

Optimization Algorithms

The Lagrangian

Definition, Relation to KKT conditions, saddle point view, dual problem, min-max max-min duality, modified KKT & log barriers

> Marc Toussaint Technical University of Berlin Winter 2024/25

The Lagrangian

• Given a constraint problem

$$\min_{x} f(x)$$
 s.t. $g(x) \le 0, h(x) = 0$

we define the Lagrangian as

$$L(x,\kappa,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{l} \kappa_i h_i(x)$$
$$= f(x) + \lambda^{\mathsf{T}} g(x) + \kappa^{\mathsf{T}} h(x)$$

• The $\lambda_i \geq 0$ and $\kappa_i \in \mathbb{R}$ are called **dual variables** or *Lagrange multipliers*

What's the point of this definition?

- The Lagrangian relates strongly to the KKT conditions of optimality!
- The Lagrangian is useful to compute optima analytically, on paper
- Optima are necessarily at saddle points of the Lagrangian
- The Lagrangian implies a dual problem, which is sometimes easier to solve than the primal

• $\nabla_{x}L = 0$ implies the **1st KKT** condition

$$0 = \nabla_x L = \nabla f(x) + \sum_{i=1}^m \lambda_i \nabla g_i(x) + \sum_{i=1}^l \kappa_i \nabla h_i(x)$$

• $\nabla_{x}L = 0$ implies the **1st KKT** condition

$$0 = \nabla_x L = \nabla f(x) + \sum_{i=1}^m \lambda_i \nabla g_i(x) + \sum_{i=1}^l \kappa_i \nabla h_i(x)$$

• $\nabla_{\kappa}L = 0$, implies primal feasibility (h = 0, **2nd KKT**) w.r.t. the equalities

• $\nabla_{x}L = 0$ implies the **1st KKT** condition

$$0 = \nabla_x L = \nabla f(x) + \sum_{i=1}^m \lambda_i \nabla g_i(x) + \sum_{i=1}^l \kappa_i \nabla h_i(x)$$

- $\nabla_{\!\kappa}L = 0$, implies primal feasibility (h = 0, **2nd KKT**) w.r.t. the equalities
- $\max_{\lambda \ge 0} L$ is related to the remaining **2nd and 4th KKT** conditions:

$$\max_{\lambda \ge 0} L(x,\lambda) = F_{\infty}(x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } g(x) \le 0\\ \infty & \text{otherwise} \end{cases}$$
(1)
$$\lambda = \operatorname*{argmax}_{\lambda \ge 0} L(x,\lambda) \implies \begin{cases} \lambda_i = 0 & \text{if } g_i(x) < 0\\ 0 = \nabla_{\lambda_i} L(x,\lambda) = g_i(x) & \text{otherwise} \end{cases}$$
(2)

This implies either $(\lambda_i = 0 \land g_i(x) < 0)$ or $g_i(x) = 0$, which is equivalent to the *complementarity* and *primal feasibility* for inequalities.

Learning and Intelligent Systems Lab, TU Berlin

The Lagrangian -4/14

- We learnt that
 - $\min_x L(x, \lambda, \kappa)$ reproduces 1st KKT
 - $\max_{\lambda \ge 0,\kappa} L(x,\lambda,\kappa)$ reproduces remaining KKT
- KKT conditions are related to minimize w.r.t. *x*, and maximize w.r.t. λ... (more on this later)

- We learnt that
 - $\min_x L(x, \lambda, \kappa)$ reproduces 1st KKT
 - $\max_{\lambda \ge 0,\kappa} L(x,\lambda,\kappa)$ reproduces remaining KKT
- KKT conditions are related to minimize w.r.t. *x*, and maximize w.r.t. *λ*... (more on this later)
- How can we use this?
 - The KKT conditions state that, at an optimum, there exist some λ , κ . This existance statement is not directly helpful to actually find them.
 - In contrast, the Lagrangian tells us how the dual parameters can be found: by maximizing w.r.t. them.

Solving constraint problems on paper

• For $x \in \mathbb{R}^2$, what is

$$\min_{x} x^2$$
 s.t. $x_1 + x_2 = 1$

Learning and Intelligent Systems Lab, TU Berlin

Solving constraint problems on paper

• For $x \in \mathbb{R}^2$, what is

$$\min_{x} x^2$$
 s.t. $x_1 + x_2 = 1$

• Solution:

$$L(x,\kappa) = x^2 + \kappa(x_1 + x_2 - 1)$$

$$0 = \nabla_x L(x,\kappa) = 2x + \kappa \begin{pmatrix} 1\\1 \end{pmatrix} \Rightarrow x_1 = x_2 = -\kappa/2$$

$$0 = \nabla_\kappa L(x,\kappa) = x_1 + x_2 - 1 = -\kappa/2 - \kappa/2 - 1 \Rightarrow \kappa = -1$$

$$\Rightarrow x_1 = x_2 = 1/2$$

- κ is also called Lagrange multiplier, I prefer dual variables
- When applying this to inequalities, you have to consider *both cases* (inequality active, and inequality inactive) and check if the inactive solution is feasible ($g \le 0$) or the active solution dual-feasible ($\lambda \ge 0$). (For *m* inequality constraints, you run into 2^m combinatorics.)

Learning and Intelligent Systems Lab, TU Berlin

The Lagrangian - 6/14

Saddle Points, Primal & Dual Problems

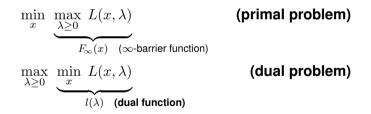
[For simplicity, consider inequalities only.]

• $\min_x L(x,\lambda)$ reproduces 1st KKT; $\max_{\lambda \ge 0} L(x,\lambda)$ reproduces remaining KKT

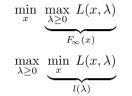
Saddle Points, Primal & Dual Problems

[For simplicity, consider inequalities only.]

- $\min_x L(x,\lambda)$ reproduces 1st KKT; $\max_{\lambda \ge 0} L(x,\lambda)$ reproduces remaining KKT
- This motivates defining the **Primal and dual problem** (details later):



- Convince yourself, that the first problem is the original problem $\min_x f(x)$ s.t. $g(x) \le 0$
- Find a tabular function $L(x, \lambda)$ (for discrete $x, \lambda \in \{1, 2\}$) where $\min_x \max_\lambda L \neq \max_\lambda \min_x L$



(primal problem)

(dual problem)

• We defined the dual function as

$$l(\lambda) = \min_{x} L(x, \lambda)$$

- **Theorem:** The dual problem is convex (objective=concave, constraints=convex), even if the primal is non-convex!
 - $L(x,\lambda)$ is linear in λ
 - $l(\lambda) = \min_x L(x, \lambda)$ is a point-wise minimization $\Rightarrow l(x)$ concave

• Sometimes, $l(\lambda) = \min_x L(x, \lambda)$ can be derived analytically. We could swap a non-convex primal problem for a convex dual problem. However, in general $\min_x \max_y f(x, y) \neq \max_y \min_x f(x, y)$.

- Sometimes, l(λ) = min_x L(x, λ) can be derived analytically. We could swap a non-convex primal problem for a convex dual problem. However, in general min_x max_y f(x, y) ≠ max_y min_x f(x, y).
- The dual function is always a **lower bound** (for $\lambda_i \ge 0$):

$$\begin{split} \lambda_i &\geq 0 \quad \Rightarrow \quad L(x,\lambda) \leq F_{\infty}(x) \\ l(\lambda) &= \min_x L(x,\lambda) \leq \min_x F_{\infty}(x) = p^* \stackrel{\mathsf{def}}{=} \left[\min_x f(x) \; \; \mathsf{s.t.} \; g(x) \leq 0 \right] \\ \max_{\lambda \geq 0} \min_x L(x,\lambda) &\leq \min_x \max_{\lambda \geq 0} L(x,\lambda) = p^* \\ l(\lambda) \leq p^* \end{split}$$

• We say strong duality holds iff

$$\max_{\lambda \geq 0} \min_{x} L(x, \lambda) = \min_{x} \max_{\lambda \geq 0} L(x, \lambda)$$

• Theorem: If the primal is convex, and there exist an interior point

 $\exists_x: \forall_i: g_i(x) < 0$

(which is called **Slater condition**), then we have *strong duality* (Boyd, Sec 5.3.2)

Log barrier method revisited

Log barrier method revisited

• Recall, the inner iterations minimize $\min_x f(x) - \mu \sum_i \log(-g_i(x))$:

$$abla f(x) + \sum_i \lambda_i
abla g_i(x) = 0$$
, with $\lambda_i g_i(x) = -\mu$

• With the definition $\lambda_i = -\mu/g_i(x^*)$ and $x^*(\mu) = \operatorname{argmin}_x B(x,\mu)$, we have

$$\nabla B(x,\mu) = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) = \nabla L(x,\lambda)$$

$$x^*(\mu) = \operatorname*{argmin}_x L(x,\lambda) , \quad \text{with } \lambda_i g_i(x) = -\mu$$

• We also have (with *m* the count of inequalities)

$$l(\lambda) = \min_{x} L(x,\lambda) = f(x^*) + \sum_{i=1}^{m} \lambda_i g_i(x^*) = f(x^*) - m\mu$$

• Further, as the dual function is a lower bound, $l(\lambda) \leq p^*$, we have

$$f(x^*) - p^* \le m\mu$$

μ is an upper bound on the suboptimality of the centering point x^*

Learning and Intelligent Systems Lab, TU Berlin

The Lagrangian - 12/14

Log barrier method – Conclusions

- The μ , which we introduced as factor for the log barrier, has "deep semantics":
- μ defines a relaxation of the 4th KKT complementarity condition
- the log barrier gradients $\lambda_i = -\mu/g_i(x^*)$ have the semantics of dual variables
- $x^*(\mu)$ solves the relaxed KKT
- $f(x^*(\mu)) = l(\lambda) + m\mu$ gives the dual function value for λ
- μ defines an upper bound on the **sub-optimality** of each x^* : $f(x^*) p^* \le m\mu$

Comments

- We first learnt about three basic methods to tackle constrained optimization by repeated unconstrained optimization:
 - Log barrier method
 - Squared penalty method (approximate only)
 - Augmented Lagrangian method
- We understood KKT, Lagrangian, dual problem, saddle point view, duality gap, relation to μ