

Optimization Algorithms

Non-Linear Mathematical Programs & KKT

Marc Toussaint Technical University of Berlin Winter 2024/25

Problem Formulation

• General **Non-linear Mathematical Program (NLP)** (constrained optimization problem):

Let $x \in \mathbb{R}^n$, $f: \ \mathbb{R}^n \to \mathbb{R}$, $g: \ \mathbb{R}^n \to \mathbb{R}^m$, $h: \ \mathbb{R}^n \to \mathbb{R}^l$ find

 $\min_{x} f(x)$ s.t. $g(x) \leq 0, h(x) = 0$

- We typically assume f, g, h to be differentiable or smooth.
- $-$ We can typically query $f, \nabla\! f, g, \nabla\! g, h, \nabla\! h,$ optionally also $\nabla^2 f.$

• The lecture sometimes only mentions inequality constraints q , equality constraints are analogous/easier

Learning and Intelligent Systems Lab, TU Berlin

General approaches

- Roughly, try to somehow transform the constraint problem to
	- a series of unconstraint problems (log-barrier, AugLag, etc...)
	- a single but larger unconstraint problem (primal-dual)
	- a (series of) other constraint problems, hopefully simpler (dual, convex, SQP)

Outline

- KKT conditions of optimality
- Core methods: **log barrier**, squared penalties, **Aug. Lagrangian**
- Introduce **Lagrangian** revisit KKT, log barrier, dual problem, primal-dual
- Further topics: Phase I, bound constraints, trust region, distributed optimization, simplex algorithm

Solving by sketching

- Sketch the following problems and identify the solution:
	- − 1-dimensional: min x s.t. $sin(x) = 0, x^2/4 1 \le 0$,
	- 2-dimensional: $\min x_1$ s.t. $x^2 + y^2 1 \le 0$

• *At the optimum there must be a balance between the cost gradient* −∇f(x) *pulling, and the gradient of the active constraints* $\nabla q_i(x)$ *pushing back*

[Our convention: "costs $f(x)$ *pull*, constraints $g(x)$, $h(x)$ *push* back"]

Non-Linear Mathematical Programs & KKT – 6/8

• At the optimum there must be a balance between the cost gradient $-\nabla f(x)$ pulling, *and the gradient of the active constraints* $\nabla q_i(x)$ *pushing back*

Non-Linear Mathematical Programs & KKT – 7/8

- *At the optimum there must be a balance between the cost gradient* −∇f(x) *pulling, and the gradient of the active constraints* −∇gi(x) *pushing back*
- **Theorem (Karush-Kuhn-Tucker conditions):** For any NLP,

$$
x \text{ optimal } \Rightarrow \exists \lambda \in \mathbb{R}^m, \kappa \in \mathbb{R}^l \text{ s.t.}
$$
\n
$$
\nabla f(x) + \sum_{i=1}^m \lambda_i \nabla g_i(x) + \sum_{j=1}^l \kappa_j \nabla h_j(x) = 0 \qquad \text{(stationarity)}
$$
\n
$$
h(x) = 0, \quad g(x) \le 0 \qquad \text{(primal feasibility)}
$$
\n
$$
\lambda \ge 0 \qquad \text{(dual feasibility)}
$$
\n
$$
\forall i: \lambda_i g_i(x) = 0 \qquad \text{(complementary)}
$$

 $[\text{stationarity in compact notation: } \nabla f(x) + \lambda^\top \partial_x g(x) + \kappa^\top \partial_x h(x) = 0]$ Non-Linear Mathematical Programs & KKT – 7/8

- **Stationarity (1st KKT)**: "Force balance" of the cost pulling and the active constraints pushing back
	- Existence of dual parameters λ, κ is equivalent to

 $\nabla f(x) \in \text{span}\{\nabla q_{1..m}, \nabla h_{1..l}\}\$

– The values of λ and $\kappa \leftrightarrow$ how strongly the constraints push

- **Stationarity (1st KKT)**: "Force balance" of the cost pulling and the active constraints pushing back
	- Existence of dual parameters λ, κ is equivalent to

 $\nabla f(x) \in \text{span}\{\nabla q_{1..m}, \nabla h_{1..l}\}\$

- The values of λ and $\kappa \leftrightarrow$ how strongly the constraints push
- **Complementarity (4th KKT)**: "Logic of constraint activity"
	- An inequality can only push at the boundary, where $q_i = 0$
	- The formulation $\lambda_i q_i = 0$ very elegantly describes this logic
	- The combinatorics of which constraint is active $(O(2^m))$ is a core source of difficulty of constrained optimization
	- If you would apriori know which constraints are active \rightarrow inequalities become equalities \rightarrow easier