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Gradient descent

• Problem: minx∈Rn f(x) for smooth objective function: f : Rn → R

Gradient vector: ∇f(x) =
[

∂
∂xf(x)

]⊤
∈ Rn

• Plain gradient descent: iterative steps in the direction −∇f(x):

Input: initial x ∈ Rn, function ∇f(x), stepsize α, tolerance θ

Output: x

1: repeat
2: x← x− α∇f(x)
3: until |∆x| < θ [perhaps for 10 iterations in sequence]
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• Plain gradient descent may not be efficient

• Two core issues (for any downhill method):

1. Stepsize

2. Step direction
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Stepsize

• Making steps proportional to ∇f(x)?

large gradient

     large step?

small gradient

     small step?

• We need methods that robustly adapt stepsize
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Stepsize Adaptation: Backtracking Line Search

Input: initial x ∈ Rn, functions f(x) and ∇f(x), tolerance θ, parameters (defaults: ϱ+α =

1.2, ϱ−α = 0.5, δmax =∞, ϱls = 0.01)
1: initialize stepsize α = 1

2: repeat
3: δ ← − ∇f(x)

|∇f(x)| // (alternative: δ = −∇f(x))
4: while f(x+ αδ) > f(x)+ϱls∇f(x)⊤(αδ) do // line search
5: α← ϱ−αα // REJECT & decrease stepsize
6: end while
7: x← x+ αδ // ACCEPT
8: α← min{ϱ+αα, δmax} // increase stepsize
9: until |αδ| < θ // perhaps for 10 iterations in sequence

• α determines the absolute stepsize

• Guaranteed monotonicity (by construction)
(“Typically” ensures convergence to locally convex minima; see later)
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Backtracking line search

• Line search in general denotes the problem

min
α≥0

f(x+ αδ)

for some step direction δ.

• The most common line search is backtracking, which decreases α as long as

f(x+ αδ) > f(x) + ϱls∇f(x)⊤(αδ)

ϱ−α describes the stepsize decrement in case of a rejected step
ϱls describes a minimum desired decrease in f(x)

• Boyd at al: typically ϱls ∈ [0.01, 0.3] and ϱ−α ∈ [0.1, 0.8]
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Backtracking line search
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Wolfe Conditions

• The 1st Wolfe condition (“sufficient decrease condition”)

f(x+ αδ) ≤ f(x) + ϱls∇f(x)⊤(αδ)

requires a decrease of f at least ϱls-times “as expected”

• The 2nd (stronger) Wolfe condition (“curvature condition”)

|∇f(x+ αδ)⊤δ| ≤ ϱls2|∇f(x)⊤δ|

requires a decrease of the slope by a factor ϱls2.
ϱls2 ∈ (ϱls,

1
2) (for conjugate gradient)

• See Nocedal et al., Section 3.1 & 3.2 for more general proofs of convergence of
any method that ensures the Wolfe conditions after each line search
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Convergence for strongly convex functions

• Theorem (Exponential convergence on convex functions)
– Let f : Rn → R be an objective function
– with eigenvalues λ of the Hessian ∇2f(x) bounded by m < λ < M , with m > 0, ∀x ∈ Rn

– Then gradient descent with backtracking line search converges exponentially with convergence
rate (1− 2m

M
ϱlsϱ

−
α ).

More precisely: Let xi and xi+1 be two accepted iterates (backtracking line search started at xi and stopped
by accepting xi+1), then

f(xi+1)− fMin ≤
[
1−

2mϱlsϱ
−
α

M

]
(f(xi)− fMin) .

(I leave the proof to the exercises.)
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Discussion of Complexity

• Each line search reduces f(x) at least by

f(xnew)− fMin ≤
[
1− 2mϱlsϱ

−
α

M

]
(f(xold)− fMin)

• How does it scale with the decision space dimension n?

• What’s the intuition behind it being independent of n?
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