Optimization Algorithms

The Lagrangian

Definition, Relation to KKT conditions, saddle point view, dual
problem, min-max max-min duality, modified KKT & log barriers

Marc Toussaint
Technical University of Berlin
Winter 2024/25



The Lagrangian

e Given a constraint problem
min f(z) s.t. g(z) <0, h(x) =

we define the Lagrangian as

l
L(z,k,\) )+ Z Xigi(z) + Z kihi(z)
i=1

= f(z) + /\Tg(fﬂ) k'h(z)

e The )\; > 0 and k; € R are called dual variables or Lagrange multipliers
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What’s the point of this definition?

The Lagrangian relates strongly to the KKT conditions of optimality!

The Lagrangian is useful to compute optima analytically, on paper

Optima are necessarily at saddle points of the Lagrangian

The Lagrangian implies a dual problem, which is sometimes easier to solve than
the primal
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Relations between Lagrangian and KKT
e V. L =0 implies the 1st KKT condition

0="V,L=Vf(z)+ X7, \Vi(z) + X', #iVhi(z)
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Relations between Lagrangian and KKT
e V. L =0 implies the 1st KKT condition
0="V,L=Vf(z)+ X7, \Vi(z) + X', #iVhi(z)

e V.L =0, implies primal feasibility (h = 0, 2nd KKT) w.r.t. the equalities
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Relations between Lagrangian and KKT
e V. L =0 implies the 1st KKT condition
0="V,L=Vf(z)+ X7, \Vi(z) + X', #iVhi(z)

e V.L =0, implies primal feasibility (h = 0, 2nd KKT) w.r.t. the equalities
e max)>o L is related to the remaining 2nd and 4th KKT conditions:

if <0
max L(z, \) = Fo(x) def f(z) ifg(x) < "
A= 00 otherwise
A =0 f gi() < 0
A =argmax L(xz,\) = g (:c) )
120 0=V, L(x,\) =gi(x) otherwise

This implies either (A, = 0 A g;(z) < 0) or g;(z) = 0, which is equivalent to the
complementarity and primal feasibility for inequalities.
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Relations between Lagrangian and KKT

e We learnt that
— min, L(z, A\, k) reproduces 1st KKT
— maxx>o,x L(x, A, k) reproduces remaining KKT
e KKT conditions are related to minimize w.r.t. z, and maximize w.r.t. A... (more on
this later)
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Relations between Lagrangian and KKT

e We learnt that
— min, L(z, A\, k) reproduces 1st KKT
— maxx>o,x L(x, A, k) reproduces remaining KKT
e KKT conditions are related to minimize w.r.t. z, and maximize w.r.t. A... (more on
this later)

e How can we use this?

— The KKT conditions state that, at an optimum, there exist some ), k. This existance statement is
not directly helpful to actually find them.

— In contrast, the Lagrangian tells us how the dual parameters can be found: by maximizing w.r.t.
them.
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Solving constraint problems on paper

e For z € R2, what is

min2? s.t. T+ 20 =1
X
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Solving constraint problems on paper

e For z € R2, what is

min2? s.t. T+ 20 =1
X

e Solution:
L(z,k) = 2® + k(1 + 29 — 1)
0=V,L(z,k) =2z + HG) = z1=x2=—K/2
0=V.L(x,k)=x14+22—1=-K/2—K/2-1 = KrK=-1
=r1 =129 =1/2

— kis also called Lagrange multiplier, | prefer dual variables
— When applying this to inequalities, you have to consider both cases (inequality active, and
inequality inactive) and check if the inactive solution is feasible (¢ < 0) or the active solution
dual-feasible (A > 0). (For m inequality constraints, you run into 2™ combinatorics.)
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Saddle Points, Primal & Dual Problems

[For simplicity, consider inequalities only.]

e min, L(x, \) reproduces 1st KKT; maxy>o L(z, A) reproduces remaining KKT
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Saddle Points, Primal & Dual Problems

[For simplicity, consider inequalities only.]

e min, L(x, \) reproduces 1st KKT; maxy>o L(z, A) reproduces remaining KKT

e This motivates defining the Primal and dual problem (details later):

min max L(x,\) (primal problem)
T A>0
E.(z) (oco-barrier function)

max min L(x,\) (dual problem)

I(\) (dual function)

— Convince yourself, that the first problem is the original problem min, f(z) s.t. g(z) <0
— Find a tabular function L(z, \) (for discrete z, A € {1, 2}) where min, maxy L # max min, L
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The Lagrange dual problem

min max L(z,\) (primal problem)
max min L(z, \) (dual problem)

ey,

o We defined the dual function as

[(A) = min L(z, \)

x

e Theorem: The dual problem is convex (objective=concave, constraints=convex), even if the
primal is non-convex!
— L(z, \)islinearin X
— I(A) = min, L(z, \) is a point-wise minimization = [(x) concave
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The Lagrange dual problem

e Sometimes, [(\) = min, L(z, \) can be derived analytically. We could swap a non-convex
primal problem for a convex dual problem. However, in general

min, max, f(z,y) # max, min, f(z,y).
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The Lagrange dual problem

e Sometimes, [(\) = min, L(z, \) can be derived analytically. We could swap a non-convex
primal problem for a convex dual problem. However, in general

min, max, f(z,y) # max, min, f(z,y).

e The dual function is always a lower bound (for A; > 0):

Ai>0 = Lz, \) < Fo(x)

I(A) = min L(z,\) < min F,(z) =p* %f | nin flx) st g(z) <0

maxmin L(z,\) < minmax L(z,\) = p*
A>0 @ z A>0

I\ <p*
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The Lagrange dual problem
e We say strong duality holds iff

maxmin L(z, \) = minmax L(z, \)
A>0 =z r  A>0

e Theorem: If the primal is convex, and there exist an interior point
Jp: Vi: gi(z) <0

(which is called Slater condition), then we have strong duality (Boyd, Sec 5.3.2)
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Log barrier method revisited
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Log barrier method revisited
e Recall, the inner iterations minimize min, f(x) — p Y, log(—gi(z)):
Vf(z)+ >, MVgi(z) =0,  with \jgi(z) = —p
o With the definition \; = —p/g;(«*) and z*(u) = argmin, B(x, 1), we have
VB(x, 1) = Vf () + 32154 AiVoi(x) = VL(z, )
z*(p) = arginin L(z,)\), with A\;g;(z) =—p

e We also have (with m the count of inequalities)

I(A) = min Lz, A) = f(z") + 370 Aigi(2*) = f(a*) — mp

x

¢ Further, as the dual function is a lower bound, I(\) < p*, we have
f@®) —=p* <mp
1 is an upper bound on the suboptimality of the centering point z*
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Log barrier method — Conclusions

e The u, which we introduced as factor for the log barrier, has “deep semantics”:

1 defines a relaxation of the 4th KKT complementarity condition

the log barrier gradients A\; = —u/g;(z*) have the semantics of dual variables

x*(u) solves the relaxed KKT

fla*(n)) = 1(\) + mu gives the dual function value for A

w defines an upper bound on the sub-optimality of each z*: f(z*) — p* < mpu
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Comments

o We first learnt about three basic methods to tackle constrained optimization by
repeated unconstrained optimization:
— Log barrier method
— Squared penalty method (approximate only)
— Augmented Lagrangian method

e We understood KKT, Lagrangian, dual problem, saddle point view, duality gap,
relation to
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