

Optimization Algorithms

Newton Method & Steepest Descent

steepest descent, Newton, damping, trust region, non-convex fallback

Marc Toussaint Technical University of Berlin Winter 2024/25

• The gradient $-\nabla f(x)$ is sometimes called *steepest descent direction*

Is it really?

• The gradient $-\nabla f(x)$ is sometimes called *steepest descent direction*

Is it really?

• Here is a possible definition:

The steepest descent direction is the one where, when you make a step of length 1, you get the largest decrease of f in its linear approximation.

$$\operatorname*{argmin}_{\delta} \nabla f(x)^{\mathsf{T}} \delta \qquad \text{s.t. } \|\delta\| = 1$$

• But the norm $\|\delta\|^2 = \delta^T A \delta$ depends on the metric *A*!

Let $A = B^{\mathsf{T}}B$ (Cholesky decomposition) and $z = B\delta$

$$\begin{split} \delta^* &= \operatorname*{argmin}_{\delta} \nabla f^{\top} \delta \qquad \text{s.t. } \delta^{\top} A \delta = 1 \\ &= B^{-1} \operatorname*{argmin}_{z} (B^{-1}z)^{\top} \nabla f \qquad \text{s.t. } z^{\top} z = 1 \\ &= B^{-1} \operatorname*{argmin}_{z} z^{\top} B^{-\top} \nabla f \qquad \text{s.t. } z^{\top} z = 1 \\ &\propto B^{-1} [-B^{-\top} \nabla f] = -A^{-1} \nabla f \end{split}$$

• The steepest descent direction is $\delta = -A^{-1}\nabla f$

Learning and Intelligent Systems Lab, TU Berlin

- Behavior under linear coordinate transformations:
 - Let B be a matrix that describes a linear transformation in coordinates
 - A coordinate vector x transforms as z = Bx
 - The plain gradient $abla_{\!x} f(x)$ transforms as $abla_{\!z} f(z) = B^{-\!\top}
 abla_{\!x} f(x)$
 - The metric A transforms as $A_z = B^{-\top} A_x B^{-1}$
 - The steepest descent transforms as $A_z^{-1} \nabla_{\!\! z} f(z) = B A_x^{-1} \nabla_{\!\! x} f(x)$
- The steepest descent vector is a covariant. (I.e., it's coordinates transform like those of an ordinary vector.) (more details in the Maths script)

- Behavior under linear coordinate transformations:
 - Let B be a matrix that describes a linear transformation in coordinates
 - A coordinate vector x transforms as z = Bx
 - The plain gradient $\nabla_{\!\!x} f(x)$ transforms as $\nabla_{\!\!z} f(z) = B^{\text{-}\!\top} \nabla_{\!\!x} f(x)$
 - The metric A transforms as $A_z = B^{-\top} A_x B^{-1}$
 - The steepest descent transforms as $A_z^{\text{-}1}
 abla_z f(z) = B A_x^{\text{-}1}
 abla_x f(x)$
- The steepest descent vector is a covariant. (I.e., it's coordinates transform like those of an ordinary vector.) (more details in the Maths script)
 - Relevance in practise:
 - When the decision variable x lives in a non-Euclidean space
 - E.g. when x is a probability distribution \rightarrow use the **Fisher metric** in probability space \rightarrow leads to the **natural gradient**

Newton Method

Newton Step

• For finding roots (zero points) of f(x)

• For finding optima of f(x) in 1D (which are roots of f'(x)):

$$x \leftarrow x - \frac{f'(x)}{f''(x)}$$

• For finding optima in higher dimensions $x \in \mathbb{R}^n$:

$$x \leftarrow x - \nabla^2 f(x)^{\text{-1}} \nabla f(x)$$

Learning and Intelligent Systems Lab, TU Berlin

Newton Method & Steepest Descent – 6/14

Hessian

• The **Hessian** of *f* is defined as

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2}{\partial_{x_1} \partial_{x_1}} f(x) & \frac{\partial^2}{\partial_{x_1} \partial_{x_2}} f(x) & \cdots & \frac{\partial^2}{\partial_{x_1} \partial_{x_n}} f(x) \\ \\ \frac{\partial^2}{\partial_{x_1} \partial_{x_2}} f(x) & & \vdots \\ \\ \vdots & & & \vdots \\ \\ \frac{\partial^2}{\partial_{x_n} \partial_{x_1}} f(x) & \cdots & \cdots & \frac{\partial^2}{\partial_{x_n} \partial_{x_n}} f(x) \end{pmatrix} \in \mathbb{R}^{n \times n}$$

• Provides the Taylor expansion:

$$f(x+\delta) \approx f(x) + \nabla f(x)^{\mathsf{T}} \delta + \frac{1}{2} \delta^{\mathsf{T}} \nabla^2 f(x) \delta$$

Note: $\nabla^2 f(x)$ acts like a **metric** for δ

• $\nabla f(x)^{\top} \delta$ is the directional derivative, and $\delta^{\top} \nabla^2 f(x) \delta$ the directional 2nd derivative

Notes on the Newton Step

- If *f* is a 2nd-order polynomial, the Newton step jumps to the optimum in just one step.
- Unlike the gradient magnitude $|\nabla f(x)|$, the magnitude of the Newton step δ is meaningful and scale invariant!
 - If you'd rescale f or x, δ is unchanged
- Unlike the gradient $\nabla f(x)$, the Newton step δ is truly a vector!
 - The Newton step is invariant under coordinate transformations; the coordinates of δ transform contra-variant, as it is supposed to for vector coordinates
 - The proof is exactly the same as for the steepest descent with a non-Euclidean metric the Hessian acts as a metric

Why 2nd order information is better

• Better direction:

- Better stepsize:
 - A full Newton step jumps directly to the minimum of the local squared approx.
 - Robust Newton methods combine this with line search and damping (Levenberg-Marquardt)

Input: initial $x \in \mathbb{R}^n$, functions $f(x), \nabla f(x), \nabla^2 f(x)$, tolerance θ , parameters (defaults: $\rho_{\alpha}^+ =$ $1.2. \rho_{\alpha}^{-} = 0.5, \rho_{ls} = 0.01, \lambda$ 1: initialize stepsize $\alpha = 1$, fixed damping λ 2: repeat compute δ to solve $(\nabla^2 f(x) + \lambda \mathbf{I}) \delta = -\nabla f(x)$ 3. while $f(x + \alpha \delta) > f(x) + \rho_{le} \nabla f(x)^{\top} (\alpha \delta)$ do // line search 4. $\alpha \leftarrow \rho_{\alpha} \alpha$ // decrease stepsize 5 end while 6: $x \leftarrow x + \alpha \delta$ // step is accepted 7: $\alpha \leftarrow \min\{\rho_{\alpha}^+ \alpha, 1\}$ // increase stepsize 8: 9: until $\|\alpha\delta\|_{\infty} < \theta$

- Notes:
 - Line 3 computes the Newton step $\delta = -\nabla^2 f(x)^{-1} \nabla f(x)$, e.g. using a special Lapack routine dposv to solve Ax = b (using Cholesky)

• What if the Hessian is *negative* definite? \rightarrow The Newton step jumps to a *maximum*!

- What if the Hessian is *negative* definite? \rightarrow The Newton step jumps to a *maximum*!
- What if some eigenvalues are positive, some negative? (This is called a *saddle point*?

- What if the Hessian is *negative* definite? \rightarrow The Newton step jumps to a *maximum*!
- What if some eigenvalues are positive, some negative? (This is called a *saddle point*?
- ightarrow For robust minimization, we need to have a fallback for non-positive definite Hessian

Newton method with non-pos-def fallback

```
1: initialize stepsize \alpha = 1
```

2: repeat

```
try to compute \delta to solve (\nabla^2 f(x) + \lambda \mathbf{I}) \delta = -\nabla f(x)
 3:
          if \nabla f(x)^{\top} \delta > 0 (non-descent) or fails (ill-def. linear system) then
 4:
               \delta \leftarrow -\frac{\nabla f(x)}{|\nabla f(x)|}
 5:
                                                                                                                        // (gradient direction)
                (Or: choose \lambda > [-minimal eigenvalue of \nabla^2 f(x)]^+ and repeat)
 6:
 7:
          end if
          while f(x + \alpha \delta) > f(x) + \rho_{ls} \nabla f(x)^{\top}(\alpha \delta) do
                                                                                                                                     // line search
 8:
               \alpha \leftarrow \rho_{\alpha}^{-} \alpha
                                                                                                                          // decrease stepsize
 9:
                optionally: \lambda \leftarrow \rho_{\lambda}^+ \lambda and recompute \delta
10:
                                                                                                                          // increase damping
11:
          end while
12:
          x \leftarrow x + \alpha \delta
                                                                                                                            // step is accepted
          \alpha \leftarrow \min\{\rho_{\alpha}^{+}\alpha, 1\}
13:
                                                                                                                           // increase stepsize
          optionally: \lambda \leftarrow \varrho_{\lambda}^{-}\lambda
                                                                                                                         // decrease damping
14:
15: until \|\alpha \delta\|_{\infty} < \theta repeatedly
```


Newton method with non-pos-def fallback – Notes

• The λ shifts the eigenvalues: Adding to the diagonal of a matrix, all eigenvalues are shifted

Newton method with non-pos-def fallback – Notes

- The λ shifts the eigenvalues: Adding to the diagonal of a matrix, all eigenvalues are shifted
- This is also called *damping* or Levenberg-Marquardt, and related to trust regions

Newton method with non-pos-def fallback – Notes

- The λ shifts the eigenvalues: Adding to the diagonal of a matrix, all eigenvalues are shifted
- This is also called damping or Levenberg-Marquardt, and related to trust regions
- The specific algo on previous slide is subjective literal from our research code. But other extensions might be
 better in other applications; and existing optimization libraries use other tricks to robustify their Newton method.
 - Line 3 of the method on slide 20 says "try to". This assumes that a solver might fail to solve $(\nabla^2 f(x) + \lambda \mathbf{I}) \delta = -\nabla f(x)$ for δ . This is in particular the case when the solver is based on a Cholesky decomposition, which is highly efficient but only defined for pos-def matrices. The Newton method would have to catch the error signal of this solver.
 - Other solvers can solve also non-pos-dev linear equation systems, but then the computed step δ might not point downhill (e.g., it might point to a sattle point or maximum of f(x)). To catch this case, line 4 additionally tests whether δ points downhill.
 - In these failure cases, the extended Newton method uses the plain gradient direction as the fallback (Line 5).
 - Note that the scaling and meaning of α when transitioning between Newton steps and gradient steps is an issue. Both δ's have very different scales and adapting α for one does not translate automatically to the other. A solution might be to maintain separate α's for Newton steps and gradient steps I have not tested.
 - Lines 6, 10 and 14 mention possible heuristics to adapt the damping λ (which is related to adapting the implicit trust region). However, by default, I would not use these options.

Relation to Trust-Region

- The damped Newton step δ solves the problem

$$\min_{\delta} \left[\nabla f(x)^{\mathsf{T}} \delta + \frac{1}{2} \delta^{\mathsf{T}} \nabla^2 f(x) \delta + \frac{1}{2} \lambda \delta^2) \right]$$

– where λ introduces a squared penalty for large steps

Relation to Trust-Region

- The damped Newton step δ solves the problem

$$\min_{\delta} \left[\nabla f(x)^{\mathsf{T}} \delta + \frac{1}{2} \delta^{\mathsf{T}} \nabla^2 f(x) \delta + \frac{1}{2} \lambda \delta^2) \right]$$

– where λ introduces a squared penalty for large steps

• Trust region method:

$$\min_{\delta} \left[\nabla f(x)^{\mathsf{T}} \delta + \frac{1}{2} \delta^{\mathsf{T}} \nabla^2 f(x) \delta \right] \text{ s.t. } \delta^2 \leq \beta$$

– where β defines the *trust region*

Relation to Trust-Region

- The damped Newton step δ solves the problem

$$\min_{\boldsymbol{\delta}} \left[\nabla \! \boldsymbol{f}(\boldsymbol{x})^{\!\!\!\top} \! \boldsymbol{\delta} + \frac{1}{2} \boldsymbol{\delta}^{\!\!\!\top} \! \nabla^2 \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{\delta} + \frac{1}{2} \boldsymbol{\lambda} \boldsymbol{\delta}^2) \right]$$

– where λ introduces a squared penalty for large steps

• Trust region method:

$$\min_{\delta} \left[\nabla \! f(x)^{\!\top} \! \delta + \frac{1}{2} \delta^{\!\top} \! \nabla^{\!2} f(x) \delta \right] \; \text{s.t.} \; \delta^2 \leq \beta$$

– where β defines the *trust region*

• Solving this using Lagrange parameters (as we will learn it later):

$$L(\delta,\lambda) = \nabla f(x)^{\top} \delta + \frac{1}{2} \delta^{\top} \nabla^2 f(x) \delta + \lambda (\delta^2 - \beta) , \quad \nabla_{\!\delta} L(\delta,\lambda) = \nabla f(x)^{\top} + \delta^{\top} (\nabla^2 f(x) + 2\lambda \mathbf{I}) \delta^{\top} \delta$$

gives the step $\delta = -(\nabla^2 f(x) + 2\lambda \mathbf{I})^{-1} \nabla f(x)$, with λ the dual variable

• For $\lambda \to \infty$, δ becomes aligned with $-\nabla f(x)$ (but $|\delta| \to 0$)

Learning and Intelligent Systems Lab, TU Berlin

Newton Method & Steepest Descent – 14/14