point has mass m, and position ¢(t) € R.

e The PD controller applies linear force
u(t) = —kpq(t) — kad(t)
to the point, where kp, kg € R are positive constants.

e The resulting dynamics is mg(t) = u(t).

(i) Given the initial state ¢(0) = a,¢(0) = 0, what is g(¢)? (Solve the differential equation.)

(if) The solution describes a damped oscillation around the set-point ¢* = 0. How do you have to
choose kj and k4 such that the behavior becomes the exponential approach q(t) = ae~%/7 for
some time scale 7 € R? (This is called “critically damped”.)
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2.1.3 BONUS: Fun with Euler-Lagrange

Consider an inverted pendulum mounted on a wheel in the 2D x-z-plane; similar to a Segway. The
exercise is to derive the Euler-Lagrange equation for this system.

(i) Describe the pose p; € R of every body in (x, z, $) coordinates: its position in the x-z-plane,
and its rotation ¢ relative to the world-vertical. Assume fixed parameters r: radius of the wheel,
l: length of the pendulum (height of its COM).

(i) Describe the (linear and angular) velocity v; = p; € R3 of every body.

(iii) Formulate the total kinetic energy T' = %ZZ v—irMivi, summing over the two bodies i = A, B.
Note that

m; 0 0
Mi=| 0 my O (10)
0 0 I;
with m; € R the normal mass of body ¢, and I; € R the rotational inertia of body 1.
(iv) Formulate the potential energy U
(v) Bonus: Compute the Euler-Lagrange Equation
d oL 0L
w= 294 _ 0oL (11)
dt 9¢  0Oq
with L = T — U, using the minimal coordinates ¢ = (z, 6), where z is the position of the wheel
and 0 the angle of the pendulum relative to the world-vertical.

2.1.4 Logistic Regression

Consider a binary classification problem with data D = {(z;,y:)}",, z; € R? and y; € {0,1}. We
define

f@) =" (12)

p@) = o(f(@) . oz) =1/(1+e77) (13)

1(8) = — 3" [yitogp(es) + (1 — i) log1 — p(as)]] (14)
1=1

where 3 € R? is the model parameter, o(z) the sigmoidal function, and L"'(8) the neg-log-likelihood
of the data under the model.

(i) Compute the derivative %L(B). Tip: use the fact %a(z) =0(2)(1 —o(z2)).
(ii) Compute the 2nd derivative % (B).
(iii) How is the neg-log-likelihood related to the cross-entropy? How would the above change when
adding an additional regularization \|3|? to the loss?
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2.2

Weekly Exercise 2

2.2.1 Work with the Literature

[The links to literature sometimes point to journal sites, but they should be accessible from within TU
Berlin.]

(i)

Have a look at Eq. (1) of

Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, (1997). Computational capabilities of
recurrent NARX neural networks. |IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 27(2):208-215

This paper describes a classical “NARX" model. Consider the discrete time dynamics

Vi1l = V¢ + U3 (15)
D41 = Pt + TVt—2 (16)
Yt =Pt , (17)

with variables (p¢,v¢), controls us, and sensor observation y;. 7 € R is a fixed constant. (In
words: the control directly adds to the velocities — but with a delay of 3 steps! And the velocities
add to the position — but with a delay of 2 steps! And we only observe position p;, not velocities.)
Could the “NARX" model described in the paper above learn this dynamics? How would you
have to choose n, and ny?

Also have a look at Eq. (1) of

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen, (2015). Gaussian processes
for data-efficient learning in robotics and control. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(2):408-423

This is also called a state-space model. How can you define x; for our dynamics above so that
it can be represented in that form (1)7?

2.2.2 System ldentification of a Simple Car

Consider the dynamics model of a first order car with states ¢ =
(2,9,0)" (position and orientation), actions/controls u = (s, ¢)
(speed and steering wheel angle), and known dynamics

Here, L is the distance between the wheels and not known.

(i)

(i)

T

scosf
q_f(q,u)—( ssin@ ) (18)

S
 tan¢

Assume you have an example trajectory D = {(xt, yt, 0+, st, ¢¢) }7—1, where individual datapoints
were sampled at 10Hz. Formulate an optimization problem that computes the “best” L for the
given data.

Find a closed-form solution for your optimization problem in a).

2.2.3 Mountain Car Dynamics Learning

This is a coding exercise. Please bring your laptop and connect to the HDMI in the tutorial to show
your results. (If you upload a pdf, just include a screenshot of results in the pdf.)

Install the mountain car simulation of gymnasium (https://gymnasium.farama.org/) using

pip install gymnasium[classic-control]


https://ieeexplore.ieee.org/abstract/document/558801/
https://ieeexplore.ieee.org/abstract/document/558801/
http://ieeexplore.ieee.org/document/6654139/
http://ieeexplore.ieee.org/document/6654139/
https://gymnasium.farama.org/
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The following code simulates a few steps and collects data for a dynamics learning problem:

import gymnasium as gym
import numpy as np

env

= gym.make (’MountainCarContinuous-v0’, render_mode=’human’)

# for this problem observation=state

u_dim = env.action_space.shape[0]
x_dim = env.observation_space.shape [0]
data_input = np.zeros((0,x_dim+u_dim))
data_target = np.zeros((0,x_dim))
n_data = 200

x_state, info = env.reset()

for t in range(n_data):

# u_controls = env.action_space.sample() # agent policy that uses the observation and
u_controls = np.sin([.01%t])

X_prev = x_state

x_state, reward, terminated, truncated, info = env.step(u_controls)

# terminated = a terminal state (often goal state, sometimes kill state, typically wit
# formally: the infinite MPD transitions to a deadlock nirvana state with eternal z
# truncated = the simulation is ’artificially’ truncated by some time limited - that’s

data_input = np.vstack([data_input, np.concatenate([x_prev, u_controls])])
data_target = np.vstack([data_target, x_state])

if terminated or truncated:
if truncated:
print(’-- truncated -- should not happen!’)
else:
print(’-- terminated -- goal state reached’)
x_state, info = env.reset()

env.close()

print(’input data:’, data_input.shape)
print (’output data:’, data_target.shape)

(i)

Increase the amount of data you collect (e.g. to n = 1000) and learn a regression from the
input to output. Use whatever ML techniques you learned about in previous courses. Also linear
regression is an option, which should work particularly well if you happen to include cos(3zo) as
a feature (where z¢ is the first entry of x: the position; see the domain documentation).

The above might not work well (in the sense of generalizing to the full state space), because the
controller generating the data (u_controls = np.sin([.01*t])) is not very explorative. Play
around with alternatives that generate much better data for learning.

Assume that you could only observe the position g of the car, not the velocity ;. As the state
is not fully observable, you'll need to learn an autoregression model with longer input window.
Modify the code above so that the data only contains positions and controls as input, and predicts
the next position.

[Added for the tutorial session, to show you an easy way of how to make use of a learned model.]

First, since we know this is a physical system with observed position g and velocity ¢, let's also
treat is like that: The forward dynamics is a mapping q, ¢, u — §, while the inverse dynamics is
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the mapping q, ¢, G — u. Learn the inverse dynamics function (define ¢ as the change in velocity
by a simulation step). Then use the inverse dynamics to impose a PD behavior

§* =kp(¢* —q) — kag

with ¢* = 2 and kp, = m/72 kg = 2mé&/T (exactly as in last exercise solution), and 7 = 50,
£=0.9.

2.3 Weekly Exercise 3

2.3.1 Literature: DAgger

The following paper introduces DAgger (short for “Dataset Aggregation”):

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell, (2011). A Reduction of Imitation Learning
and Structured Prediction to No-Regret Online Learning

(i) First have a look at Section 5 (Experiments), and if you like, the youtube video nttps://uw.
youtube . com/watch?v=V0OnpNnWzSU. Two basic questions about what is mentioned in 5.1:

— The method uses a regression technique to train the policy 7 : y — u (y are observations).
Which technique is used?

— Fig. 2 mentions (3;, which is a parameter of the method that changes with iteration ¢. How
exactly is it chosen?

(if) Now look at the pseudo code Alg. 3.1 on page 4. The introduction of Sec. 3 explains the
pseudo code. The lines 4 and 5 (“Let 7;...", and “Sample T-step...”) are perhaps the hardest
to really understand. Your exercise: Write explicit pseudo code of how you generate such
a "T-step trajectory using 7;", where this pseudo code can only call the dynamics function
zt = f(@e1,ue-1), the expert policy ug = 7*(x¢), the trained policy us = 7;(z¢), and a state
initialization method xzo ~ p(zo).

Note: Line 4 defines ; to be a probabilistic mixing of policies 7* and 7;, with coefficients 8; and
1 — j3; respectively. This notation is typically used when 7 are stochastic policies, but “implicitly
clear” also when they are deterministic.

2.3.2 Trajectory Distributions, GMMs, ProMPs

Imitation learning can also be formulated as learning the distribution of demonstrated trajectories (rather
than directly the policy), and thereafter use control theory to derive controllers that imitate this distri-
bution. The following paper is a typical representative for using Gaussian Mixture Models (GMMs) to
learn the distribution of demonstrated trajectories:

Sylvain Calinon and Aude Billard, (2007). Incremental learning of gestures by imitation in a humanoid
robot. In Proceedings of the ACM/IEEE International Conference on Human-robot Interaction, pages
255-262

Only have a look at Figures 3 and 6 — they should clarify what it means to use Gaussians to “cover” the
distribution of demonstrated trajectories, and thereby learn the distribution. To enable this, a trajectory
z¢ € R™ for t = 1,..,T is embedded in n + 1-dimensional space (t,z:), and then standard density
estimation using GMMs applied.

i i=1,2

Consider a dataset D = {a!

thm1 T with two 1-dimensional trajectories of length 7', namely these
two:

— First demonstrated trajectory z} = cos(t/3) for t = 1, ..,20
- Second demonstrated trajectory z? = cos(t/3 — 1) for t = 1,..,20


http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
https://www.youtube.com/watch?v=V00npNnWzSU
https://www.youtube.com/watch?v=V00npNnWzSU
https://dl.acm.org/delete_delete_delete_doi/10.1145/1228716.1228751
https://dl.acm.org/delete_delete_delete_doi/10.1145/1228716.1228751
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(i
(i)

(iiif)

Plot both of these demonstrations

Assume you would fit a Gaussian Mixture Model with 2 components (2 Gaussians) to this data
(using a time-embedding as above), how might it look like? (Sketch on paper. Where might be
their centers and the ellipse illustrating their covariance matrices?) Conditioning this distribution
on a particular ¢, e.g. ¢ = 11, what would be the conditional variance over z? (Just argue in
terms of your sketching.)

Consider a fully different approach: Treat each x* as a vector with 20 entries x% The two
vectors z' and z2 form our tiny data set D = {xi}izlyg. From this data we can estimate
the element-wise mean u: and standard deviation o for each t. Sketch these analogous to the
above.

[Note: The latter approach is called ProMP (Paraschos et al, NeurlPS'13).]

2.3.3 Mountain Car Imitation Learning

This is a coding exercise. Please bring your laptop and connect to the HDMI in the tutorial to show
your results. (If you upload a pdf, just include a screenshot of results in the pdf.)

We use the same mountain car example as in Exercise 2, so look for more detailed instructions there, if
you haven't set it up, yet.

The following “policy” was written by an expert to solve the control problem:

def expert(t):

if t < 50:

return np.array([-1.0])
elif t < 100:

return np.array([1.0])
return np.array([0.0])

Note that this uses the time step ¢ and not the state as input, which is why we put “policy” in quotes.

(i)

(i1

(iif)

2.4

Collect a sufficient amount of data and learn a real policy, i.e., a function that maps from the
current state to the action. Report your achieved loss.

You may still use any ML technique, including linear regression. However, this might also be a
good starting point to use pyTorch, so that you have some experience with more complicated
exercises later. You can follow the official tutorial at nttps://pytorch.org/tutorials/beginner/basics/
quickstart_tutorial.html.

Hints: You can convert data using torch.from_numpy(data-input) .float (). A useful function
is

torch.utils.data.random_split. From the tutorial, make sure you adjust the neural network
and loss function to match our target domain.

Validate your learned policy in the gym environment. What happens if you start from a starting
state that was not part of your training data (e.g., use env.reset(options=’low’: 0.1,
‘high’: 0.4))?

Can DAgger help here to collect a better dataset? Explain why or why not.

Weekly Exercise 4

2.4.1 Trajectory Distribution — Control

In the context of imitation learning, assume that from demonstration data you learned a trajectory
distribution as well as an inverse dynamics model and now want to use these to “execute what you


https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
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learned” on a robot. This question is about how to derive a control policy from a trajectory distribution
and an inverse dynamics model.

More specifically, assume you learned a trajectory distribution
p(a:t) :N(zt;“tvzt) ) t:17"7T ) (19)

where for each time step ¢t you have a different mean p (characterizing the mean trajectory) and
covariance matrix 3¢, as well as an inverse dynamics model

w= f(ze1,zt) . (20)

(Both models, p and f were trained from the data using ML, but we neglect annotating parameters.)
We assume z; € R™ and fully observable, and v € R<.

During execution, assume we are at time step ¢ and current state x¢:

(i) Formulate an optimization problem to find a reference trajectory xjH:T for the future execution.
(You want that the reference “starts” (connects with) the current state x¢, but also that it is as
consistent as possible with the learned trajectory distribution p.

Think about the role of the covariance matrices X; and the role of the inverse kinematics in this
formulation.

(This would be called a model-predictive control (MPC) approach: One would solve this optimiza-
tion problem in every control cycle and use inverse kinematics to decide on controls. Depending
on how you formulated the problem, it could be solved very efficiently using Riccati methods.)

(if) Now assume that the trajectory distribution you learned is actually bi-modal, namely
p(xe) = weN(we; p, £) + (1 — w)N(we; uf, £7) (21)
where superscripts index the mode. How could you now formulate the optimization problem?

(iii) Assume you are scared away from using MPC and optimization in each control cycle. Could you
also define a PD law to follow the (multi-modal) trajectory distribution? How? What would be
issues?

2.4.2 Multi-Modal Distributions

Consider a circular single integrator robot with 2D single integrator
dynamics (¢ = (z,y), u = (v2,vy), § = f(qu) = u = (va,vy)).
The robot is equipped with a LIDAR and processes the resulting
point cloud to get observation o = (dl,dy), i.e., a vector pointing
to the closest boundary point of any obstacle, see the figure for some
examples (dotted lines). From experts, we obtained five example
trajectories for a given scenario with a single circular obstacle in
the middle, see the figure for these trajectory (black lines). Our
goal is to learn a policy that directly maps observations to controls
(70— ).

(i) Discretize the observation into 8 parts (4 directional ranges and 2 magnitude ranges). For each
of these possible input ranges, we “learn” the optimal action assuming an MSE loss. Draw the
resulting action vectors (one for each possible observation) qualitatively.

(if) Use the learned policy from a) and draw the resulting solution trajectory qualitatively.

(iii) Now consider that we learn a Gaussian Mixture Model (GMM) with two modes per discretized
observation instead. Draw the resulting action distributions (one for each observation) qualita-
tively.



134

Robot Learning, Marc Toussaint & Wolfgang Honig

(iv)
V)

Explain how you can use the learned policy from c). Draw the resulting solution trajectory
distribution qualitatively.

What changes if we do not discretize the observation? Explain what possible policy function
approximators you might use, what learning algorithms are applicable, and what the expected
outcomes compared to b) and d) are.

2.4.3 Mountain Car Imitation Learning

This is a coding exercise. Please bring your laptop and connect to the HDMI in the tutorial to show
your results. (If you upload a pdf, just include a screenshot of results in the pdf.)

We use the same mountain car example as in Exercise 2 and 3, so look for more detailed instructions
there, if you have not set it up, yet.

In addition to the “policy” from last week, we now have a second expert that solves the problem as
follows:

def expert2(t):

if t < 50:
return np.array([1.0])
elif t < 100:
return np.array([0.0]) # save some energy!
elif t < 150:
return np.array([1.0])
return np.array([1.0])

Note that this expert decided to use a positive acceleration at the beginning, rather than the negative
one that the previous expert used.

(i)

2.5

Collect data from expert2 and verify that your approach from last week is able to imitate that
expert.

Now mix your datasets, such that you have an equal amount of examples from expertl (see
Exercise 3) and expert2. Compare the loss and the success rate of solving the mountain car
problem with this policy compared to just using data from a single expert.

Use diffusion to learn a stochastic policy using the dataset of b). Verify that your policy can
solve the mountain car problem. Verify that you get a mixture of solutions mimicking both
expertl and expert2, for example by visualizing the histogram of generated control actions for
the example state x = (—0.5,0.0).

Hint: We provide example code for training and sampling diffusion models for a simple noisy
circular trajectory. The primary difference to your task above is that you now have to learn
to sample from a conditional distribution p(u¢|z:). The simplest way to do so is to add the
condition as an additional input to your neural network.

Weekly Exercise 5

2.5.1 Literature: SAC

The following paper introduces Soft Actor-Critic, a state-of-the art RL method that integrates many
good ideas that have been discovered over the last decade into a rather clean algorithm:

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine, (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning, pages 1861-1870


https://proceedings.mlr.press/v80/haarnoja18b
https://proceedings.mlr.press/v80/haarnoja18b
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(i) First some bug hunting:

— In the Supplementary Material, Appendix A., Equation (14), there is a notational bug. Can
you find it?

— In the main paper, going from Eq. (5) to (6), | think there is another bug. Can you find it?

— The line below (6) states “where the actions are sampled” — can you explain where actions
are sampled?

— Idea for another exercise: In the paper the authors state that the gradient of the policy
parameters could be estimated using the REINFORCE / likelihood ratio gradient estimator.
The students could derive this one, or show that the reparametrization one has lower variance.
This would link ex 1 and 2 nicely.

(i) Now the core question: In Alg. 1 lower part you find three lines to train the parameters 1, 0;, ¢,
as well as a low-pass filter for .

— Find out which functions these parameters parameterize.

— Find out where these parameters are used during training, i.e., the inter-dependencies of
training: For instance, when ¢ is trained, does that depend on 7?7 Answer this for all
parameters 9, 0;, ¢.

2.5.2 The Reparametrization Trick

We typically write a conditional density as p(x|y). If that depends on parameters (to be trained), we
may write this as pg(z|y) or p(z|y; ).

The reparametrization trick states that any (conditional) distribution p(z|y; 6) can instead be represented
as a deterministic function z = f(y, ¢;0), € ~ p(e).

(i) Given a Gaussian distribution pg(z) = N(z|u,X) with parameters 0 = (p, %), p € R", ¥ €
R™*™, how can you rewrite this as deterministic = fy(¢) with € ~ N(0,I,),e € R"?

(ii) Given discrete (aka. categorical) distribution p(z) over a discrete z € {1,.., M}. How can you
rerepresent sampling = ~ p(z) as a deterministic function = f(e) with e ~ U[0, 1] uniformly in
the real inverval [0, 1]?

[This is called a “trick” in a particular context: Sometimes there is a sampling step within an architecture, i.e., within
a computation graph. E.g. z — z ~ pg(z|z), 2 — y = go(z), which is a VAC example, where the latent variable z
is sampled in the "middle” of the architecture. Gradients in principle don’t propagate through a sampling operation,
and standard training would not be possible. But representing this as z +— z = fg(z,€), z — y = go(z) with the
sampling € ~ p(e€) done outside the architecture, gradients flow through f and g as usual, and the training process
has to sample €'s as if it was data.]

2.5.3 Mountain Car RL using SAC

Use the SAC implementation in Stable Baselines3 to solve the Continuous Mountain Car problem:
https://stable-baselines3.readthedocs.io/en/master/modules/sac.html.

(i) First, run SAC off-the-shelf, with default parameters using the example code provided on the
above URL. In the tutorial, be able to demonstrate the final policy: Run multiple test rollouts,
and compute the discounted total return (directly from the reward observations) for each test
rollout.

(if) Monitoring the training process is generally important in RL. Follow https://stable-baselines3.
readthedocs.io/en/master/guide/examples.html#callbacks-monitoring-training tO p|0t the training process
(and generally learn about the Callback mechanism).

(iii) The SAC method has a ton of parameters. Try:

— Fixing ent_coef to one particular value (e.g. 10; or check the SAC paper for common
choices), and report on the difference.


https://stable-baselines3.readthedocs.io/en/master/modules/sac.html
https://stable-baselines3.readthedocs.io/en/master/guide/examples.html#callbacks-monitoring-training
https://stable-baselines3.readthedocs.io/en/master/guide/examples.html#callbacks-monitoring-training

136 Robot Learning, Marc Toussaint & Wolfgang Honig

— The discounting factor gamma, e.g. to v = 0.999.

— The network architecture (by default net_arch = [256, 256]). You'll have to look into code
to understand the parameter, esp. the get_actor_critic_arch method in nttps://github.
com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/torch_layers.py. Tl’y smaller net-
works.

2.6 Weekly Exercise 6

2.6.1 Literature: Privileged and Sensorimotor Policy Training

Here is a prominent application paper for RL:

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter, (2020). Learning
quadrupedal locomotion over challenging terrain. Science Robotics, 5(47):eabc5986

It uses standard RL in simulation to train a privileged policy (which they call “teacher policy”) which
has full access to the simulation’s state information (e.g. exact terrain profile). In a second stage they
train a sensorimotor policy (which they call “student policy”) to imitate the privileged policy, but with
sensorimotor (partially observable) input only. As the teacher policy can be queried anywhere, they can
use DAgger for imitation, which simplifies imitation learning a lot.

[The general idea of training a sensor-based (=partial input) policy from a privileged (=full information)
policy is old, previously called input remapping, or just surrogate model.]

Fig. 4 gives an overview of the approach. Here the questions:

(i) The input to the previleged policy is full information (exact robot & simulation state). But
what is the definition of the output action a;? Looking for an answer you'll find words like “leg
frequencies” and “foot position residuals” — what are these?

(if) The Supplement S4 (pdf page 16) explains the reward function — a great example for reward engi-
neering (in the positive sense, as this reflects the authors’ understanding of “good locomotion”).
Be able to explain each term and how they relate to higher level “commands”.

(iii) Eq.(1) includes a second loss term, comparing I:(ot, x+) with I;(H). Explain what I;(H) is and
the idea of this term.

2.6.2 Episodes & Terminal States

Standard MDP theory assumes an infinite process sg, ag, 7o, S1,a1,71, ... of states, actions and rewards.
Accordingly, the return is defined as the infinite sum Y72 ~vry.

However, practical problems in the literature often involve “terminal states”, and one speaks of “episodes”.
The following exercise clarifies how “terminal states” and “episodes” are meant in an infinite MDP.

(i) We define a terminal state as follows: Assume that in step T' the agent reaches a terminal state
sT. The agent can then make a very last action ap, and gets a final reward 7 = R(st,ar),
but after this “there are no more states, actions, or rewards”, and the total return of the agent
is ZZ:O ~yire.

At first sight this is inconsistent to how MDPs are defined, because by definition they do not
terminate. How can you construct a formal MDP to model such terminal states? (Tip: Extend
the state space.)

(ii) Consider an MDP where the goal state is a tunnel state, which means that every choice of action
in the goal state leads to receiving the goal reward and transitioning to a (maybe random) initial
state s ~ P(sp).

Is the optimal policy for the MDP with tunnel goal state the same as the optimal policy for
an MDP where the goal state is a terminal state? Provide arguments (ideally a rough proof or
counterexample) for your answer.


https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/torch_layers.py
https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/torch_layers.py
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/448343/1/2020_science_robotics_lee_locomotion.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/448343/1/2020_science_robotics_lee_locomotion.pdf
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(iii) In practice one never runs (or simulates) a process infinitely long. Instead, one typically aborts/truncates
at some finite horizon T'. One such truncated run is called episode. One then typically repeats
many episodes (to collect data for learning or estimation of values/performance). When an
episode was truncated, discuss how one could actually estimate the expected return of the pol-
icy?

2.6.3 Lunar Lander Domain Randomization

This is a coding exercise. Please bring your laptop and connect to the HDMI in the tutorial to show
your results. (If you upload a pdf, just include a screenshot of results in the pdf.)

Install the lunar lander simulation of gymnasium (https://gymnasium.farama.org/) using
pip install "gymnasium[box2d]"

Similar to before, one can create an instance of the lunar lander (with varying wind enabled) using
env = gym.make(’LunarLanderContinuous-v2’, enable_wind=True)

(i) Train a policy — you should be able to reach rewards of > 200. To avoid finding new hyperpa-
rameters, use TD3 rather than SAC for training, where the default settings (with MlpPolicy and
action noise) should work well.

Hint: The action noise can be defined as follows:

from stable_baselines3.common.noise import NormalActionNoise
action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_act

(if) Validate your policy in environments with different wind magnitudes and gravities. You can
adjust these settings when making a gym environment, e.g.,

env = gym.make (’LunarLanderContinuous-v2’, enable_wind=True, gravity=-10, wind_power

For gravity, use values between -11 and -1; for the wind magnitude use values between 0 and 20.
In which settings does your policy work well and in which does it not?

(iii) Train a policy with domain randomization on both gravity and wind_power. How does this policy
compare to the other policy when validating in different settings as in b)?

Hint: You can use the callback mechanism of the policy (for _on_rollout_end) to add the
randomization at the end of each episode. To do this, you can directly modify the parameters
of the environment, e.g., set env.gravity =

np.random.uniform(min_value, max_value).

2.7 Weekly Exercise 7

2.7.1 Literature: Adversarial Inverse Reinforcement Learning

Here is an advanced paper on inverse RL applied to robotics problems:

Justin Fu, Katie Luo, and Sergey Levine, (2018). Learning robust rewards with adversarial inverse
reinforcement learning


https://gymnasium.farama.org/
http://arxiv.org/abs/1710.11248 [cs]
http://arxiv.org/abs/1710.11248 [cs]
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The paper was a big step forward in enabling Deep Learning methods for Inverse RL, namely by for-
mulating a loss function similar to Generative Adversarial Networks (GANs) — actually following the
original idea formulating InvRL as a discriminative (max margin) problem [80]. A followup paper [119]
provides a nicer summary of the history of InvRL ideas and proposes improvement on Adversarial InvRL,
but without robotics applications.

The paper webpage https://sites.google.com/view/adversarial-irl provides some videos. Here the questions:

(i) Let's start with the experiments in Section 7.2: The setting of the evaluation is transfer learning.
Be able to explain Table 1: What are the two domains and what kind of transfer is tested? What
does “TRPO, ground truth” mean (TRPO is a standard RL method)?

(i) In Section 7.3, the setting of evaluation is imitation learning. How is that different to the setting
of 7.27 How does AIRL compare with GAIL (a pure imitation learning method) and the TRPO
expert?

(iii) The last equation in Sec. 4 (page 4) defines the discriminator Dy (s,a). In GANs, a discriminator
outputs the probability of whether the input data point is from the “original source” instead of
from the learned generative model. What exactly is the meaning of the output of the Dy (s, a)
defined here?

[Note that, as in GANs, Alg. 1 describes an algorithm that also improves the “generative model”
(here the learned policy 7) whenever the discriminative model was improved.]

(iv) At first it might be unclear why learning Dy(s, a) is related to extracting an underlying reward
function. The last equation in Sec 6 (page 6) is quite crucial to understand this — explain roughly
why the two neural nets gg(s) and hg(s) in Eq.(4) end up estimating reward and value functions.

2.7.2 Inverse RL on a Toy Control Problem

Consider a trivial control domain, with state © € R, controls u € [—1,1], and deterministic state
transitions 141 = ¢ + ut.

The expert policy 7* is deterministic and chooses w(x) = clip(—z), where clip(z) = max{—1, min{+1,z}}
(a typical notation for clipping you should get used to).

(i) What is a reward function R(z) (depending on state only), such that the expert policy 7* is
optimal? Derive the Q-function Q™" (z, u) for your reward function R(z) and prove that 7* is
optimal. Assume a given discounting v € [0,1). Is 7* the only optimal policy for your R(x), or
do equally optimal policies exist?

(ii) For a given ~, there exist many reward functions R(z) such that ©* is optimal. (Rescaling R
is trivial — neglect this.) Describe a space of alternative reward functions such that 7* is still
optimal; e.g., find some (non-trivial) F'(z) such that for R(z) < R(z)+ F(z), ©* is still optimal.

[Note, this sounds like a question about reward shaping (=changing R while guaranteeing in-
variance of the optimal policy) [79]. However, this question is slightly different, as we have a
concrete deterministic dynamics and do not require invariance w.r.t. all possible world dynamics.]

(iii) Now, conversely, find a (minimal) variation F'(x) such that for R(z) + R(z) + F(z), 7* is not
optimal anymore.

[This illustrates how a choice of reward function can discriminate between policies; as is implicit
in adversarial InvRL.]

2.7.3 Practical Exercise: Exploration in RL
In this exercise, we will revisit the Continuous Mountain Car problem from gym. Previously, running

SAC with default parameters from StableBaselines3 did not perform well. This week, we will explore
whether exploration can make things work better.


https://sites.google.com/view/adversarial-irl

Robot Learning, Marc Toussaint & Wolfgang Honig 139

One way to explore in RL is by adding noise to the actions taken. The paper Pink Noise Is All
You Need: Colored Noise Exploration In Deep Reinforcement Learning (nttps://openreview.net/pdf?id=
hQoVsQN27es) compares three types of noise:

Gaussian (white) noise
Ornstein-Uhlenbeck (OU) noise

Pink noise

Our goal is to compare the effects of these noises on agent actions during training.

(i)

(iif)

2.8

Review the ActionNoise wrapper from StableBaselines3 (nttps://stable-baselines3.readthedocs.io/
en/master/_modules/stable_baselinesa/common/noise.html#ActionNoise), and the Pink Noise paper. Imple-
ment a child class MyPinkNoise (ActionNoise) that returns pink noise when called. Skeleton
code is provided; you need to implement the call and reset methods.

StableBaselines3 includes implementations of Gaussian and OU noise (https://stable-baselines3.
readthedocs . io/en/master/common/noise.htul). Using your pink noise implementation, plot the different
noise traces by plotting the 1D action on the y-axis and the time step on the x-axis with scale=0.3
for all noises.

What do you observe?

Use all three noise types to train SAC on MountainCarContinuous with default parameters. Using
scale=0.3, train for total_timesteps=2e4.

What do you observe? Plot the learning curves of all training runs.

HINT: It is not expected that all noises will lead to successful training. You do not need to adjust
any SAC parameters.

Weekly Exercise 8

2.8.1 Literature: Neural Lander

Here is a paper that claims to combine safety and learning:

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree Anandkumar,
Yisong Yue, and Soon-Jo Chung, (2019). Neural Lander: Stable Drone Landing Control Using Learned
Dynamics. In 2019 International Conference on Robotics and Automation (ICRA), pages 9784-9790

The paper is at the intersection of control theory and learning and several other works exist to extend
the idea to new domains.

Questions:

(i) Take a look at the proposed control law (8) and (12). What exactly is learned and how is the

learned function applied in the controller?

(if) The paper shows exponential stability, i.e., that the position error will go to zero quickly (around

(14)). Explain in words the variables €,,, Lo, and p. Explain how this equation tells us that the
learned function needs to be Lipschitz-bounded.

(iii) Write down pseudo code on how one can use SGD or Adam and train a basic feed forward neural

network with RelLU activation to have a bounded Lipschitz constant. (Use the information in
the paper from I11.B.)

(iv) What needs to change if tanh activation functions are used to achieve the same Lipschitz-bound?


https://openreview.net/pdf?id=hQ9V5QN27eS
https://openreview.net/pdf?id=hQ9V5QN27eS
https://stable-baselines3.readthedocs.io/en/master/_modules/stable_baselines3/common/noise.html#ActionNoise
https://stable-baselines3.readthedocs.io/en/master/_modules/stable_baselines3/common/noise.html#ActionNoise
https://stable-baselines3.readthedocs.io/en/master/common/noise.html
https://stable-baselines3.readthedocs.io/en/master/common/noise.html
https://ieeexplore.ieee.org/document/8794351/
https://ieeexplore.ieee.org/document/8794351/

140 Robot Learning, Marc Toussaint & Wolfgang Honig

2.8.2 Fun With Definitions

In the safe learning survey paper and the lecture, the robot dynamics were defined as 1 = fi(zk, ug, wk).-
In RL and MDPs a transition model is used instead as p(zt1|z), ur). Here we look at the relationship
of the two.

(i) Consider an MDP with states s,t,g and actions a,b. The transition model is p(t|s,a) =
0.1,p(gls,a) = 0.9,p(gls,b) = 0.2,p(s|s,b) = 0.8,p(t|t,a) = 1,p(tt,b) = 1,p(glg,a) =
1,p(glg,b) = 1. The goal for the robot starting at s is to avoid ¢ and reach g. What is a
safe sequence of actions here? Write down an equivalent formulation using the notation in the
paper/lecture.

(if) Consider 1D single-integrator dynamics (i.e., state is position and the velocity can be controlled
directly) and W zero-mean Gaussian: 41 = x + ug - At + wg, where wy, ~ N(0, a?). Write
down an equivalent transition model.

(iii) The use of fi allows hybrid models, where the dynamics might change over time. How can such
changes be encoded in the MDP transition model?

(iv) We defined the cost as J(zo.n,u0:N—1) = IN(zN) + ij;ol Ik (zk, ug). How can a discount
factor be encoded here?

2.8.3 Working With Code: safe-control-gym

One implementation / benchmark for this is safe-control-gym, see

Zhaocong Yuan, Adam W. Hall, Sigi Zhou, Lukas Brunke, Melissa Greeff, Jacopo Panerati, and Angela P.
Schoellig, (2022). Safe-Control-Gym: A Unified Benchmark Suite for Safe Learning-Based Control and
Reinforcement Learning in Robotics. /[EEE Robotics and Automation Letters, 7(4):11142-11149

for the paper and nttps://github.com/utiasDSL/safe-control-gym for the code on github.

You may install it locally following the instructions to try it, although some questions can also be
answered just by reading the code.

git clone https://github.com/utiasDSL/safe-control-gym.git
cd safe-control-gym
pip install -e .

(i) Group the available algorithms (see the Readme file in the repo) using the taxonomy/grouping
from the lecture (you may ignore the ones that have nothing to do with safety). Try to find
academic references for each algorithm.

(if) One interesting aspect of the toolbox is that it provides analytical models for the dynamics and
constraints. Where are these models located for the three default systems (cartpole, quadrotor2d,
quadrotor3d)?

(iii) Consider the example for a safety filter in examples/mpsc for a 2D quadrotor. How can you
constrain the states and actions of the filter? Constrain the = coordinate to be within -1 and
2 and show the resulting plot(s), compared to the default setting (your choice of “unsafe”
controller).

(iv) Consider the example for safe RL (examples/rl). For safe_explorer_ppo there is a pre-training
and a regular training. What exactly is the difference between those two? How can you specify
what safety means for your application?


https://ieeexplore.ieee.org/document/9849119/
https://ieeexplore.ieee.org/document/9849119/
https://github.com/utiasDSL/safe-control-gym
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2.9 Weekly Exercise 9

2.9.1 Literature: Grasp Data Collection

Here is a core paper on grasp data collection:

Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu, (2020). Graspnet-1billion: A large-scale
benchmark for general object grasping. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11444-11453

The collection of labelled grasp data is a central issue in learning-based grasing. Once such data is
available, we can use strong supervised ML or diffusion methods to learn disciminative or generative
models of grasps. The above paper is a good example on how grasp data generation is typically
“engineered”, and uses a model-based (force closure) method to provide grasp labels. (An alternative
is to use a generic physical simulator, e.g., [30] is a recent paper generating a grasp dataset using the
PhysX simulator.)

The questions are only about Section 3.2 and 3.3:
(i) Sec. 3.2 describes how 97,280 RGB-D images were taken. How is the camera pose known for
each image? What are ArUco markers? For how many scenes were images collected?

(ii) Concerning Sec. 3.3 (paragraph “6D Pose Annotation”), how exactly are all 6D object poses
annotated?

(iii) Paragraph “Grasp Pose Annotation” is the core. Provide pseudo code to what is happening in
the 2nd paragraph; make the looping over objects/points/anything explicit. (Section 5.2, 2nd
paragraph provides the ranges of D, A, and V.) The last paragraph describes how these object
grasps are transferred to the scenes. Summarize what information the eventual dataset comprises
for one scene.

2.9.2 Force Closure

This is a great robotics book:
https://hades.mech.northwestern.edu/images/2/25/MR-v2.pdf

The Section “Grasping and Manipulation — Exercises” contains interesting force and form closure ques-
tions, around Fig. 12.29 and 12.30.

(i) Solve Ex. 12.8 (page 507 in the pdf). Note that a twist in 3D space is a 6-vector combining a
translation and rotation vector; here in 2D it is a 3-vector with 2D translation and one rotation.
Sec. 12.1.6 (page 475) explains how to draw a twist as “CoR" — see footnote!

(ii) Solve Ex. 12.17. (I'll provide explicit equations defining force closure in the lecture.) (Ex. 12.18
is also a great exercise.)

2.9.3 Practical Exercise: Explore the Graspnet data

This exercise doesn’'t need much coding — the aim is simply to familiarize youself with existing datasets
and conventions for learning-based grasping.

(I) Follow https://graspnetapi.readthedocs.io/en/latest/install.html tO download and unzip all the data
(sorry — lots of files... If you develop a script to do all downloads, share it with all students.)

(II) Follow https://graspnetapi.readthedocs.io/en/latest/example_vis.html to visualize the grasp data. Au-
tomatically loop through all available objects (calling showObjGrasp), and all available scenes
(calling showSceneGrasp).

LA convenient way to represent a planar twist V = (v, vy,w) (with rotation velocity w, and trans-
lational velocities v, vy) is as a center of rotation (CoR) at (—vy/w, vz /w). An additional marker '+’

or '-' tells if we rotate positively or negatively around this center.


http://openaccess.thecvf.com/content_CVPR_2020/html/Fang_GraspNet-1Billion_A_Large-Scale_Benchmark_for_General_Object_Grasping_CVPR_2020_paper.html
http://openaccess.thecvf.com/content_CVPR_2020/html/Fang_GraspNet-1Billion_A_Large-Scale_Benchmark_for_General_Object_Grasping_CVPR_2020_paper.html
https://hades.mech.northwestern.edu/images/2/25/MR-v2.pdf
https://graspnetapi.readthedocs.io/en/latest/install.html
https://graspnetapi.readthedocs.io/en/latest/example_vis.html
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What is the difference between format='rect’ versus '6d’? (And why may it take minutes for
format='6d"?)

(III) The '6D grasp’ documentation https://graspnetapi.readthedocs.io/en/latest/grasp_format.html#d-grasp
explains how the grasp pose (translation and orientation) is stored. For a given scene (e.g.
id=0), write a loop to output the grasp-translation and grasp-rotation-matrix for all grasps.
(What | do not understand: The Rectangle Grasp description seems to only describe grasps in
the image plane — how it the real 3D rotation represented? Or it is not?)

2.10 Weekly Exercise 10
2.10.1 Literature: Learning to Plan in TAMP

Here is an example paper for learning to plan:

Danny Driess, Jung-Su Ha, and Marc Toussaint, (2020). Deep Visual Reasoning: Learning to Predict
Action Sequences for Task and Motion Planning from an Initial Scene Image

The paper trains an image-based action sequence prediction. A follow-up paper? does something similar
with a much more ambitious Large Manguage Model, but the above paper more clearly defines the
problem in relation to TAMP. To get an overview, you may first watch the video https://wiw.youtube. com/
watch?v=1i8yyEbbvoEk.

Here are the questions:

(i) Eq. (4) defines the action sequence prediction model w. Note that S is the scene, g the goal,
and a1.x € 7(g,95), Fs(a1.x) = 1 means “aj.x is feasible and leads to goal ¢".
How does this 7 relate to modern sequence/language models, which also predict the next
word/token given previous tokens? (What exactly is similar and different?)
How does this 7 relate to a trained state evaluation function as they are used, e.g., in modern
chess/go engines? (Which score a board and therefore provide a heuristic for search. What
exactly is similar and different?)

(i) In Eq. (4), the actions aj, are input to the network. But they are encoded in a very particular
way, as explained in subsection C (see also video at 0:20sec). How exactly are actions encoded?

(iii) As always, understanding the data generation is key. Section V.B (page 7) explains the data
generation process, and Eq. (5) the definition of Dy,ta (ingnore Dyyain). In this whole process, how
often was the feasibility Fis(a1.x) of an action sequence a1.x in a scene S being computed. (This
computation happended fully model-based assuming full knowledge of the scene instantiated in
the simulator.)

2.10.2 Optimal Sequential Manipulation in TAMP

Consider the scene on the right, where we have one robot with 7 degrees of freedom

(dofs) ¢ € R7, and a stick with its pose s € SE(3) as degrees of freedom. (Ignore >~
the triangle in the image.) /
As discussed in the lecture, we consider the whole scene as a single multibody -~

system with (g, s) as its configuration. Initially the stick is lying somewhere on the
table (away from the red ball); the final goal is for the stick to touch the red ball.

2Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre
Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint,
Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence, (2023). PaLM-E: An Embodied Multimodal
Language Model



https://graspnetapi.readthedocs.io/en/latest/grasp_format.html#d-grasp
http://arxiv.org/abs/2006.05398
http://arxiv.org/abs/2006.05398
https://www.youtube.com/watch?v=i8yyEbbvoEk
https://www.youtube.com/watch?v=i8yyEbbvoEk
http://arxiv.org/abs/2303.03378
http://arxiv.org/abs/2303.03378

Robot Learning, Marc Toussaint & Wolfgang Honig 143

Assume that you have access to three constraint functions:

® ¢grasp(q,8) € R3 is a 3-dimensional constraint such that dgrasp(g,s) = 0 indicates a correct
(stable) grasp of the stick by the robot.

® Prouch(s) € R is a 1-dimensional constraint such that ¢iouch(s) = O indicates that the stick
touches the red ball.

® $eoii(q,8) € R is a 1-dimensional constraint such that ¢e(q,s) < 0 indicates that nothing in
the scene collides.

(i) Formulate a mathematical program that represents the problem of optimally grasping the stick
and then, with the grasped stick, optimally touching the red ball. The problem should only be
about finding the grasp pose and the final pose — not yet the motions in between. As usual,
optimality should reflect minimal motion effort by the robot. Assume the initial configuration is
(q0,80) € R7 x SE(3).

(ii) It is quite natural to choose (g1, s1, g2, s2) as the decision variables of the above mathematical
program. But can you think of an alternative, lower-dimensional parameterization of the problem?

(iii) Now modify the mathematical program above (of a) or b)) to include the full motion from the
start configuration until the stick touches the ball. Use an optimality criterion as is standard in
trajectory optimization.

(iv) Neglect the motion again; consider only grasp and touch. But this time consider a sequence of
4 actions: grasp-stick, place-stick, grasp-stick, touch-ball, where the 2nd action places the stick
back on the table before picking it up again. Can you think of scene (stick and ball placement)
where this action sequence makes sense? Instead of (q1, s1, g2, $2, 3, $3, ¢4, S4), what would be
a lower-dimensional parameterization?

(For discussion at the tutorial:) You know how path finding in a standard setting is defined as finding
a collision free path.3 How can the same sequential manipulation problem as in b) be represented as a
path finding problem (respecting all constraints but neglecting optimality)?

2.11 Weekly Exercise 11

2.11.1 Literature: Neural-Swarm2

Here is the paper we discussed in the lecture that uses (and extends) deep sets for a control problem
that arises in multi-robot aerial swarms *:

Guanya Shi, Wolfgang Honig, Xichen Shi, Yisong Yue, and Soon-Jo Chung, (2022). Neural-Swarm2:
Planning and Control of Heterogeneous Multirotor Swarms Using Learned Interactions. |IEEE Transac-
tions on Robotics, 38(2):1063-1079

The paper is an extension of the NeuralLander paper to the multi-robot case we discussed in exercise 8.
Questions:
(i) How does the dataset exactly look like? How was the data obtained? What sensing/measurement
capabilities were needed to obtain such data?

(if) Write down pseudo code on how one can use SGD or Adam and train a 2-group permutation-
invariant function using the heterogeneous deep sets proposed in (9).

3E.g., finding a continuous path 7 : [0, 7] — Xfee from a given start configuration v(0) = zg to a
final configuration y(T') € Xgoa Within the free configuration space Xfee = {7 € X : ¢con < 0}.

4A shorter and perhaps easier to follow earlier work is Guanya Shi, Wolfgang Honig, Yisong Yue,
and Soon-Jo Chung, (2020). Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using
Learned Interactions. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 3241-3247


https://ieeexplore.ieee.org/document/9508420/
https://ieeexplore.ieee.org/document/9508420/
https://ieeexplore.ieee.org/document/9196800/
https://ieeexplore.ieee.org/document/9196800/
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(iif)
(iv)

Consider the use-case of motion planning (Fig. 6). Explain how the neural network is applied
inside the motion planner.

In the considered examples for K-group permutation invariant functions, K is relatively small
(4 in the paper). Consider the case where K is large or unknown, for example if we are able to
measure the size of the neighboring robot (a real value). How could learning be applied in this
case?

2.11.2 Encodings for Environmental Monitoring

Consider a team of robots that is spatially distributed as shown below. In the figure, circles are robots,
the numbers are their associated measurements (such as temperatures), and lines indicate the existence
of a communication link. The goal is to find the minimum of their sensor measurements. In this question
we will explore various concrete encodings for such problem.

(i)

Y,
5

0 1 2 3 4 5 %

First consider the abstract, centralized setting with function f(X) = mingcx =, where X is a set
of real numbers. In other words, the function takes one or more numbers as input and returns
the smallest element of these numbers. Recall that the deep set

F)=p (D o) (22)

zeX

should be able to approximate this function. Provide concrete (differentiable) functions for p
and ¢ for this case.
Hint: You can find some inspiration in the original Deep Set paper or the paper from question 1.

Now assume the case where robots have a limited communication radius. One example is shown

in the figure, where the lines show communication links. Define the Aggregate and Update
functions of a simple message-passing neural network.

Demonstrate in the example above, how the node at (1,1) computes the minimum value.

How could a CNN be used for the case with limited communication radius? Be specific about
the layers the CNN should have.

For the use-case outlined above, what are advantages and disadvantages of the three encodings

(Deep Sets, GNN, CNN)? Consider both small (=few neighbors) and large (=many neighbors)
cases.
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