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Squared Penalty Method

¢ To solve the original problem
min f(z) s.t. g(z) <0, h(z) =
we define the unconstrained inner problem

min S, v) - S(e ) = @)+ 1) lat) > 0 o +th

Input: initial = € R, functions f(z), g(z), h(x), tolerances 6, e, parameters (defaults: o)} =
o =10,p0 = vo = 1)
Output: =
1: initialize p = po, v = 1o
2: repeat
3: solve unconstrained problem = <— argmin, S(z, i, v)
4 W o u, v ofv
5. until |[Az| <fandV; ;: gi(x) <, |hi(x)] < erepeatedly
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Squared Penalty Method

e Note: Here we increase p and v gradually
e Pro:

— Very simple

— Quadratic penalties — good conditioning for Newton methods — efficient convergence
e Con:

— Will always lead to some violation of constraints
— Conditioning for very large u, v
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Squared Penalty Method

Note: Here we increase p and v gradually

e Pro:
— Very simple
— Quadratic penalties — good conditioning for Newton methods — efficient convergence
e Con:
— Will always lead to some violation of constraints
— Conditioning for very large u, v
Better ideas:

— Add an out-pushing gradient/force —Vg;(x) for every constraint g;(x) > 0 that is violated
— Ideally, the out-pushing gradient mixes with —Vf(z) exactly consistent to ensure stationarity

— Augmented Lagrangian
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Augmented Lagrangian

(We can introduce this is a self-contained manner, without yet defining the “Lagrangian”)
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Augmented Lagrangian

e We first consider an equality constraint before addressing inequalities

¢ To solve the original problem
min f(z) st. h(z) =0
we define the unconstrained inner problem

min Az, k,v),  Alz,k,v) = f(@) + > ki) +v > hi(x)? (1)
J J

e Note:
— The gradient Vi, () is always orthogonal to the constraint
— By tuning x; we can induce a “pushing force” —x;Vh;(z) (cp. KKT stationarity!)
— Each term vh;(z)? penalizes as before, and “pushes” with —2vh;;(x) Vh; (z)

Learning and Intelligent Systems Lab, TU Berlin Augmented Lagrangian — 5/10



Augmented Lagrangian

e The approach:
— First minimize (1) for x; = 0 and some v ~ this will lead to a (slight) penalty vh;(z)?
— Then choose «; to generate exactly the gradient that was previously generated by the penalty
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Augmented Lagrangian

e The approach:
— First minimize (1) for x; = 0 and some v ~ this will lead to a (slight) penalty vh;(z)?
— Then choose «; to generate exactly the gradient that was previously generated by the penalty

e Let’s look at the gradients at the optimum min, A(z, x, v):

x—argmmf —I—Zfi] +1/Zh-x2

= 0=Vf(z +Z/fj +u22h (z')

(Describes the force balance between f pulling, penalties pushing, and Lagrange term pushing)
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Augmented Lagrangian

e The approach:
— First minimize (1) for x; = 0 and some v ~ this will lead to a (slight) penalty vh;(z)?
— Then choose «; to generate exactly the gradient that was previously generated by the penalty

e Let’s look at the gradients at the optimum min, A(z, x, v):

x—argmmf —I—E@ —i—l/Zh-xQ

= 0=Vf(z Z/fj +V22h (=)

(Describes the force balance between f pulling, penalties pushing, and Lagrange term pushing)

e Augmented Lagrangian Update: Update «’s for the next iteration to be:
Z HneWVh Z K/O|th + VZ 2h )

new __ oId .
KIS = K2% + 2wh;(2')
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o Why this adaptation of «; is elegant:
— We do not have to take the penalty limit » — oo but still can have exact constraints

— Unlike log-barrier and sqgr penalty, the method does not have to increase weights of
penalties/barriers, and does not lead to extreme conditioning of the Hessian

— If f and h were linear (Vf and Vh; constant), the updated «; is exactly right. In the next iteration
we would exactly hit the constraint (by construction)
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o Why this adaptation of «; is elegant:
— We do not have to take the penalty limit » — oo but still can have exact constraints

— Unlike log-barrier and sqgr penalty, the method does not have to increase weights of
penalties/barriers, and does not lead to extreme conditioning of the Hessian

— If f and h were linear (Vf and Vh; constant), the updated «; is exactly right. In the next iteration
we would exactly hit the constraint (by construction)

e The Augmented Lagrangian handles equality constraints very efficiently
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Augmented Lagrangian with Inequalities
¢ To solve the original problem
min f(z) st g(z) <0, h(z) =
we define the unconstrained inner problem, min,, ...

A(z, N\ Ky, v) —|—Z Aigi(z —HLZ gi(z) > OVA; > 0] gi(w +Z Kih; —|—1/Zhj(x)2

¢ Aninequality is either active or inactive:
— When active (g:(z) > 0V \; > 0) we aim for equality g;(z) = 0
— When inactive (g;(x) < 0 A A; = 0) we don’t penalize/augment
— A, are zero or positive, but never negative

e After each inner optimization, we use the Augmented Lagrangian dual updates:

i < max(\; +2pg:(2'),0) , K+ Kj + 2vhi(2) .
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Augmented Lagrangian

Input: initial z € R™, functions £, g, h, tolances 0, €, parameters (defaults: o7 = of =1.2,u0 =10 =1)
Output: =

1: initialize 4 = po, v =vo, A\ =0,K; =0

2: repeat

3 solve unconstrained problem = < argmin, A(z, X\, k, u, v)

4: Vit i <= max(X\; +2ug;(x),0), V; : kj < k; + 2vhj;(x)
5 optionally, < g::,u, vV Qj;l/
6: until |[Az| < 6 and g;(z) < eand |h;(x)| < e repeatedly

e See also: M. Toussaint: A Novel Augmented Lagrangian Approach for Inequalities and Convergent Any-Time
Non-Central Updates. e-Print arXiv:1412.4329, 2014.

e Demo...
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Comments

e We learnt about three core methods to tackle constrained optimization by repeated
unconstrained optimization:
— Log barrier method
— Squared penalty method (approximate only)
— Augmented Lagrangian method

¢ Next we discuss in more depth the Lagrangian, which will help to also introduce the
primal-dual method

e Later we discuss other methods, eg. Simplex, SQP
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