Optimization Algorithms

Newton Method & Steepest Descent

steepest descent, Newton, damping, trust region, non-convex
fallback

Marc Toussaint
Technical University of Berlin
Winter 2024/25

Detour: Steepest Descent Direction

e The gradient —Vf(z) is sometimes called steepest descent direction

Is it really?

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 2/14

Detour: Steepest Descent Direction

e The gradient —Vf(z) is sometimes called steepest descent direction

Is it really?

e Here is a possible definition:

The steepest descent direction is the one where, when you make a step of length 1,
you get the largest decrease of f in its linear approximation.

argmin Vf (z)'0 st]d] =1
6

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 2/14

Detour: Steepest Descent Direction

e But the norm |62 = 6" AJ depends on the metric A!

Let A = B'B (Cholesky decomposition) and z = B¢
o = arg;nin Vi'ls st d'As=1
= Blargmin(B'2)'Vf stzlz=1
= Blargminz'BTVf st.zlz=1

x B1-B"Vf] = —A1Vf

¢ The steepest descent direction is § = —A'Vf

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 3/14

Detour: Steepest Descent Direction

e Behavior under linear coordinate transformations:
— Let B be a matrix that describes a linear transformation in coordinates

— A coordinate vector x transforms as z = Bz
— The plain gradient V, f(x) transforms as V., f(z) = B"" V, f(z)
— The metric A transforms as A, = BT A, B!
— The steepest descent transforms as A7V, f(z) = BAZV, f(x)
= The steepest descent vector is a covariant. (l.e., it's coordinates transform like
those of an ordinary vector.) (more details in the Maths script)

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 4/14

Detour: Steepest Descent Direction

e Behavior under linear coordinate transformations:
— Let B be a matrix that describes a linear transformation in coordinates

— A coordinate vector x transforms as z = Bz
— The plain gradient V, f(z) transforms as V, f(z) = BV, f(z)
— The metric A transforms as A, = BT A, B!
— The steepest descent transforms as A7V, f(z) = BAZV, f(x)

= The steepest descent vector is a covariant. (l.e., it's coordinates transform like
those of an ordinary vector.) (more details in the Maths script)

e Relevance in practise:
— When the decision variable z lives in a non-Euclidean space

— E.g. when z is a probability distribution — use the Fisher metric in probability space — leads to
the natural gradient

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 4/14

Newton Method

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 5/14

Newton Step

e For f|nd|ng roots (zero points) of f(x)
s1x)

Tangent at x,
/ Tangent at x; (
; f l')
e :
'> & n T x

e For finding optima of f(z) in 1D (which are roots of f(x)):
f'(=z)
f"(x)

e For finding optima in higher dimensions x € R":

T+ — V2if(x)Vf(z)

4T —

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 6/14

Hessian

e The Hessian of f is defined as

92 92 9?
2y Oa; f(z) Dy Oagy () - Dy Oury ()
3?2 :
VQf(l') S (x) : c R™*n
N2 92
am,?aml f(z) Bmfamn f(z)

e Provides the Taylor expansion:
1
f(z+06)~ flx)+ Vf(x)'o+ iaT Vif(z) o

Note: V2 f(x) acts like a metric for &
e Vf(x)'§ is the directional derivative, and 6" V2 f(x) § the directional 2nd derivative

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 7/14

Notes on the Newton Step

e If fis a 2nd-order polynomial, the Newton step jumps to the optimum in just one
step.

e Unlike the gradient magnitude |Vf(x)|, the magnitude of the Newton step ¢ is
meaningful and scale invariant!
— If you'd rescale f or z, ¢ is unchanged

e Unlike the gradient Vf(x), the Newton step ¢ is truely a vector!

— The Newton step is invariant under coordinate transformations; the coordinates of ¢ transform
contra-variant, as it is supposed to for vector coordinates

— The proof is exactly the same as for the steepest descent with a non-Euclidean metric — the
Hessian acts as a metric

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 8/14

Why 2nd order information is better

e Better direction:

z4

Plain Gradient

Conjugate Gradient

o Better stepsize:
— A full Newton step jumps directly to the minimum of the local squared approx.
— Robust Newton methods combine this with line search and damping (Levenberg-Marquardt)

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 9/14

Basic Newton method

Input: initial = € R™, functions f(z), Vf(z), V2 f(z), tolerance 6§, parameters (defaults: o =
1.2, 04 = 0.5, Qs = 0.01,)‘>

1: initialize stepsize a = 1, fixed damping A

2: repeat

3 compute § to solve (V2f(x) + AI) § = —Vf(x)

4 while f(z + ad) > f(z) + asVf(z) (ad) do // line search
5: a4 oo // decrease stepsize
6: end while

7: T+ x4+ ad // step is accepted
8: a + min{ oda, 1} // increase stepsize
9: until |ad]ec < 0

e Notes:

— Line 3 computes the Newton step § = —V2 f(x)1Vf(z),
e.g. using a special Lapack routine dposv to solve Az = b (using Cholesky)

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 10/14

Basic Newton method

e What if the Hessian is negative definite? — The Newton step jumps to a maximum!

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 11/14

Basic Newton method

e What if the Hessian is negative definite? — The Newton step jumps to a maximum!

e What if some eigenvalues are positive, some negative? (This is called a saddle
point?

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 11/14

Basic Newton method

e What if the Hessian is negative definite? — The Newton step jumps to a maximum!

e What if some eigenvalues are positive, some negative? (This is called a saddle
point?

— For robust minimization, we need to have a fallback for non-positive definite Hessian

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 11/14

Newton method with non-pos-def fallback

1: initialize stepsize a = 1
2: repeat
3: try to compute § to solve (V2 f(x) + M) § = —Vf(x)

4 if Vf(z)"6 > 0 (non-descent) or fails (ill-def. linear system) then

5 5+ — ‘gﬁg‘ // (gradient direction)
6: (Or: choose A > [—minimal eigenvalue of V2 f(z)]T and repeat)

7 end if

8 while f(z + a8) > f(z) + s Vf(z) () do // line search
9 a4 0o @ // decrease stepsize
10: optionally: A + gi)\ and recompute § // increase damping
11: end while

12: T+ z+ad // step is accepted
130 o<+ min{ola,1} // increase stepsize
14: optionally: X < oy A // decrease damping

15: until [ad] o < 6 repeatedly

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 12/14

Newton method with non-pos-def fallback — Notes

e The X shifts the eigenvalues: Adding to the diagonal of a matrix, all eigenvalues are
shifted

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 13/14

Newton method with non-pos-def fallback — Notes

e The X shifts the eigenvalues: Adding to the diagonal of a matrix, all eigenvalues are
shifted

e This is also called damping or Levenberg-Marquardt, and related to trust regions

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 13/14

Newton method with non-pos-def fallback — Notes

e The X shifts the eigenvalues: Adding to the diagonal of a matrix, all eigenvalues are
shifted

e This is also called damping or Levenberg-Marquardt, and related to trust regions
e The specific algo on previous slide is subjective — literal from our research code. But other extensions might be
better in other applications; and existing optimization libraries use other tricks to robustify their Newton method.
— Line 3 of the method on slide 20 says “try to”. This assumes that a solver might fail to solve (V2 f(z) + AI) § = —Vf(x) for

6. This is in particular the case when the solver is based on a Cholesky decomposition, which is highly efficient but only
defined for pos-def matrices. The Newton method would have to catch the error signal of this solver.

— Other solvers can solve also non-pos-dev linear equation systems, but then the computed step § might not point downhill
(e.g., it might point to a sattle point or maximum of f(x)). To catch this case, line 4 additionally tests whether § points
downbhill.

— In these failure cases, the extended Newton method uses the plain gradient direction as the fallback (Line 5).

— Note that the scaling and meaning of « when transitioning between Newton steps and gradient steps is an issue. Both §’s
have very different scales and adapting « for one does not translate automatically to the other. A solution might be to
maintain separate «’s for Newton steps and gradient steps — | have not tested.

— Lines 6, 10 and 14 mention possible heuristics to adapt the damping A (which is related to adapting the implicit trust region).
However, by default, | would not use these options.

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 13/14

Relation to Trust-Region

e The damped Newton step ¢ solves the problem
: T 1 T2 1 2
min [Vf(x) 6+ Z0TVA (@) + 520)] .

— where) introduces a squared penalty for large steps

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 14/14

Relation to Trust-Region
e The damped Newton step ¢ solves the problem
min [Vf(x)Ta + 152 p(a)s + 3A52)]
5 2 2 '

— where) introduces a squared penalty for large steps

e Trust region method:
min [Vf(x)Té + %ﬂvZ f(x)(s] st 82 <5

— where 3 defines the trust region

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 14/14

Relation to Trust-Region

e The damped Newton step ¢ solves the problem
min [Vf(x)Ta + 152 p(a)s + 3A52)]
5 2 2 '

— where) introduces a squared penalty for large steps

e Trust region method:
min [Vf(x)Té + %ﬂvZ f(x)(s] st 82 <5

— where 3 defines the trust region
e Solving this using Lagrange parameters (as we will learn it later):
L(8,\) = Vf(x)'6 + %5Tv2f(x)§ + A% -8), VL(6,\) = Vf(z)" + 8T (V2f(z) + 2AT)
gives the step § = — (V2 f(x) + 2AI)"' Vf(z), with X the dual variable
e For A — oo, 6 becomes aligned with —Vf(z) (but|§| — 0)

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent — 14/14

