Optimization Algorithms

Gradient Descent & Backtracking Line Search

plain gradient descent, stepsize adaptation, backtracking line
search, Wolfe conditions, exponential convergence

Marc Toussaint
Technical University of Berlin
Winter 2024/25



Gradient descent
e Problem: min,cr~ f(z) for smooth objective function: f: R®™ - R

-
Gradient vector: Vf(z) = [a%f(m)} €R"
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Gradient descent
e Problem: min,cr~ f(z) for smooth objective function: f: R®™ - R

-
Gradient vector: Vf(z) = [(%f(x)} €R"

e Plain gradient descent: iterative steps in the direction —Vf(z):

Input: initial x € R"™, function Vf(x), stepsize «, tolerance 6
Output: =
1: repeat “
2: z <+ z — aVf(x) ‘
3: until |[Az| < 6 [perhaps for 10 iterations in sequence]
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¢ Plain gradient descent may not be efficient
e Two core issues (for any downhill method):

1. Stepsize
2. Step direction
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Stepsize
e Making steps proportional to Vf(z)?

f(z)

\
small gradient
— small step?

o large gradient
— large step?

e We need methods that robustly adapt stepsize
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Stepsize Adaptation: Backtracking Line Search

Input: initial € R™, functions f(z) and Vf(z), tolerance 6, parameters (defaults: of =
1.2, 04 = 0.5,6max = o0, gis = 0.01)
1: initialize stepsize a = 1

2: repeat

3: &« —% // (alternative: 6 = —Vf(x))
4 while f(z + ad) > f(z)+osVf(z) (ad) do // line search
5: a4 gq @ // REJECT & decrease stepsize
6: end while

7 T+ x+ad // ACCEPT
8 a < min{of o, Smax } // increase stepsize
9: until |ad] < 6 // perhaps for 10 iterations in sequence

e o determines the absolute stepsize

e Guaranteed monotonicity (by construction)
(“Typically” ensures convergence to locally convex minima; see later)
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Backtracking line search
e Line search in general denotes the problem
glzlg f(z + ad)

for some step direction 4.

e The most common line search is backtracking, which decreases « as long as
flx+ad) > f(z) + s Vf () (ad)

o, describes the stepsize decrement in case of a rejected step
ois describes a minimum desired decrease in f(x)

e Boyd at al: typically gs € [0.01,0.3] and g, € [0.1,0.8]
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Backtracking line search

f(@) + V() (ad)
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Wolfe Conditions

e The 1st Wolfe condition (“sufficient decrease condition”)
[z +ad) < f(z) + asVf () (ad)

requires a decrease of f at least gs-times “as expected”
e The 2nd (stronger) Wolfe condition (“curvature condition”)

|Vf (2 + ad) 4] < a2| VS ()6

requires a decrease of the slope by a factor gso.
ois2 € (05, 5) (for conjugate gradient)

e See Nocedal et al., Section 3.1 & 3.2 for more general proofs of convergence of
any method that ensures the Wolfe conditions after each line search

Learning and Intelligent Systems Lab, TU Berlin Gradient Descent & Backtracking Line Search — 8/10



Convergence for strongly convex functions

e Theorem (Exponential convergence on convex functions)
— Let f : R™ — R be an objective function
— with eigenvalues ) of the Hessian V2 f(z) bounded by m < A < M, withm > 0, Vo € R"
— Then gradient descent with backtracking line search converges exponentially with convergence
rate (1 — 247 01504 )-

More precisely: Let z; and ;11 be two accepted iterates (backtracking line search started at «; and stopped
by accepting x;+1), then

Fisn) = fum < [1 = 27222 (f(i) ~ fian)
(I leave the proof to the exercises.)
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Discussion of Complexity

e Each line search reduces f(x) at least by

Flonen) — fuan < [1= 27252 (F(arg) ~ fu)
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Discussion of Complexity
e Each line search reduces f(x) at least by

_ 2moiso,

i (f(@old) — fMin)

f@new) = fiin < |1

e How does it scale with the decision space dimension n?
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Discussion of Complexity
e Each line search reduces f(x) at least by

_ 2moiso,

7 (f(wod) — fmin)

f@new) = fiin < |1

e How does it scale with the decision space dimension n?

e What'’s the intuition behind it being independent of n?
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