Optimization Algorithms

Approximate Newton Methods

Gauss-Newton, BFGS, conjugate gradient

Marc Toussaint
Technical University of Berlin
Winter 2024/25

Approximate Newton Methods

¢ In high dimensions, computing exact Newton steps can be inefficient:
— Computing and storing the dense Hessian H € R™*" is already inefficient

e Newton makes particularly sense, if the Hessian is sparse
— Sparse Hessian « graphical models of dependencies

— Factor graphs, large-scale structured least squares problems (cf. ceres)

— in robotics: path optimization, computer vision: bundle adjustment, graph SLAM (cf. gtsam),
probabilistic inference (MAP)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 2/17

Approximate Newton Methods

e Least Squares problems and the Gauss-Newton approximation!
— Very important problem class — ubiquitous in Al, ML, robotics, etc
— Approximates the Hessian, scalable if the Jacobian is sparse

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 3/17

Approximate Newton Methods

e Least Squares problems and the Gauss-Newton approximation!
— Very important problem class — ubiquitous in Al, ML, robotics, etc
— Approximates the Hessian, scalable if the Jacobian is sparse

e Other methods approximate the Hessian from gradient observations:
— BFGS, (L)BFGS (“quasi-Newton method”) — a default solver in science
— Conjugate Gradient

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 3/17

Gauss-Newton method

e Consider a least squares problem (cost is a sum-of-squares):

d

min f(z) where f(z) = ¢(z) ¢(x) = > ila)?

=1

with features ¢(x) € R?, and we can evaluate ¢(z) and J = %gﬁ(az) forany x € R"

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 4/17

Gauss-Newton method

e Consider a least squares problem (cost is a sum-of-squares):

d
min f(z) where f(z) = ¢(z) ¢(x) = > ila)?

=1
with features ¢(x) € R?, and we can evaluate ¢(z) and J = %gﬁ(az) forany x € R"

e ¢(z) € R%is a vector; each entry contributes a squared cost term to f(x)
o 2 ¢(x) is the Jacobian (d x n-matrix)

b)) i) o gdu(a)

Tn

c RAX7n

Lale) e dula)

Learning and Intelligent Systems Lab, TU Berlin

Approximate Newton Methods — 4/17

Gauss-Newton method

e The gradient and Hessian of f(x) are

)p(x) (recall Vf(z) = 2 f(z))
2L o(x) L o(x) + 26(x) V()

e The Gauss-Newton method is the Newton method for f(z) = ¢(z) ¢ (x) while
approximating V?¢(z) ~ 0, i.e.
V2 f(z) = 2L p(z) Zp(x) = 27T

(Use this approximation when computing the step § is the standard Newton algorithm.)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 5/17

Gauss-Newton method

e The approximate Hessian H = 2J'J is always semi-pos-def!

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 6/17

Gauss-Newton method

e The approximate Hessian H = 2J'J is always semi-pos-def!
e H is a sum of rank-1 matrices:

= 22%)Voi(x

(which implies semi-pos-def)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 6/17

Gauss-Newton method

e The approximate Hessian H = 2J'J is always semi-pos-def!
e H is a sum of rank-1 matrices:
=2 Z Vi () Vi (
(which implies semi-pos-def)

¢ If the Jacobian J is sparse, so is the Hessian — graphical structure

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 6/17

Gauss-Newton method

e The approximate Hessian H = 2J'J is always semi-pos-def!
e H is a sum of rank-1 matrices:
=2 Z Vi () V()"
(which implies semi-pos-def)
¢ If the Jacobian J is sparse, so is the Hessian — graphical structure

e H can be interpreted as pullback of the Euclidean norm ¢'¢ in feature space. As it is z-dependent, this is a
non-constant metric in z-space — it defines a Riemannian metric. (See math notes.)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 6/17

Robotics example

e Path optimization: Let « = (21, .., z7), z: € R™ be a discretized path,

T

min D (@t 2 —2200)° + d(ar)?
t=1

where z, z_; are given, and ¢(zr) are some features of the end configuration =1

x4

L.
prefix £ Js(z13) LI
9s(z1:) pavaiat
hy(w1:3) o
- 92702 ha(wa.s)

]
filaa)
g1(a-1a)
hy(2-11)

Toussaint: A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM, Gaussian Process
smoothing, optimal control, and probabilistic inference. 2017

e We use the formulation in terms of features throughout, also for hard constraints

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 7/17

Quasi-Newton methods

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 8/17

Quasi-Newton methods

e Assume we cannot evaluate V2 f(z). Can we still use 2nd order methods?

e Yes: We can approximate V2 f(z) from the data {(x;, Vf(z:))}¥_, of previous
iterations

e (General view: We can learn from the data {(=;, Vf(x;))}t_, ~ e.g., Bayesian
optimization or model-based optimization for blackbox optimization.)

Learning and Intelligent Systems Lab, TU Berlin

Approximate Newton Methods — 9/17

Basic example

e We've seen two data points (x1, Vf(x1)) and (z2, Vf(x2)) — How can we estimate V2 f(z)?

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 10/17

Basic example

e We've seen two data points (z1, Vf(z1)) and (z2, Vf(z2)) — How can we estimate V2 f(z)?

e In1D:
Vf (z2) — Vf (1)

T2 — 1

V2 f(z) ~

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 10/17

Basic example

e We've seen two data points (x1, Vf(x1)) and (z2, Vf(x2)) — How can we estimate V2 f(z)?

o INR™: Lety=Vf(z2) — Vf(z1), §d =22 — 21
What are matrices H or H to fulfil the following?

H(Séy or §=HlY

(The first equation is called secant equation)

Learning and Intelligent Systems Lab, TU Berlin

Approximate Newton Methods — 10/17

Basic example

e We've seen two data points (x1, Vf(x1)) and (z2, Vf(x2)) — How can we estimate V2 f(z)?

e INR™: Lety=Vf(x3) — Vf(x1), d =2 — 11
What are matrices H or H to fulfil the following?

H(Séy or §=HlY

(The first equation is called secant equation)

e “Simplest” symmetric rank-1 solutions for # ~ H and H ~ H™:

T T
_ Yy .)
H= "= or H=—
y'o o'y

(1)

[Left: how to update H ~ H. Right: how to update directly A ~ H-1.]

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 10/17

BFGS

e Broyden-Fletcher-Goldfarb-Shanno (BFGS) method:

Input:

initial z € R™, functions f(z), Vf(x), tolerance 6

Output: =

© @ N O R N

. initialize H =1,
repeat

compute § = —HVf(z)
perform a line search min, f(z + ad)

6+ ad
y < Vf(z +9) — Vf(z)
T—x+96 .
g _wdt (1 — w4 esl
update H « (5T'!/> H<I 5T;u) + 5Ty
until 6] < 6

— The blue term is the H-update as on the previous slide

— The red term “deletes” “old” A-components. Check: Hy = §

— equivalent to the Sherman-Morrison formula: H + H — HssTHT + ¥

T

sTHSs yls

Learning and Intelligent Systems Lab, TU Berlin

Approximate Newton Methods — 11/17

L-BFGS

e In high dimensions, we do not want to explicitly store a dense H. Instead we store
vectors {v;} such that I = 3", v;v]

e L-BFGS (limited memory BFGS) limits the rank of the A and thereby the used
memory (number of vectors v;)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 12/17

L-BFGS

e In high dimensions, we do not want to explicitly store a dense H. Instead we store
vectors {v;} such that I = 3", v;v]

e L-BFGS (limited memory BFGS) limits the rank of the A and thereby the used
memory (number of vectors v;)

e Some thoughts:
In principle, there are alternative ways to estimate H-! from the data {(x;, f(x:), Vf (2:))}_,,
e.g. using Gaussian Process regression with derivative observations
— not only the derivatives but also the value f(z;) should give information on H (z) for
non-quadratic functions
— should one weight ‘local’ data stronger than ‘far away’?
(GP covariance function)
— related to model-based search (see Blackbox Optimization lecture)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 12/17

(Nonlinear) Conjugate Gradient

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 13/17

Conjugate Gradient

e The “Conjugate Gradient Method” is a method for solving (large, or sparse) linear
eqgn. systems Az + b = 0, without inverting or decomposing A. The steps will be
“A-orthogonal” (=conjugate).

We mention its extension for optimizing nonlinear functions f(x)

e As before we evaluted ¢’ = Vf(z1) and g = Vf(x2) at points z1,z2 € R"
o Additional assumption: exact line-search step to z:

—zp =z +ad, o=argmin, f(z1+ adr)

— iso-lines of f(z) at =2 are tangential to 4,

= The next search direction should be “orthogonal” to the previous one, but
orthogonal w.r.t. the Hessian H, i.e., 65 Hé; = 0, which is called conjugate

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 14/17

Conjugate Gradient

Input: initial z € R, functions f(x), Vf(z), tolerance 0

Output: =
1: initialize descent direction 6 = g = —Vf(z)
2: repeat
3: o + argmin,, f(z + ad) // line search
4: T+ T+ ad
5: g < g, g9g=-Vf(z) // store and compute grad
6: ﬁemax{g-r(g_g/) 0}
N g’Tg’)
7: d+— g+ 86 // conjugate descent direction

8: until |[Az| < 6

— B > 0: The new descent direction always adds a bit of the old direction!
— This momentum essentially provides 2nd order information

— The equation for 3 is by Polak-Ribiére: On a quadratic function f(z) = z" Az + b'z this leads to
conjugate search directions, 5T Ad = 0.

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 15/17

Conjugate Gradient

—4}

:i,\ ,
%\\ W

e For quadratic functions CG converges in n iterations.
But each iteration does exact line search

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 16/17

Further Methods

e Beyond the standard canon — but perhaps discussed later:
— Bound constrained optimization
Stochastic Gradient

Blackbox Optimization, Bayesian Optimization
model-based optimization, implicit filtering
Stochastic Search, Evolutionary Algorithms, EDAs
Simulated annealing

Nelder-Mead downhill simplex, pattern search

— Rprop

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods — 17/17

