
Optimization Algorithms

Approximate Newton Methods

Gauss-Newton, BFGS, conjugate gradient

Marc Toussaint
Technical University of Berlin

Winter 2024/25

Approximate Newton Methods

• In high dimensions, computing exact Newton steps can be inefficient:
– Computing and storing the dense Hessian H ∈ Rn×n is already inefficient

• Newton makes particularly sense, if the Hessian is sparse
– Sparse Hessian ↔ graphical models of dependencies

X6

X3 X5

X4
X2

X1

– Factor graphs, large-scale structured least squares problems (cf. ceres)
– in robotics: path optimization, computer vision: bundle adjustment, graph SLAM (cf. gtsam),

probabilistic inference (MAP)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 2/17

Approximate Newton Methods

• Least Squares problems and the Gauss-Newton approximation!
– Very important problem class – ubiquitous in AI, ML, robotics, etc
– Approximates the Hessian, scalable if the Jacobian is sparse

• Other methods approximate the Hessian from gradient observations:
– BFGS, (L)BFGS (“quasi-Newton method”) – a default solver in science
– Conjugate Gradient

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 3/17

Approximate Newton Methods

• Least Squares problems and the Gauss-Newton approximation!
– Very important problem class – ubiquitous in AI, ML, robotics, etc
– Approximates the Hessian, scalable if the Jacobian is sparse

• Other methods approximate the Hessian from gradient observations:
– BFGS, (L)BFGS (“quasi-Newton method”) – a default solver in science
– Conjugate Gradient

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 3/17

Gauss-Newton method

• Consider a least squares problem (cost is a sum-of-squares):

min
x

f(x) where f(x) = ϕ(x)⊤ϕ(x) =

d∑
i=1

ϕi(x)
2

with features ϕ(x) ∈ Rd, and we can evaluate ϕ(x) and J = ∂
∂xϕ(x) for any x ∈ Rn

• ϕ(x) ∈ Rd is a vector; each entry contributes a squared cost term to f(x)

• ∂
∂x

ϕ(x) is the Jacobian (d× n-matrix)

J = ∂
∂x

ϕ(x) =

∂
∂x1

ϕ1(x)
∂

∂x2
ϕ1(x) · · · ∂

∂xn
ϕ1(x)

∂
∂x1

ϕ2(x)
...

...
...

∂
∂x1

ϕd(x) · · · · · · ∂
∂xn

ϕd(x)

∈ Rd×n

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 4/17

Gauss-Newton method

• Consider a least squares problem (cost is a sum-of-squares):

min
x

f(x) where f(x) = ϕ(x)⊤ϕ(x) =

d∑
i=1

ϕi(x)
2

with features ϕ(x) ∈ Rd, and we can evaluate ϕ(x) and J = ∂
∂xϕ(x) for any x ∈ Rn

• ϕ(x) ∈ Rd is a vector; each entry contributes a squared cost term to f(x)

• ∂
∂x

ϕ(x) is the Jacobian (d× n-matrix)

J = ∂
∂x

ϕ(x) =

∂
∂x1

ϕ1(x)
∂

∂x2
ϕ1(x) · · · ∂

∂xn
ϕ1(x)

∂
∂x1

ϕ2(x)
...

...
...

∂
∂x1

ϕd(x) · · · · · · ∂
∂xn

ϕd(x)

∈ Rd×n

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 4/17

Gauss-Newton method

• The gradient and Hessian of f(x) are

f(x) = ϕ(x)⊤ϕ(x)

∇f(x) = 2 ∂
∂xϕ(x)

⊤ϕ(x) (recall ∇f(x) ≡ ∂
∂xf(x)

⊤)

∇2f(x) = 2 ∂
∂xϕ(x)

⊤ ∂
∂xϕ(x) + 2ϕ(x)⊤∇2ϕ(x)

• The Gauss-Newton method is the Newton method for f(x) = ϕ(x)⊤ϕ(x) while
approximating ∇2ϕ(x) ≈ 0, i.e.

∇2f(x) ≈ 2 ∂
∂xϕ(x)

⊤ ∂
∂xϕ(x) = 2J⊤J

(Use this approximation when computing the step δ is the standard Newton algorithm.)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 5/17

Gauss-Newton method

• The approximate Hessian H = 2J⊤J is always semi-pos-def!

• H is a sum of rank-1 matrices:

H = 2

d∑
i=1

∇ϕi(x)∇ϕi(x)
⊤

(which implies semi-pos-def)

• If the Jacobian J is sparse, so is the Hessian → graphical structure

• H can be interpreted as pullback of the Euclidean norm ϕ⊤ϕ in feature space. As it is x-dependent, this is a
non-constant metric in x-space – it defines a Riemannian metric. (See math notes.)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 6/17

Gauss-Newton method

• The approximate Hessian H = 2J⊤J is always semi-pos-def!

• H is a sum of rank-1 matrices:

H = 2

d∑
i=1

∇ϕi(x)∇ϕi(x)
⊤

(which implies semi-pos-def)

• If the Jacobian J is sparse, so is the Hessian → graphical structure

• H can be interpreted as pullback of the Euclidean norm ϕ⊤ϕ in feature space. As it is x-dependent, this is a
non-constant metric in x-space – it defines a Riemannian metric. (See math notes.)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 6/17

Gauss-Newton method

• The approximate Hessian H = 2J⊤J is always semi-pos-def!

• H is a sum of rank-1 matrices:

H = 2

d∑
i=1

∇ϕi(x)∇ϕi(x)
⊤

(which implies semi-pos-def)

• If the Jacobian J is sparse, so is the Hessian → graphical structure

• H can be interpreted as pullback of the Euclidean norm ϕ⊤ϕ in feature space. As it is x-dependent, this is a
non-constant metric in x-space – it defines a Riemannian metric. (See math notes.)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 6/17

Gauss-Newton method

• The approximate Hessian H = 2J⊤J is always semi-pos-def!

• H is a sum of rank-1 matrices:

H = 2

d∑
i=1

∇ϕi(x)∇ϕi(x)
⊤

(which implies semi-pos-def)

• If the Jacobian J is sparse, so is the Hessian → graphical structure

• H can be interpreted as pullback of the Euclidean norm ϕ⊤ϕ in feature space. As it is x-dependent, this is a
non-constant metric in x-space – it defines a Riemannian metric. (See math notes.)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 6/17

Robotics example

• Path optimization: Let x = (x1, .., xT), xt ∈ Rn be a discretized path,

min
x

T∑
t=1

(xt + xt-2 − 2xt-1)
2 + ϕ(xT)

2

where x0, x-1 are given, and ϕ(xT) are some features of the end configuration xT

prefix

Toussaint: A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM, Gaussian Process
smoothing, optimal control, and probabilistic inference. 2017

• We use the formulation in terms of features throughout, also for hard constraints

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 7/17

Quasi-Newton methods

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 8/17

Quasi-Newton methods

• Assume we cannot evaluate ∇2f(x). Can we still use 2nd order methods?

• Yes: We can approximate ∇2f(x) from the data {(xi,∇f(xi))}ki=1 of previous
iterations

• (General view: We can learn from the data {(xi,∇f(xi))}ki=1 ⇝ e.g., Bayesian
optimization or model-based optimization for blackbox optimization.)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 9/17

Basic example

• We’ve seen two data points (x1,∇f(x1)) and (x2,∇f(x2)) – How can we estimate ∇2f(x)?

• In Rn: Let y = ∇f(x2)−∇f(x1), δ = x2 − x1

What are matrices H or H -1 to fulfil the following?

H δ
!
= y or δ

!
= H -1y

(The first equation is called secant equation)

• “Simplest” symmetric rank-1 solutions for H̄ ≈ H and Ĥ ≈ H -1:

H̄ =
yy⊤

y⊤δ
or Ĥ =

δδ⊤

δ⊤y
(1)

[Left: how to update H̄ ≈ H. Right: how to update directly Ĥ ≈ H-1.]

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 10/17

Basic example
• We’ve seen two data points (x1,∇f(x1)) and (x2,∇f(x2)) – How can we estimate ∇2f(x)?

• In 1D:

∇2f(x) ≈ ∇f(x2)−∇f(x1)

x2 − x1

• In Rn: Let y = ∇f(x2)−∇f(x1), δ = x2 − x1

What are matrices H or H -1 to fulfil the following?

H δ
!
= y or δ

!
= H -1y

(The first equation is called secant equation)

• “Simplest” symmetric rank-1 solutions for H̄ ≈ H and Ĥ ≈ H -1:

H̄ =
yy⊤

y⊤δ
or Ĥ =

δδ⊤

δ⊤y
(1)

[Left: how to update H̄ ≈ H. Right: how to update directly Ĥ ≈ H-1.]

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 10/17

Basic example

• We’ve seen two data points (x1,∇f(x1)) and (x2,∇f(x2)) – How can we estimate ∇2f(x)?

• In Rn: Let y = ∇f(x2)−∇f(x1), δ = x2 − x1

What are matrices H or H -1 to fulfil the following?

H δ
!
= y or δ

!
= H -1y

(The first equation is called secant equation)

• “Simplest” symmetric rank-1 solutions for H̄ ≈ H and Ĥ ≈ H -1:

H̄ =
yy⊤

y⊤δ
or Ĥ =

δδ⊤

δ⊤y
(1)

[Left: how to update H̄ ≈ H. Right: how to update directly Ĥ ≈ H-1.]

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 10/17

Basic example

• We’ve seen two data points (x1,∇f(x1)) and (x2,∇f(x2)) – How can we estimate ∇2f(x)?

• In Rn: Let y = ∇f(x2)−∇f(x1), δ = x2 − x1

What are matrices H or H -1 to fulfil the following?

H δ
!
= y or δ

!
= H -1y

(The first equation is called secant equation)

• “Simplest” symmetric rank-1 solutions for H̄ ≈ H and Ĥ ≈ H -1:

H̄ =
yy⊤

y⊤δ
or Ĥ =

δδ⊤

δ⊤y
(1)

[Left: how to update H̄ ≈ H. Right: how to update directly Ĥ ≈ H-1.]

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 10/17

BFGS

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) method:

Input: initial x ∈ Rn, functions f(x),∇f(x), tolerance θ

Output: x

1: initialize Ĥ = In

2: repeat
3: compute δ = −Ĥ∇f(x)
4: perform a line search minα f(x+ αδ)

5: δ ← αδ

6: y ← ∇f(x+ δ)−∇f(x)
7: x← x+ δ

8: update Ĥ ←
(
I− yδ⊤

δ⊤y

)⊤
Ĥ
(
I− yδ⊤

δ⊤y

)
+ δδ⊤

δ⊤y

9: until ||δ||∞ < θ

– The blue term is the Ĥ-update as on the previous slide

– The red term “deletes” “old” Ĥ-components. Check: Ĥy = δ

– equivalent to the Sherman-Morrison formula: H ← H − Hδδ⊤H⊤
δT Hδ

+ yy⊤

y⊤δ

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 11/17

L-BFGS

• In high dimensions, we do not want to explicitly store a dense Ĥ. Instead we store
vectors {vi} such that Ĥ =

∑
i viv

⊤
i

• L-BFGS (limited memory BFGS) limits the rank of the Ĥ and thereby the used
memory (number of vectors vi)

• Some thoughts:
In principle, there are alternative ways to estimate H -1 from the data {(xi, f(xi),∇f(xi))}ki=1,
e.g. using Gaussian Process regression with derivative observations

– not only the derivatives but also the value f(xi) should give information on H(x) for
non-quadratic functions

– should one weight ‘local’ data stronger than ‘far away’?
(GP covariance function)

– related to model-based search (see Blackbox Optimization lecture)

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 12/17

L-BFGS

• In high dimensions, we do not want to explicitly store a dense Ĥ. Instead we store
vectors {vi} such that Ĥ =

∑
i viv

⊤
i

• L-BFGS (limited memory BFGS) limits the rank of the Ĥ and thereby the used
memory (number of vectors vi)

• Some thoughts:
In principle, there are alternative ways to estimate H -1 from the data {(xi, f(xi),∇f(xi))}ki=1,
e.g. using Gaussian Process regression with derivative observations

– not only the derivatives but also the value f(xi) should give information on H(x) for
non-quadratic functions

– should one weight ‘local’ data stronger than ‘far away’?
(GP covariance function)

– related to model-based search (see Blackbox Optimization lecture)
Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 12/17

(Nonlinear) Conjugate Gradient

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 13/17

Conjugate Gradient

• The “Conjugate Gradient Method” is a method for solving (large, or sparse) linear
eqn. systems Ax+ b = 0, without inverting or decomposing A. The steps will be
“A-orthogonal” (=conjugate).
We mention its extension for optimizing nonlinear functions f(x)

• As before we evaluted g′ = ∇f(x1) and g = ∇f(x2) at points x1, x2 ∈ Rn

• Additional assumption: exact line-search step to x2:
– x2 = x1 + αδ1 , α = argminα f(x1 + αδ1)

– iso-lines of f(x) at x2 are tangential to δ1

⇒ The next search direction should be “orthogonal” to the previous one, but
orthogonal w.r.t. the Hessian H, i.e., δ⊤2Hδ1 = 0, which is called conjugate

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 14/17

Conjugate Gradient

Input: initial x ∈ Rn, functions f(x),∇f(x), tolerance θ

Output: x

1: initialize descent direction δ = g = −∇f(x)
2: repeat
3: α← argminα f(x+ αδ) // line search
4: x← x+ αδ

5: g′ ← g, g = −∇f(x) // store and compute grad

6: β ← max

{
g⊤(g−g′)

g′⊤g′
, 0

}
7: δ ← g + βδ // conjugate descent direction
8: until |∆x| < θ

– β > 0: The new descent direction always adds a bit of the old direction!
– This momentum essentially provides 2nd order information
– The equation for β is by Polak-Ribière: On a quadratic function f(x) = x⊤Ax+ b⊤x this leads to

conjugate search directions, δ′⊤Aδ = 0.

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 15/17

Conjugate Gradient

• For quadratic functions CG converges in n iterations.
But each iteration does exact line search

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 16/17

Further Methods

• Beyond the standard canon – but perhaps discussed later:
– Bound constrained optimization
– Stochastic Gradient

– Blackbox Optimization, Bayesian Optimization
– model-based optimization, implicit filtering
– Stochastic Search, Evolutionary Algorithms, EDAs
– Simulated annealing
– Nelder-Mead downhill simplex, pattern search
– Rprop

Learning and Intelligent Systems Lab, TU Berlin Approximate Newton Methods – 17/17

