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The Lagrangian

• Given a constraint problem

min
x

f(x) s.t. g(x) ≤ 0, h(x) = 0

we define the Lagrangian as

L(x, κ, λ) = f(x) +

m∑
i=1

λigi(x) +

l∑
i=1

κihi(x)

= f(x) + λ⊤g(x) + κ⊤h(x)

• The λi ≥ 0 and κi ∈ R are called dual variables or Lagrange multipliers
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What’s the point of this definition?

• The Lagrangian relates strongly to the KKT conditions of optimality!

• The Lagrangian is useful to compute optima analytically, on paper

• Optima are necessarily at saddle points of the Lagrangian

• The Lagrangian implies a dual problem, which is sometimes easier to solve than
the primal
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Relations between Lagrangian and KKT

• ∇xL = 0 implies the 1st KKT condition

0 = ∇xL = ∇f(x) +
∑m

i=1 λi∇gi(x) +
∑l

i=1 κi∇hi(x)

• ∇κL = 0, implies primal feasibility (h = 0, 2nd KKT) w.r.t. the equalities

• maxλ≥0 L is related to the remaining 2nd and 4th KKT conditions:

max
λ≥0

L(x, λ) = F∞(x)
def
=

f(x) if g(x) ≤ 0

∞ otherwise
(1)

λ = argmax
λ≥0

L(x, λ) ⇒

λi = 0 if gi(x) < 0

0 = ∇λi
L(x, λ) = gi(x) otherwise

(2)

This implies either (λi = 0 ∧ gi(x) < 0) or gi(x) = 0, which is equivalent to the
complementarity and primal feasibility for inequalities.
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Relations between Lagrangian and KKT

• We learnt that
– minx L(x, λ, κ) reproduces 1st KKT
– maxλ≥0,κ L(x, λ, κ) reproduces remaining KKT

• KKT conditions are related to minimize w.r.t. x, and maximize w.r.t. λ... (more on
this later)

• How can we use this?
– The KKT conditions state that, at an optimum, there exist some λ, κ. This existance statement is

not directly helpful to actually find them.
– In contrast, the Lagrangian tells us how the dual parameters can be found: by maximizing w.r.t.

them.
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Solving constraint problems on paper

• For x ∈ R2, what is
min
x

x2 s.t. x1 + x2 = 1

• Solution:

L(x, κ) = x2 + κ(x1 + x2 − 1)

0 = ∇xL(x, κ) = 2x+ κ

1
1

 ⇒ x1 = x2 = −κ/2

0 = ∇κL(x, κ) = x1 + x2 − 1 = −κ/2− κ/2− 1 ⇒ κ = −1

⇒x1 = x2 = 1/2

– κ is also called Lagrange multiplier, I prefer dual variables
– When applying this to inequalities, you have to consider both cases (inequality active, and

inequality inactive) and check if the inactive solution is feasible (g ≤ 0) or the active solution
dual-feasible (λ ≥ 0). (For m inequality constraints, you run into 2m combinatorics.)
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Saddle Points, Primal & Dual Problems

[For simplicity, consider inequalities only.]

• minx L(x, λ) reproduces 1st KKT; maxλ≥0 L(x, λ) reproduces remaining KKT

• This motivates defining the Primal and dual problem (details later):

min
x

max
λ≥0

L(x, λ)︸ ︷︷ ︸
F∞(x) (∞-barrier function)

(primal problem)

max
λ≥0

min
x

L(x, λ)︸ ︷︷ ︸
l(λ) (dual function)

(dual problem)

– Convince yourself, that the first problem is the original problem minx f(x) s.t. g(x) ≤ 0

– Find a tabular function L(x, λ) (for discrete x, λ ∈ {1, 2}) where minx maxλ L ̸= maxλ minx L
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The Lagrange dual problem

min
x

max
λ≥0

L(x, λ)︸ ︷︷ ︸
F∞(x)

(primal problem)

max
λ≥0

min
x

L(x, λ)︸ ︷︷ ︸
l(λ)

(dual problem)

• We defined the dual function as

l(λ) = min
x

L(x, λ)

• Theorem: The dual problem is convex (objective=concave, constraints=convex), even if the
primal is non-convex!

– L(x, λ) is linear in λ

– l(λ) = minx L(x, λ) is a point-wise minimization ⇒ l(x) concave
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The Lagrange dual problem

• Sometimes, l(λ) = minx L(x, λ) can be derived analytically. We could swap a non-convex
primal problem for a convex dual problem. However, in general
minx maxy f(x, y) ̸= maxy minx f(x, y).

• The dual function is always a lower bound (for λi ≥ 0):

λi ≥ 0 ⇒ L(x, λ) ≤ F∞(x)

l(λ) = min
x

L(x, λ) ≤ min
x

F∞(x) = p∗
def
=

[
min
x

f(x) s.t. g(x) ≤ 0
]

max
λ≥0

min
x

L(x, λ) ≤ min
x

max
λ≥0

L(x, λ) = p∗

l(λ) ≤ p∗
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The Lagrange dual problem

• We say strong duality holds iff

max
λ≥0

min
x

L(x, λ) = min
x

max
λ≥0

L(x, λ)

• Theorem: If the primal is convex, and there exist an interior point

∃x : ∀i : gi(x) < 0

(which is called Slater condition), then we have strong duality (Boyd, Sec 5.3.2)
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Log barrier method revisited
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Log barrier method revisited

• Recall, the inner iterations minimize minx f(x)− µ
∑

i log(−gi(x)):

∇f(x) +
∑

i λi∇gi(x) = 0 , with λigi(x) = −µ

• With the definition λi = −µ/gi(x
∗) and x∗(µ) = argminx B(x, µ), we have

∇B(x, µ) = ∇f(x) +
∑m

i=1 λi∇gi(x) = ∇L(x, λ)
x∗(µ) = argmin

x
L(x, λ) , with λigi(x) = −µ

• We also have (with m the count of inequalities)

l(λ) = min
x

L(x, λ) = f(x∗) +
∑m

i=1 λigi(x
∗) = f(x∗)−mµ

• Further, as the dual function is a lower bound, l(λ) ≤ p∗, we have
f(x∗)− p∗ ≤ mµ

µ is an upper bound on the suboptimality of the centering point x∗
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Log barrier method – Conclusions

• The µ, which we introduced as factor for the log barrier, has “deep semantics”:

• µ defines a relaxation of the 4th KKT complementarity condition

• the log barrier gradients λi = −µ/gi(x
∗) have the semantics of dual variables

• x∗(µ) solves the relaxed KKT

• f(x∗(µ)) = l(λ) +mµ gives the dual function value for λ

• µ defines an upper bound on the sub-optimality of each x∗: f(x∗)− p∗ ≤ mµ
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Comments

• We first learnt about three basic methods to tackle constrained optimization by
repeated unconstrained optimization:

– Log barrier method
– Squared penalty method (approximate only)
– Augmented Lagrangian method

• We understood KKT, Lagrangian, dual problem, saddle point view, duality gap,
relation to µ
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