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Squared Penalty Method
• To solve the original problem

min
x

f(x) s.t. g(x) ≤ 0, h(x) = 0

we define the unconstrained inner problem

min
x

S(x, µ, ν) , S(x, µ, ν) = f(x) + µ
∑
i

[gi(x) > 0] gi(x)
2 + ν

∑
j

hj(x)
2

Input: initial x ∈ Rn, functions f(x), g(x), h(x), tolerances θ, ϵ, parameters (defaults: ϱ+µ =

ϱ+ν = 10, µ0 = ν0 = 1)
Output: x

1: initialize µ = µ0, ν = ν0

2: repeat
3: solve unconstrained problem x← argminx S(x, µ, ν)

4: µ← ϱ+µ µ, ν ← ϱ+ν ν

5: until |∆x| ≤ θ and ∀i,j : gi(x) ≤ ϵ, |hi(x)| ≤ ϵ repeatedly
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Squared Penalty Method

• Note: Here we increase µ and ν gradually

• Pro:
– Very simple
– Quadratic penalties → good conditioning for Newton methods → efficient convergence

• Con:
– Will always lead to some violation of constraints
– Conditioning for very large µ, ν

• Better ideas:
– Add an out-pushing gradient/force −∇gi(x) for every constraint gi(x) > 0 that is violated
– Ideally, the out-pushing gradient mixes with −∇f(x) exactly consistent to ensure stationarity

→ Augmented Lagrangian
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Augmented Lagrangian

(We can introduce this is a self-contained manner, without yet defining the “Lagrangian”)
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Augmented Lagrangian

• We first consider an equality constraint before addressing inequalities

• To solve the original problem

min
x

f(x) s.t. h(x) = 0

we define the unconstrained inner problem

min
x

A(x, κ, ν) , A(x, κ, ν) = f(x) +
∑
j

κjhj(x) + ν
∑
j

hj(x)
2 (1)

• Note:
– The gradient ∇hj(x) is always orthogonal to the constraint
– By tuning κj we can induce a “pushing force” −κj∇hj(x) (cp. KKT stationarity!)
– Each term νhj(x)

2 penalizes as before, and “pushes” with −2νhj(x)∇hj(x)
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Augmented Lagrangian
• The approach:

– First minimize (1) for κj = 0 and some ν ⇝ this will lead to a (slight) penalty νhj(x)
2

– Then choose κj to generate exactly the gradient that was previously generated by the penalty

• Let’s look at the gradients at the optimum minxA(x, κ, ν):

x′ = argmin
x

f(x) +
∑
j

κjhj(x) + ν
∑
j

hj(x)
2

⇒ 0 = ∇f(x′) +
∑
j

κj∇hj(x′) + ν
∑
j

2hj(x
′)∇hj(x′)

(Describes the force balance between f pulling, penalties pushing, and Lagrange term pushing)

• Augmented Lagrangian Update: Update κ’s for the next iteration to be:∑
j

κnew
j ∇hj(x′)

!
=

∑
j

κold
j ∇hj(x′) + ν

∑
j

2hj(x
′)∇hj(x′)

κnew
j = κold

j + 2νhj(x
′)
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• Why this adaptation of κj is elegant:
– We do not have to take the penalty limit ν → ∞ but still can have exact constraints
→ Unlike log-barrier and sqr penalty, the method does not have to increase weights of

penalties/barriers, and does not lead to extreme conditioning of the Hessian
– If f and h were linear (∇f and ∇hj constant), the updated κj is exactly right: In the next iteration

we would exactly hit the constraint (by construction)

• The Augmented Lagrangian handles equality constraints very efficiently
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Augmented Lagrangian with Inequalities

• To solve the original problem

min
x

f(x) s.t. g(x) ≤ 0, h(x) = 0

we define the unconstrained inner problem, minx ...

A(x, λ, κ, µ, ν) = f(x)+
∑
i

λigi(x)+µ
∑
i

[gi(x) ≥ 0∨λi > 0] gi(x)
2+

∑
j

κjhj(x)+ν
∑
j

hj(x)
2

• An inequality is either active or inactive:
– When active (gi(x) ≥ 0 ∨ λi > 0) we aim for equality gi(x) = 0

– When inactive (gi(x) < 0 ∧ λi = 0) we don’t penalize/augment
– λi are zero or positive, but never negative

• After each inner optimization, we use the Augmented Lagrangian dual updates:

λi ← max(λi + 2µgi(x
′), 0) , κj ← κj + 2νhj(x

′) .
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Augmented Lagrangian

Input: initial x ∈ Rn, functions f, g, h, tolances θ, ϵ, parameters (defaults: ϱ+
µ = ϱ+

ν = 1.2, µ0 = ν0 = 1)
Output: x

1: initialize µ = µ0, ν = ν0, λi = 0, κj = 0

2: repeat
3: solve unconstrained problem x← argminx A(x, λ, κ, µ, ν)

4: ∀i : λi ← max(λi + 2µgi(x), 0), ∀j : κj ← κj + 2νhj(x)

5: optionally, µ← ϱ+
µµ, ν ← ϱ+

ν ν

6: until |∆x| < θ and gi(x) < ϵ and |hj(x)| < ϵ repeatedly

• See also: M. Toussaint: A Novel Augmented Lagrangian Approach for Inequalities and Convergent Any-Time
Non-Central Updates. e-Print arXiv:1412.4329, 2014.

• Demo...
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Comments

• We learnt about three core methods to tackle constrained optimization by repeated
unconstrained optimization:

– Log barrier method
– Squared penalty method (approximate only)
– Augmented Lagrangian method

• Next we discuss in more depth the Lagrangian, which will help to also introduce the
primal-dual method

• Later we discuss other methods, eg. Simplex, SQP
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