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Problem Formulation

• General Non-linear Mathematical Program (NLP) (constrained optimization
problem):
Let x ∈ Rn, f : Rn → R, g : Rn → Rm, h : Rn → Rl find

min
x

f(x) s.t. g(x) ≤ 0, h(x) = 0

– We typically assume f, g, h to be differentiable or smooth.
– We can typically query f,∇f, g,∇g, h,∇h, optionally also ∇2f .

• The lecture sometimes only mentions inequality constraints g, equality constraints are
analogous/easier
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General approaches

• Roughly, try to somehow transform the constraint problem to
– a series of unconstraint problems (log-barrier, AugLag, etc...)
– a single but larger unconstraint problem (primal-dual)
– a (series of) other constraint problems, hopefully simpler (dual, convex, SQP)
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Outline

• KKT conditions of optimality

• Core methods: log barrier, squared penalties, Aug. Lagrangian

• Introduce Lagrangian – revisit KKT, log barrier, dual problem, primal-dual

• Further topics: Phase I, bound constraints, trust region, distributed optimization,
simplex algorithm

Learning and Intelligent Systems Lab, TU Berlin Non-Linear Mathematical Programs & KKT – 4/8



Solving by sketching

• Sketch the following problems and identify the solution:
– 1-dimensional: minx s.t. sin(x) = 0, x2/4− 1 ≤ 0,
– 2-dimensional: minx1 s.t. x2 + y2 − 1 ≤ 0
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• At the optimum there must be a balance between the cost gradient −∇f(x) pulling,
and the gradient of the active constraints −∇gi(x) pushing back

[Our convention: “costs f(x) pull, constraints g(x), h(x) push back”]
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Karush-Kuhn-Tucker conditions

• At the optimum there must be a balance between the cost gradient −∇f(x) pulling,
and the gradient of the active constraints −∇gi(x) pushing back

• Theorem (Karush-Kuhn-Tucker conditions): For any NLP,

x optimal ⇒ ∃λ ∈ Rm, κ ∈ Rl s.t.

∇f(x) +
m∑
i=1

λi∇gi(x) +
l∑

j=1

κj∇hj(x) = 0 (stationarity)

h(x) = 0 , g(x) ≤ 0 (primal feasibility)

λ ≥ 0 (dual feasibility)

∀i : λigi(x) = 0 (complementarity)

[stationarity in compact notation: ∇f(x) + λ⊤∂xg(x) + κ⊤∂xh(x) = 0]
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Karush-Kuhn-Tucker conditions

• Stationarity (1st KKT): “Force balance” of the cost pulling and the active
constraints pushing back

– Existence of dual parameters λ, κ is equivalent to

∇f(x) ∈ span{∇g1..m,∇h1..l}

– The values of λ and κ ↔ how strongly the constraints push

• Complementarity (4th KKT): “Logic of constraint activity”
– An inequality can only push at the boundary, where gi = 0

– The formulation λigi = 0 very elegantly describes this logic
– The combinatorics of which constraint is active (O(2m)) is a core source of difficulty of

constrained optimization
– If you would apriori know which constraints are active → inequalities become equalities → easier
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