
Optimization Algorithms

Convex Optimization

Convex, quasiconvex, unimodal, convex optimization problem,
linear program (LP), standard form, simplex algorithm,

LP-relaxation of integer linear programs, quadratic programming
(QP), sequential quadratic programming

Marc Toussaint
Technical University of Berlin

Winter 2024/25

Function types

• A set X ⊆ V is defined convex iff

∀x, y ∈ X, a ∈ [0, 1] : ax+ (1−a)y ∈ X

• A function is defined convex iff

∀x, y ∈ Rn, a ∈ [0, 1] : f(ax+ (1−a)y) ≤ a f(x) + (1−a) f(y)

• A function is quasiconvex iff

∀x, y ∈ Rn, a ∈ [0, 1] : f(ax+ (1−a)y) ≤ max{f(x), f(y)}

..alternatively, iff every sublevel set {x|f(x) ≤ α} is convex.

• We call a function unimodal iff it has only 1 local minimum, which is the global one

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 2/29

convex ⊂ quasiconvex ⊂ unimodal ⊂ general

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 3/29

Properties

• The sum of two confex functions f1(x) + f2(x) is also convex

• A function f ∈ C2 convex ⇔ ∇2f(x) pos.-semidef. everywhere

• f convex ⇒ sublevel sets {x : f(x) ≤ a} are convex

• l(λ) = minx L(x, λ) is concave! Point-wise minimization:
– For each x, L(x, λ) is linear in λ

– Think of L(x, λ) as a family of many linear functions
– At each λ, pick the function with lowest value→ concave
– (Epigraph: The “region” {(x, y) : y ≤ f(x)} below a function; point-wise minimization↔

intersection of epigraphs.)

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 4/29

Properties

• The sum of two confex functions f1(x) + f2(x) is also convex

• A function f ∈ C2 convex ⇔ ∇2f(x) pos.-semidef. everywhere

• f convex ⇒ sublevel sets {x : f(x) ≤ a} are convex

• l(λ) = minx L(x, λ) is concave! Point-wise minimization:
– For each x, L(x, λ) is linear in λ

– Think of L(x, λ) as a family of many linear functions
– At each λ, pick the function with lowest value→ concave
– (Epigraph: The “region” {(x, y) : y ≤ f(x)} below a function; point-wise minimization↔

intersection of epigraphs.)

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 4/29

Convex Mathematical Program (CP)

• Variant 1: A mathematical program minx f(x) s.t. g(x) ≤ 0, h(x) = 0 is convex iff
f is convex and the feasible set is convex.

Variant 2: A mathematical program minx f(x) s.t. g(x) ≤ 0, h(x) = 0 is convex iff
f and every gi are convex and h is linear.

– Variant 2 is the stronger and the default definition
– In variant 1, only {x : h(x) = 0} needs to be linear, and {x : g(x) ≤ 0} needs to be convex

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 5/29

Linear and Quadratic Programs

• Linear Program (LP)
min
x

c⊤x s.t. Gx ≤ h, Ax = b

LP in standard form
min
x

c⊤x s.t. x ≥ 0, Ax = b

• Quadratic Program (QP)

min
x

1

2
x⊤Qx+ c⊤x s.t. Gx ≤ h, Ax = b

where Q is positive definite.

(This is different to a Quadratically Constraint Quadratic Programs (QCQP))

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 6/29

Transforming an LP problem into standard form
• LP problem:

min
x

c⊤x s.t. Gx ≤ h, Ax = b

• Introduce slack variables:

min
x,ξ

c⊤x s.t. Gx+ ξ = h, Ax = b, ξ ≥ 0

• Express x = x+ − x− with x+, x− ≥ 0:

min
x+,x−,ξ

c⊤(x+ − x−)

s.t. G(x+ − x−) + ξ = h, A(x+ − x−) = b, ξ ≥ 0, x+ ≥ 0, x− ≥ 0

where (x+, x−, ξ) ∈ R2n+m

• Now this is conform with the standard form with x̃ = (x+, x−, ξ), Ã =

G −G I
A −A 0

, b̃ = (h, b)

min
x̃

c⊤x̃ s.t. x̃ ≥ 0, Ãx̃ = b̃
Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 7/29

• A slack variable is a variable that is added to an inequality constraint to transform
it into an equality. Introducing a slack variable replaces an inequality constraint with
an equality constraint and a non-negativity constraint on the slack variable
(wikipedia)

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 8/29

Example LPs

See the exercises 4.8-4.20 of Boyd & Vandenberghe!

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 9/29

Example QP
• Support Vector Machines. Primal problem:

min
β,ξ

||β||2 + C

n∑
i=1

ξi s.t. yi(x
⊤
iβ) ≥ 1− ξi , ξi ≥ 0

Dual problem:

l(α, µ) = min
β,ξ

L(β, ξ, α, µ) = − 1
4

n∑
i=1

n∑
i′=1

αiαi′yiyi′ x̂
⊤
i x̂i′ +

n∑
i=1

αi

max
α,µ

l(α, µ) s.t. 0 ≤ αi ≤ C

(See ML lecture 5:13 for a derivation.)

y

x

A

B

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 10/29

Finding the optimal discriminative function [from ML lecture]

• The constrained problem

min
β,ξ

||β||2 + C

n∑
i=1

ξi s.t. yi(x
⊤
iβ) ≥ 1− ξi , ξi ≥ 0

is a quadratic program and can be reformulated as the dual problem, with dual
parameters αi that indicate whether the constraint yi(x⊤iβ) ≥ 1− ξi is active. The
dual problem is convex. SVM libraries use, e.g., CPLEX to solve this.

• For all inactive constraints (yi(x⊤iβ) ≥ 1) the data point (xi, yi) does not directly
influence the solution β∗. Active points are support vectors.

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 11/29

[from ML lecture]
• Let (x, ξ) be the primal variables, (α, µ) the dual, we derive the dual problem:

min
β,ξ

||β||2 + C
n∑

i=1

ξi s.t. yi(x
⊤
iβ) ≥ 1− ξi , ξi ≥ 0 (1)

L(β, ξ, α, µ) = ||β||2 + C
n∑

i=1

ξi −
n∑

i=1

αi[yi(x
⊤
iβ)− (1− ξi)]−

n∑
i=1

µiξi (2)

∂βL
!
= 0 ⇒ 2β =

n∑
i=1

αiyixi (3)

∂ξL
!
= 0 ⇒ ∀i : αi = C − µi (4)

l(α, µ) = min
β,ξ

L(β, ξ, α, µ) = − 1
4

n∑
i=1

n∑
i′=1

αiαi′yiyi′ x̂
⊤
i x̂i′ +

n∑
i=1

αi (5)

max
α,µ

l(α, µ) s.t. 0 ≤ αi ≤ C (6)

• 2: Lagrangian (with negative Lagrange terms because of ≥ instead of ≤)
• 3: the optimal β∗ depends only on xiyi for which αi > 0 → support vectors
• 5: This assumes that xi = (1, x̂i) includes the constant feature 1 (so that the statistics become centered)
• 6: This is the dual problem. µi ≥ 0 implies αi ≤ C

• Note: the dual problem only refers to x̂⊤i x̂i → kernelizationLearning and Intelligent Systems Lab, TU Berlin Convex Optimization – 12/29

Algorithms for Convex Programming

• All the ones we discussed for non-linear optimization!
– log barrier (“interior point method”, “[central] path following”)
– augmented Lagrangian
– primal-dual Newton

• The simplex algorithm, walking on the constraints

(The emphasis in the notion of interior point methods is to distinguish from
constraint walking methods.)

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 13/29

Simplex Algorithm

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 14/29

Simplex Algorithm
Georg Dantzig (1947)
Note: Not to confuse with the Nelder-Mead method (downhill simplex method)

• Consider an LP
min
x

c⊤x s.t. Gx ≤ h, Ax = b

• Note that in a linear program an optimum is always located at a vertex
(If there are multiple optimal, at least one of them is at a vertex.)

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 15/29

Simplex Algorithm

• The Simplex Algorithm walks along the edges of the polytope, at every vertex
choosing the edge that decreases c⊤x most

• This either terminates at a vertex, or leads to an unconstrained edge (−∞ optimum)

• In practise this procedure is done by “pivoting on the simplex tableaux”

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 16/29

Simplex Algorithm vs. Interior methods

• The simplex algorithm is often efficient, but in worst case exponential in n and m!
(In high dimensions constraints may intersect and form edges and vertices in a combinatorial way.)

• Sitting on an edge/face/vertex ↔ hard decisions on which constraints are active
– The simplex algorithm is sequentially making decisions on which constraints might be active – by

walking through this combinatorial space.

• Interior point methods do exactly the opposite:
– They “postpone” (or relax) hard decisions about active/non-active constraints,
– approach the optimal vertex from the inside of the polytope; avoiding the polytope surface
– have polynomial worst-case guaranteed

• Historically:
– Before 50ies: Penalty and barrier methods methods were standard
– From 50s: Simplex Algorithm
– From 70s: More theoretical understanding, interior point methods (and more recently Augmented

Lagrangian methods) again more popular

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 17/29

Simplex Algorithm vs. Interior methods

• The simplex algorithm is often efficient, but in worst case exponential in n and m!
(In high dimensions constraints may intersect and form edges and vertices in a combinatorial way.)

• Sitting on an edge/face/vertex ↔ hard decisions on which constraints are active
– The simplex algorithm is sequentially making decisions on which constraints might be active – by

walking through this combinatorial space.

• Interior point methods do exactly the opposite:
– They “postpone” (or relax) hard decisions about active/non-active constraints,
– approach the optimal vertex from the inside of the polytope; avoiding the polytope surface
– have polynomial worst-case guaranteed

• Historically:
– Before 50ies: Penalty and barrier methods methods were standard
– From 50s: Simplex Algorithm
– From 70s: More theoretical understanding, interior point methods (and more recently Augmented

Lagrangian methods) again more popular

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 17/29

Simplex Algorithm vs. Interior methods

• The simplex algorithm is often efficient, but in worst case exponential in n and m!
(In high dimensions constraints may intersect and form edges and vertices in a combinatorial way.)

• Sitting on an edge/face/vertex ↔ hard decisions on which constraints are active
– The simplex algorithm is sequentially making decisions on which constraints might be active – by

walking through this combinatorial space.

• Interior point methods do exactly the opposite:
– They “postpone” (or relax) hard decisions about active/non-active constraints,
– approach the optimal vertex from the inside of the polytope; avoiding the polytope surface
– have polynomial worst-case guaranteed

• Historically:
– Before 50ies: Penalty and barrier methods methods were standard
– From 50s: Simplex Algorithm
– From 70s: More theoretical understanding, interior point methods (and more recently Augmented

Lagrangian methods) again more popular
Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 17/29

Sequential Quadratic Programming

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 18/29

Quadratic Programming

min
x

1

2
x⊤Qx+ c⊤x s.t. Gx ≤ h, Ax = b

• Efficient Algorithms:
– Interior point (log barrier)
– Augmented Lagrangian

• Highly relevant applications:
– Support Vector Machines
– Similar types of max-margin modelling methods

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 19/29

Sequential Quadratic Programming (SQP)

• SQP is another standard method for non-linear programs
– It can be understood as generalization of the Newton method to the constrained case:
– The Newton method for minx f(x) approximates f using 2nd-order Taylor, and computes the

optimal step δ∗ for this approximation
– SQP approximates costs f and constraints g, h using Taylor, and then computes the optimal step

δ∗ for this approximation

• In each iteration we consider Taylor approximations:
– 2nd order for: f(x+ δ) ≈ f(x) +∇f(x)⊤δ + 1

2
δ⊤Hδ

– 1st order for: g(x+ δ) ≈ g(x) +∇g(x)⊤δ , h(x+ δ) ≈ h(x) +∇h(x)⊤δ

• Then we compute the optimal step δ∗ solving the QP:

min
δ

f(x) +∇f(x)⊤δ + 1

2
δ⊤∇2f(x)δ s.t. g(x) +∇g(x)⊤δ ≤ 0 , h(x) +∇h(x)⊤δ = 0

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 20/29

Sequential Quadratic Programming (SQP)

• SQP is another standard method for non-linear programs
– It can be understood as generalization of the Newton method to the constrained case:
– The Newton method for minx f(x) approximates f using 2nd-order Taylor, and computes the

optimal step δ∗ for this approximation
– SQP approximates costs f and constraints g, h using Taylor, and then computes the optimal step

δ∗ for this approximation

• In each iteration we consider Taylor approximations:
– 2nd order for: f(x+ δ) ≈ f(x) +∇f(x)⊤δ + 1

2
δ⊤Hδ

– 1st order for: g(x+ δ) ≈ g(x) +∇g(x)⊤δ , h(x+ δ) ≈ h(x) +∇h(x)⊤δ

• Then we compute the optimal step δ∗ solving the QP:

min
δ

f(x) +∇f(x)⊤δ + 1

2
δ⊤∇2f(x)δ s.t. g(x) +∇g(x)⊤δ ≤ 0 , h(x) +∇h(x)⊤δ = 0

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 20/29

Sequential Quadratic Programming (SQP)

• If f were a 2nd-order polynomial and g, h linear, then δ∗ would jump directly to the optimum

• Otherwise, backtracking line search

• Note: Solving each QP to compute the search step δ∗ requires a constrained solver, which
itself might have two nested loops (e.g. using log-barrier or AugLag) → three nested loops

• But: To solve the QP-step, you need no queries of the original problem!
→ SQP can be query efficient. It invests in solving an approximate QP to minimize querying
the original problem

• Potentially more prone to non-smoothness (local Taylor might be misleading)

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 21/29

Sequential Quadratic Programming (SQP)

• If f were a 2nd-order polynomial and g, h linear, then δ∗ would jump directly to the optimum

• Otherwise, backtracking line search

• Note: Solving each QP to compute the search step δ∗ requires a constrained solver, which
itself might have two nested loops (e.g. using log-barrier or AugLag) → three nested loops

• But: To solve the QP-step, you need no queries of the original problem!
→ SQP can be query efficient. It invests in solving an approximate QP to minimize querying
the original problem

• Potentially more prone to non-smoothness (local Taylor might be misleading)

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 21/29

Baseline methods for constrained optimization

• We now learnt about four baseline methods to tackle constrained optimization:
– Log barrier method
– Augmented Lagrangian method
– Primal-dual Newton
– Sequential Quadratic Programming

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 22/29

LP-relaxations of discrete problems*

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 23/29

Integer linear programming (ILP)

• An integer linear program (for simplicity binary) is

min
x

c⊤x s.t. Ax = b, xi ∈ {0, 1}

• Examples:
– Travelling Salesman: minxij

∑
ij cijxij with xij ∈ {0, 1} and constraints ∀j :

∑
i xij = 1 (columns

sum to 1), ∀j :
∑

i xji = 1, ∀ij : tj − ti ≤ n− 1 + nxij (where ti are additional integer variables).
– MaxSAT problem: In conjunctive normal form, each clause contributes an additional variable and

a term in the objective function; each clause contributes a constraint
– Search the web for The Power of Semidefinite Programming Relaxations for MAXSAT

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 24/29

LP relaxations of integer linear programs

• Instead of solving
min
x

c⊤x s.t. Ax = b, xi ∈ {0, 1}

we solve
min
x

c⊤x s.t. Ax = b, x ∈ [0, 1]

• Clearly, the relaxed solution will be a lower bound on the integer solution
(sometimes also called “outer bound” because [0, 1] ⊃ {0, 1})

• Computing the relaxed solution is interesting
– as an “approximation” or initialization to the integer problem
– in cases where the optimal relaxed solution happens to be integer
– for using the lower bound for branch-and-bound tree search over the discrete variable

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 25/29

Example*: MAP inference in MRFs
• Given integer random variables xi, i = 1, .., n, a pairwise Markov Random Field (MRF) is

defined as
f(x) =

∑
(ij)∈E

fij(xi, xj) +
∑
i

fi(xi)

where E denotes the set of edges. Problem: find maxx f(x).
(Note: any general (non-pairwise) MRF can be converted into a pair-wise one, blowing up the number of variables)

• Reformulate with indicator variables

bi(x) = [xi = x] , bij(x, y) = [xi = x] [xj = y]

These are nm+ |E|m2 binary variables
• The indicator variables need to fulfil the constraints

bi(x), bij(x, y) ∈ {0, 1}∑
x

bi(x) = 1 because xi takes eactly one value∑
y

bij(x, y) = bi(x) consistency between indicators
Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 26/29

Example*: MAP inference in MRFs

• Finding maxx f(x) of a MRF is then equivalent to

max
bi(x),bij(x,y)

∑
(ij)∈E

∑
x,y

bij(x, y) fij(x, y) +
∑
i

∑
x

bi(x) fi(x)

such that
bi(x), bij(x, y) ∈ {0, 1} ,

∑
x

bi(x) = 1 ,
∑
y

bij(x, y) = bi(x)

• The LP-relaxation replaces the constraint to be

bi(x), bij(x, y) ∈ [0, 1] ,
∑
x

bi(x) = 1 ,
∑
y

bij(x, y) = bi(x)

This set of feasible b’s is called marginal polytope (because it describes the a space of
“probability distributions” that are marginally consistent (but not necessarily globally
normalized!))

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 27/29

Example*: MAP inference in MRFs

• Solving the original MAP problem is NP-hard
Solving the LP-relaxation is really efficient

• If the solution of the LP-relaxation turns out to be integer, we’ve solved the originally
NP-hard problem!
If not, the relaxed problem can be discretized to be a good initialization for discrete
optimization

• For binary attractive MRFs (a common case) the solution will always be integer

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 28/29

Conclusions

• Convex Problems are an important special case
– Convergence of backtracking line search← bounded Hessian→ convexity
– Some applications are convex

• Algorithms for convex programs are same as we discussed before

• Baseline methods for constrained optimization:
– Log barrier method
– Augmented Lagrangian method
– Primal-dual Newton
– Sequential Quadratic Programming

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 29/29

