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Problem Formulation

¢ General Non-linear Mathematical Program (NLP) (constrained optimization
problem):
LetzeR™, f: R" 5> R,¢g: R* - R™, h: R" - R find

Ir;in f(z) st g(x) <0, h(z) =0

— We typically assume f, g, h to be differentiable or smooth.
— We can typically query f, Vf, g, Vg, h, Vh, optionally also V2 f.

e The lecture sometimes only mentions inequality constraints g, equality constraints are
analogous/easier
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General approaches

e Roughly, try to somehow transform the constraint problem to
— a series of unconstraint problems (log-barrier, AuglLag, etc...)
— a single but larger unconstraint problem (primal-dual)
— a (series of) other constraint problems, hopefully simpler (dual, convex, SQP)
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Outline

KKT conditions of optimality

Core methods: log barrier, squared penalties, Aug. Lagrangian

Introduce Lagrangian — revisit KKT, log barrier, dual problem, primal-dual

Further topics: Phase |, bound constraints, trust region, distributed optimization,
simplex algorithm

Learning and Intelligent Systems Lab, TU Berlin Non-Linear Mathematical Programs & KKT — 4/8



Solving by sketching
e Sketch the following problems and identify the solution:

— 1-dimensional: minz s.t. sin(z) =0, 2?/4 -1 <0,
— 2-dimensional: minz; st z?2+1y?2—-1<0
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o At the optimum there must be a balance between the cost gradient —Vf (x) pulling,
and the gradient of the active constraints —Vg;(x) pushing back

[Our convention: “costs f(z) pull, constraints g(x), h(z) push back”]
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Karush-Kuhn-Tucker conditions

o At the optimum there must be a balance between the cost gradient —Vf () pulling,
and the gradient of the active constraints —Vg;(x) pushing back
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Karush-Kuhn-Tucker conditions

o At the optimum there must be a balance between the cost gradient —Vf () pulling,
and the gradient of the active constraints —Vg;(x) pushing back

e Theorem (Karush-Kuhn-Tucker conditions): For any NLP,

zoptimal = 3NeR™ keR st

m l
Vf (@) + Y AiVgi(x) + >k Vhi(z) =0 (stationarity)
i=1 j=1
h(z) =0, g¢g(x)<0 (primal feasibility)
A>0 (dual feasibility)
Vit Nigi(x) =0 (complementarity)

[stationarity in compact notation: Vf(z) + A'0,g(z) + k"0, h(z) = 0]
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Karush-Kuhn-Tucker conditions

o Stationarity (1st KKT): “Force balance” of the cost pulling and the active
constraints pushing back
— Existence of dual parameters A, x is equivalent to

Vf(x) € span{Vg1..m, Vh1..1}

— The values of Aand x <« how strongly the constraints push
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e Complementarity (4th KKT): “Logic of constraint activity”
— An inequality can only push at the boundary, where g; =0
— The formulation \;g; = 0 very elegantly describes this logic

— The combinatorics of which constraint is active (O(2™)) is a core source of difficulty of
constrained optimization

— If you would apriori know which constraints are active — inequalities become equalities — easier
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