

Optimization Algorithms

Augmented Lagrangian

squared penalties, Augmented Lagrangian

Marc Toussaint Technical University of Berlin Winter 2024/25

Squared Penalty Method

• To solve the original problem

$$
\min_{x} f(x) \text{ s.t. } g(x) \le 0, h(x) = 0
$$

we define the unconstrained *inner* problem

$$
\min_{x} S(x, \mu, \nu) , \quad S(x, \mu, \nu) = f(x) + \mu \sum_{i} [g_i(x) > 0] g_i(x)^2 + \nu \sum_{j} h_j(x)^2
$$

Input: initial $x \in \mathbb{R}^n$, functions $f(x), g(x), h(x)$, tolerances θ , ϵ , parameters (defaults: ϱ_{μ}^+ = $\varrho_{\nu}^+ = 10, \mu_0 = \nu_0 = 1$

Output: x

1: initialize $\mu = \mu_0, \nu = \nu_0$

2: **repeat**

$$
\text{ s:} \qquad \text{solve unconstrained problem } x \leftarrow \mathop{\mathrm{argmin}}_{x} S(x,\mu,\nu)
$$

4:
$$
\mu \leftarrow \varrho_{\mu}^{+} \mu, \ \nu \leftarrow \varrho_{\nu}^{+} \nu
$$

5: **until** $|\Delta x| \leq \theta$ and $\forall i, j : g_i(x) \leq \epsilon, |h_i(x)| \leq \epsilon$ repeatedly

Squared Penalty Method

- Note: Here we increase μ and ν gradually
- Pro:
	- Very simple
	- Quadratic penalties \rightarrow good conditioning for Newton methods \rightarrow efficient convergence
- Con:
	- Will always lead to *some* violation of constraints
	- Conditioning for very large μ, ν

Squared Penalty Method

- Note: Here we increase μ and ν gradually
- Pro:
	- Very simple
	- Quadratic penalties \rightarrow good conditioning for Newton methods \rightarrow efficient convergence
- Con:
	- Will always lead to *some* violation of constraints
	- Conditioning for very large μ, ν
- Better ideas:
	- Add an out-pushing gradient/force $-\nabla g_i(x)$ for every constraint $g_i(x) > 0$ that is violated
	- Ideally, the out-pushing gradient mixes with $-\nabla f(x)$ exactly consistent to ensure stationarity

→ *Augmented Lagrangian*

(We can introduce this is a self-contained manner, without yet defining the "Lagrangian")

- We first consider an *equality* constraint before addressing inequalities
- To solve the original problem

$$
\min_x f(x) \text{ s.t. } h(x) = 0
$$

we define the unconstrained *inner* problem

$$
\min_{x} A(x, \kappa, \nu) , \quad A(x, \kappa, \nu) = f(x) + \sum_{j} \kappa_{j} h_{j}(x) + \nu \sum_{j} h_{j}(x)^{2}
$$
 (1)

- Note:
	- The gradient $\nabla h_i(x)$ is always orthogonal to the constraint
	- By tuning κ_i we can induce a "pushing force" $-\kappa_j \nabla h_j(x)$ (cp. KKT stationarity!)
	- $-$ Each term $\nu h_j(x)^2$ penalizes as before, and "pushes" with $-2\nu h_j(x)\nabla\!h_j(x)$

- The approach:
	- First minimize [\(1\)](#page-5-0) for $\kappa_j=0$ and some $\nu\ \leadsto\ {\rm this}$ will lead to a (slight) penalty $\nu h_j(x)^2$
	- $-$ Then *choose* κ_i *to generate exactly the gradient that was previously generated by the penalty*

- The approach:
	- First minimize [\(1\)](#page-5-0) for $\kappa_j=0$ and some $\nu\ \leadsto\ {\rm this}$ will lead to a (slight) penalty $\nu h_j(x)^2$
	- $-$ Then *choose* κ_i to generate exactly the gradient that was previously generated by the penalty
- Let's look at the gradients at the optimum $\min_{x} A(x, \kappa, \nu)$:

$$
x' = \underset{x}{\text{argmin}} \ f(x) + \sum_{j} \kappa_j h_j(x) + \nu \sum_{j} h_j(x)^2
$$

$$
\Rightarrow \quad 0 = \nabla f(x') + \sum_{j} \kappa_j \nabla h_j(x') + \nu \sum_{j} 2h_j(x') \nabla h_j(x')
$$

(Describes the force balance between f pulling, penalties pushing, and Lagrange term pushing)

- The approach:
	- First minimize [\(1\)](#page-5-0) for $\kappa_j=0$ and some $\nu\ \leadsto\ {\rm this}$ will lead to a (slight) penalty $\nu h_j(x)^2$
	- $-$ Then *choose* κ_i to generate exactly the gradient that was previously generated by the penalty
- Let's look at the gradients at the optimum $\min_x A(x, \kappa, \nu)$:

$$
x' = \underset{x}{\text{argmin}} \ f(x) + \sum_{j} \kappa_j h_j(x) + \nu \sum_{j} h_j(x)^2
$$

$$
\Rightarrow \quad 0 = \nabla f(x') + \sum_{j} \kappa_j \nabla h_j(x') + \nu \sum_{j} 2h_j(x') \nabla h_j(x')
$$

(Describes the force balance between f pulling, penalties pushing, and Lagrange term pushing)

• Augmented Lagrangian Update: Update κ 's for the next iteration to be:

$$
\sum_{j} \kappa_j^{\text{new}} \nabla h_j(x') \stackrel{!}{=} \sum_{j} \kappa_j^{\text{old}} \nabla h_j(x') + \nu \sum_{j} 2h_j(x') \nabla h_j(x')
$$

$$
\kappa_j^{\text{new}} = \kappa_j^{\text{old}} + 2\nu h_j(x')
$$

Augmented Lagrangian – 6/10

- Why this adaptation of κ_i is elegant:
	- We do *not* have to take the penalty limit $\nu \rightarrow \infty$ but still can have *exact* constraints
	- \rightarrow Unlike log-barrier and sqr penalty, the method *does not have to increase weights of penalties/barriers*, and *does not lead to extreme conditioning of the Hessian*
	- If f and h were linear (∇f and ∇h_i constant), the updated κ_i is *exactly right*: In the next iteration we would exactly hit the constraint (by construction)

- Why this adaptation of κ_i is elegant:
	- We do *not* have to take the penalty limit $\nu \rightarrow \infty$ but still can have *exact* constraints
	- \rightarrow Unlike log-barrier and sqr penalty, the method *does not have to increase weights of penalties/barriers*, and *does not lead to extreme conditioning of the Hessian*
	- If f and h were linear (∇f and ∇h_i constant), the updated κ_i is *exactly right*: In the next iteration we would exactly hit the constraint (by construction)
- The Augmented Lagrangian handles equality constraints very efficiently

Augmented Lagrangian with Inequalities

• To solve the original problem

 $\min_{x} f(x)$ s.t. $g(x) \leq 0, h(x) = 0$

we define the unconstrained inner problem, \min_{x} ...

$$
A(x, \lambda, \kappa, \mu, \nu) = f(x) + \sum_{i} \lambda_i g_i(x) + \mu \sum_{i} [g_i(x) \ge 0 \lor \lambda_i > 0] g_i(x)^2 + \sum_{j} \kappa_j h_j(x) + \nu \sum_{j} h_j(x)^2
$$

- An inequality is either **active** or **inactive**:
	- When active $(q_i(x) \geq 0 \vee \lambda_i > 0)$ we aim for equality $q_i(x) = 0$
	- When inactive $(q_i(x) < 0 \land \lambda_i = 0)$ we don't penalize/augment
	- λ_i are zero or positive, but never negative
- After each inner optimization, we use the **Augmented Lagrangian dual updates**:

$$
\lambda_i \leftarrow \max(\lambda_i + 2\mu g_i(x'), 0), \quad \kappa_j \leftarrow \kappa_j + 2\nu h_j(x') .
$$

Learning and Intelligent Systems Lab, TU Berlin

Augmented Lagrangian – 8/10

Input: initial $x \in \mathbb{R}^n$, functions f, g, h , tolances θ , ϵ , parameters (defaults: $\varrho^+_\mu = \varrho^+_\nu = 1.2, \mu_0 = \nu_0 = 1$) **Output:** x 1: initialize $\mu = \mu_0$, $\nu = \nu_0$, $\lambda_i = 0$, $\kappa_i = 0$ 2: **repeat** 3: solve unconstrained problem $x \leftarrow \operatorname{argmin}_x A(x, \lambda, \kappa, \mu, \nu)$ 4: $\forall i : \lambda_i \leftarrow \max(\lambda_i + 2\mu q_i(x), 0), \forall i : \kappa_i \leftarrow \kappa_i + 2\nu h_i(x)$ 5: optionally, $\mu \leftarrow \varrho_{\mu}^{+} \mu$, $\nu \leftarrow \varrho_{\nu}^{+} \nu$ 6: **until** $|\Delta x| < \theta$ and $g_i(x) < \epsilon$ and $|h_i(x)| < \epsilon$ repeatedly

- See also: M. Toussaint: A Novel Augmented Lagrangian Approach for Inequalities and Convergent Any-Time Non-Central Updates. e-Print arXiv:1412.4329, 2014.
- Demo...

Learning and Intelligent Systems Lab, TU Berlin

Comments

- We learnt about three core methods to tackle constrained optimization by repeated unconstrained optimization:
	- Log barrier method
	- Squared penalty method (approximate only)
	- Augmented Lagrangian method
- Next we discuss in more depth the Lagrangian, which will help to also introduce the primal-dual method
- Later we discuss other methods, eg. Simplex, SQP

