
Optimization Algorithms

Newton Method & Steepest Descent

steepest descent, Newton, damping, trust region, non-convex
fallback

Marc Toussaint
Technical University of Berlin

Winter 2024/25

Detour: Steepest Descent Direction

• The gradient −∇f(x) is sometimes called steepest descent direction

Is it really?

• Here is a possible definition:

The steepest descent direction is the one where, when you make a step of length 1,
you get the largest decrease of f in its linear approximation.

argmin
δ
∇f(x)⊤δ s.t. ||δ|| = 1

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 2/14

Detour: Steepest Descent Direction

• The gradient −∇f(x) is sometimes called steepest descent direction

Is it really?

• Here is a possible definition:

The steepest descent direction is the one where, when you make a step of length 1,
you get the largest decrease of f in its linear approximation.

argmin
δ
∇f(x)⊤δ s.t. ||δ|| = 1

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 2/14

Detour: Steepest Descent Direction

• But the norm ||δ||2 = δ⊤Aδ depends on the metric A!

Let A = B⊤B (Cholesky decomposition) and z = Bδ

δ∗ = argmin
δ
∇f⊤δ s.t. δ⊤Aδ = 1

= B-1 argmin
z

(B-1z)⊤∇f s.t. z⊤z = 1

= B-1 argmin
z

z⊤B-⊤∇f s.t. z⊤z = 1

∝ B-1[−B-⊤∇f] = −A-1∇f

• The steepest descent direction is δ = −A-1∇f

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 3/14

Detour: Steepest Descent Direction

• Behavior under linear coordinate transformations:
– Let B be a matrix that describes a linear transformation in coordinates

– A coordinate vector x transforms as z = Bx

– The plain gradient ∇xf(x) transforms as ∇zf(z) = B-⊤∇xf(x)

– The metric A transforms as Az = B-⊤AxB
-1

– The steepest descent transforms as A-1
z ∇zf(z) = BA-1

x ∇xf(x)

⇒ The steepest descent vector is a covariant. (I.e., it’s coordinates transform like
those of an ordinary vector.) (more details in the Maths script)

• Relevance in practise:
– When the decision variable x lives in a non-Euclidean space
– E.g. when x is a probability distribution → use the Fisher metric in probability space → leads to

the natural gradient

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 4/14

Detour: Steepest Descent Direction

• Behavior under linear coordinate transformations:
– Let B be a matrix that describes a linear transformation in coordinates

– A coordinate vector x transforms as z = Bx

– The plain gradient ∇xf(x) transforms as ∇zf(z) = B-⊤∇xf(x)

– The metric A transforms as Az = B-⊤AxB
-1

– The steepest descent transforms as A-1
z ∇zf(z) = BA-1

x ∇xf(x)

⇒ The steepest descent vector is a covariant. (I.e., it’s coordinates transform like
those of an ordinary vector.) (more details in the Maths script)

• Relevance in practise:
– When the decision variable x lives in a non-Euclidean space
– E.g. when x is a probability distribution → use the Fisher metric in probability space → leads to

the natural gradient
Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 4/14

Newton Method

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 5/14

Newton Step

• For finding roots (zero points) of f(x)

x← x− f(x)

f ′(x)

• For finding optima of f(x) in 1D (which are roots of f ′(x)):

x← x− f ′(x)

f ′′(x)

• For finding optima in higher dimensions x ∈ Rn:

x← x−∇2f(x)-1∇f(x)

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 6/14

Hessian

• The Hessian of f is defined as

∇2f(x) =



∂2

∂x1
∂x1

f(x) ∂2

∂x1
∂x2

f(x) · · · ∂2

∂x1
∂xn

f(x)

∂2

∂x1
∂x2

f(x)
...

...
...

∂2

∂xn∂x1
f(x) · · · · · · ∂2

∂xn∂xn
f(x)


∈ Rn×n

• Provides the Taylor expansion:

f(x+ δ) ≈ f(x) +∇f(x)⊤δ + 1

2
δ⊤∇2f(x) δ

Note: ∇2f(x) acts like a metric for δ

• ∇f(x)⊤δ is the directional derivative, and δ⊤∇2f(x) δ the directional 2nd derivative
Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 7/14

Notes on the Newton Step

• If f is a 2nd-order polynomial, the Newton step jumps to the optimum in just one
step.

• Unlike the gradient magnitude |∇f(x)|, the magnitude of the Newton step δ is
meaningful and scale invariant!

– If you’d rescale f or x, δ is unchanged

• Unlike the gradient ∇f(x), the Newton step δ is truely a vector!
– The Newton step is invariant under coordinate transformations; the coordinates of δ transform

contra-variant, as it is supposed to for vector coordinates
– The proof is exactly the same as for the steepest descent with a non-Euclidean metric – the

Hessian acts as a metric

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 8/14

Why 2nd order information is better

• Better direction:

Conjugate Gradient

Plain Gradient

2nd Order

• Better stepsize:
– A full Newton step jumps directly to the minimum of the local squared approx.
– Robust Newton methods combine this with line search and damping (Levenberg-Marquardt)

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 9/14

Basic Newton method

Input: initial x ∈ Rn, functions f(x),∇f(x),∇2f(x), tolerance θ, parameters (defaults: ϱ+α =

1.2, ϱ−α = 0.5, ϱls = 0.01, λ)
1: initialize stepsize α = 1, fixed damping λ

2: repeat
3: compute δ to solve (∇2f(x) + λI) δ = −∇f(x)
4: while f(x+ αδ) > f(x) + ϱls∇f(x)⊤(αδ) do // line search
5: α← ϱ−αα // decrease stepsize
6: end while
7: x← x+ αδ // step is accepted
8: α← min{ϱ+αα, 1} // increase stepsize
9: until ||αδ||∞ < θ

• Notes:

– Line 3 computes the Newton step δ = −∇2f(x)-1∇f(x),
e.g. using a special Lapack routine dposv to solve Ax = b (using Cholesky)

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 10/14

Basic Newton method

• What if the Hessian is negative definite? → The Newton step jumps to a maximum!

• What if some eigenvalues are positive, some negative? (This is called a saddle
point?

→ For robust minimization, we need to have a fallback for non-positive definite Hessian

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 11/14

Basic Newton method

• What if the Hessian is negative definite? → The Newton step jumps to a maximum!

• What if some eigenvalues are positive, some negative? (This is called a saddle
point?

→ For robust minimization, we need to have a fallback for non-positive definite Hessian

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 11/14

Basic Newton method

• What if the Hessian is negative definite? → The Newton step jumps to a maximum!

• What if some eigenvalues are positive, some negative? (This is called a saddle
point?

→ For robust minimization, we need to have a fallback for non-positive definite Hessian

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 11/14

Newton method with non-pos-def fallback

1: initialize stepsize α = 1

2: repeat
3: try to compute δ to solve (∇2f(x) + λI) δ = −∇f(x)
4: if ∇f(x)⊤δ > 0 (non-descent) or fails (ill-def. linear system) then
5: δ ← − ∇f(x)

|∇f(x)| // (gradient direction)
6: (Or: choose λ > [−minimal eigenvalue of ∇2f(x)]+ and repeat)
7: end if
8: while f(x+ αδ) > f(x) + ϱls∇f(x)⊤(αδ) do // line search
9: α← ϱ−αα // decrease stepsize

10: optionally: λ← ϱ+λ λ and recompute δ // increase damping
11: end while
12: x← x+ αδ // step is accepted
13: α← min{ϱ+αα, 1} // increase stepsize
14: optionally: λ← ϱ−λ λ // decrease damping
15: until ||αδ||∞ < θ repeatedly

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 12/14

Newton method with non-pos-def fallback – Notes

• The λ shifts the eigenvalues: Adding to the diagonal of a matrix, all eigenvalues are
shifted

• This is also called damping or Levenberg-Marquardt, and related to trust regions
• The specific algo on previous slide is subjective – literal from our research code. But other extensions might be

better in other applications; and existing optimization libraries use other tricks to robustify their Newton method.

– Line 3 of the method on slide 20 says “try to”. This assumes that a solver might fail to solve (∇2f(x) + λI) δ = −∇f(x) for
δ. This is in particular the case when the solver is based on a Cholesky decomposition, which is highly efficient but only
defined for pos-def matrices. The Newton method would have to catch the error signal of this solver.

– Other solvers can solve also non-pos-dev linear equation systems, but then the computed step δ might not point downhill
(e.g., it might point to a sattle point or maximum of f(x)). To catch this case, line 4 additionally tests whether δ points
downhill.

– In these failure cases, the extended Newton method uses the plain gradient direction as the fallback (Line 5).

– Note that the scaling and meaning of α when transitioning between Newton steps and gradient steps is an issue. Both δ’s
have very different scales and adapting α for one does not translate automatically to the other. A solution might be to
maintain separate α’s for Newton steps and gradient steps – I have not tested.

– Lines 6, 10 and 14 mention possible heuristics to adapt the damping λ (which is related to adapting the implicit trust region).
However, by default, I would not use these options.

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 13/14

Newton method with non-pos-def fallback – Notes

• The λ shifts the eigenvalues: Adding to the diagonal of a matrix, all eigenvalues are
shifted

• This is also called damping or Levenberg-Marquardt, and related to trust regions

• The specific algo on previous slide is subjective – literal from our research code. But other extensions might be
better in other applications; and existing optimization libraries use other tricks to robustify their Newton method.

– Line 3 of the method on slide 20 says “try to”. This assumes that a solver might fail to solve (∇2f(x) + λI) δ = −∇f(x) for
δ. This is in particular the case when the solver is based on a Cholesky decomposition, which is highly efficient but only
defined for pos-def matrices. The Newton method would have to catch the error signal of this solver.

– Other solvers can solve also non-pos-dev linear equation systems, but then the computed step δ might not point downhill
(e.g., it might point to a sattle point or maximum of f(x)). To catch this case, line 4 additionally tests whether δ points
downhill.

– In these failure cases, the extended Newton method uses the plain gradient direction as the fallback (Line 5).

– Note that the scaling and meaning of α when transitioning between Newton steps and gradient steps is an issue. Both δ’s
have very different scales and adapting α for one does not translate automatically to the other. A solution might be to
maintain separate α’s for Newton steps and gradient steps – I have not tested.

– Lines 6, 10 and 14 mention possible heuristics to adapt the damping λ (which is related to adapting the implicit trust region).
However, by default, I would not use these options.

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 13/14

Newton method with non-pos-def fallback – Notes

• The λ shifts the eigenvalues: Adding to the diagonal of a matrix, all eigenvalues are
shifted

• This is also called damping or Levenberg-Marquardt, and related to trust regions
• The specific algo on previous slide is subjective – literal from our research code. But other extensions might be

better in other applications; and existing optimization libraries use other tricks to robustify their Newton method.

– Line 3 of the method on slide 20 says “try to”. This assumes that a solver might fail to solve (∇2f(x) + λI) δ = −∇f(x) for
δ. This is in particular the case when the solver is based on a Cholesky decomposition, which is highly efficient but only
defined for pos-def matrices. The Newton method would have to catch the error signal of this solver.

– Other solvers can solve also non-pos-dev linear equation systems, but then the computed step δ might not point downhill
(e.g., it might point to a sattle point or maximum of f(x)). To catch this case, line 4 additionally tests whether δ points
downhill.

– In these failure cases, the extended Newton method uses the plain gradient direction as the fallback (Line 5).

– Note that the scaling and meaning of α when transitioning between Newton steps and gradient steps is an issue. Both δ’s
have very different scales and adapting α for one does not translate automatically to the other. A solution might be to
maintain separate α’s for Newton steps and gradient steps – I have not tested.

– Lines 6, 10 and 14 mention possible heuristics to adapt the damping λ (which is related to adapting the implicit trust region).
However, by default, I would not use these options.

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 13/14

Relation to Trust-Region

• The damped Newton step δ solves the problem

min
δ

[
∇f(x)⊤δ + 1

2
δ⊤∇2f(x)δ +

1

2
λδ2)

]
.

– where λ introduces a squared penalty for large steps

• Trust region method:

min
δ

[
∇f(x)⊤δ + 1

2
δ⊤∇2f(x)δ

]
s.t. δ2 ≤ β

– where β defines the trust region
• Solving this using Lagrange parameters (as we will learn it later):

L(δ, λ) = ∇f(x)⊤δ +
1

2
δ⊤∇2f(x)δ + λ(δ2 − β) , ∇δL(δ, λ) = ∇f(x)⊤+ δ⊤(∇2f(x) + 2λI)

gives the step δ = −(∇2f(x) + 2λI)-1∇f(x), with λ the dual variable

• For λ→∞, δ becomes aligned with −∇f(x) (but |δ| → 0)

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 14/14

Relation to Trust-Region

• The damped Newton step δ solves the problem

min
δ

[
∇f(x)⊤δ + 1

2
δ⊤∇2f(x)δ +

1

2
λδ2)

]
.

– where λ introduces a squared penalty for large steps

• Trust region method:

min
δ

[
∇f(x)⊤δ + 1

2
δ⊤∇2f(x)δ

]
s.t. δ2 ≤ β

– where β defines the trust region

• Solving this using Lagrange parameters (as we will learn it later):

L(δ, λ) = ∇f(x)⊤δ +
1

2
δ⊤∇2f(x)δ + λ(δ2 − β) , ∇δL(δ, λ) = ∇f(x)⊤+ δ⊤(∇2f(x) + 2λI)

gives the step δ = −(∇2f(x) + 2λI)-1∇f(x), with λ the dual variable

• For λ→∞, δ becomes aligned with −∇f(x) (but |δ| → 0)

Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 14/14

Relation to Trust-Region

• The damped Newton step δ solves the problem

min
δ

[
∇f(x)⊤δ + 1

2
δ⊤∇2f(x)δ +

1

2
λδ2)

]
.

– where λ introduces a squared penalty for large steps

• Trust region method:

min
δ

[
∇f(x)⊤δ + 1

2
δ⊤∇2f(x)δ

]
s.t. δ2 ≤ β

– where β defines the trust region
• Solving this using Lagrange parameters (as we will learn it later):

L(δ, λ) = ∇f(x)⊤δ +
1

2
δ⊤∇2f(x)δ + λ(δ2 − β) , ∇δL(δ, λ) = ∇f(x)⊤+ δ⊤(∇2f(x) + 2λI)

gives the step δ = −(∇2f(x) + 2λI)-1∇f(x), with λ the dual variable

• For λ→∞, δ becomes aligned with −∇f(x) (but |δ| → 0)
Learning and Intelligent Systems Lab, TU Berlin Newton Method & Steepest Descent – 14/14

