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Function types

• A set X ⊆ V is defined convex iff

∀x, y ∈ X, a ∈ [0, 1] : ax+ (1−a)y ∈ X

• A function is defined convex iff

∀x, y ∈ Rn, a ∈ [0, 1] : f(ax+ (1−a)y) ≤ a f(x) + (1−a) f(y)

• A function is quasiconvex iff

∀x, y ∈ Rn, a ∈ [0, 1] : f(ax+ (1−a)y) ≤ max{f(x), f(y)}

..alternatively, iff every sublevel set {x|f(x) ≤ α} is convex.

• We call a function unimodal iff it has only 1 local minimum, which is the global one
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convex ⊂ quasiconvex ⊂ unimodal ⊂ general
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Properties

• The sum of two confex functions f1(x) + f2(x) is also convex

• A function f ∈ C2 convex ⇔ ∇2f(x) pos.-semidef. everywhere

• f convex ⇒ sublevel sets {x : f(x) ≤ a} are convex

• l(λ) = minx L(x, λ) is concave! Point-wise minimization:
– For each x, L(x, λ) is linear in λ

– Think of L(x, λ) as a family of many linear functions
– At each λ, pick the function with lowest value→ concave
– (Epigraph: The “region” {(x, y) : y ≤ f(x)} below a function; point-wise minimization↔

intersection of epigraphs.)
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Convex Mathematical Program (CP)

• Variant 1: A mathematical program minx f(x) s.t. g(x) ≤ 0, h(x) = 0 is convex iff
f is convex and the feasible set is convex.

Variant 2: A mathematical program minx f(x) s.t. g(x) ≤ 0, h(x) = 0 is convex iff
f and every gi are convex and h is linear.

– Variant 2 is the stronger and the default definition
– In variant 1, only {x : h(x) = 0} needs to be linear, and {x : g(x) ≤ 0} needs to be convex
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Linear and Quadratic Programs

• Linear Program (LP)
min
x

c⊤x s.t. Gx ≤ h, Ax = b

LP in standard form
min
x

c⊤x s.t. x ≥ 0, Ax = b

• Quadratic Program (QP)

min
x

1

2
x⊤Qx+ c⊤x s.t. Gx ≤ h, Ax = b

where Q is positive definite.

(This is different to a Quadratically Constraint Quadratic Programs (QCQP))
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Transforming an LP problem into standard form
• LP problem:

min
x

c⊤x s.t. Gx ≤ h, Ax = b

• Introduce slack variables:

min
x,ξ

c⊤x s.t. Gx+ ξ = h, Ax = b, ξ ≥ 0

• Express x = x+ − x− with x+, x− ≥ 0:

min
x+,x−,ξ

c⊤(x+ − x−)

s.t. G(x+ − x−) + ξ = h, A(x+ − x−) = b, ξ ≥ 0, x+ ≥ 0, x− ≥ 0

where (x+, x−, ξ) ∈ R2n+m

• Now this is conform with the standard form with x̃ = (x+, x−, ξ), Ã =

G −G I
A −A 0

, b̃ = (h, b)

min
x̃

c⊤x̃ s.t. x̃ ≥ 0, Ãx̃ = b̃
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• A slack variable is a variable that is added to an inequality constraint to transform
it into an equality. Introducing a slack variable replaces an inequality constraint with
an equality constraint and a non-negativity constraint on the slack variable
(wikipedia)
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Example LPs

See the exercises 4.8-4.20 of Boyd & Vandenberghe!
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Example QP
• Support Vector Machines. Primal problem:

min
β,ξ

||β||2 + C

n∑
i=1

ξi s.t. yi(x
⊤
iβ) ≥ 1− ξi , ξi ≥ 0

Dual problem:

l(α, µ) = min
β,ξ

L(β, ξ, α, µ) = − 1
4

n∑
i=1

n∑
i′=1

αiαi′yiyi′ x̂
⊤
i x̂i′ +

n∑
i=1

αi

max
α,µ

l(α, µ) s.t. 0 ≤ αi ≤ C

(See ML lecture 5:13 for a derivation.)

y

x

A

B

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 10/29



Finding the optimal discriminative function [from ML lecture]

• The constrained problem

min
β,ξ

||β||2 + C

n∑
i=1

ξi s.t. yi(x
⊤
iβ) ≥ 1− ξi , ξi ≥ 0

is a quadratic program and can be reformulated as the dual problem, with dual
parameters αi that indicate whether the constraint yi(x⊤iβ) ≥ 1− ξi is active. The
dual problem is convex. SVM libraries use, e.g., CPLEX to solve this.

• For all inactive constraints (yi(x⊤iβ) ≥ 1) the data point (xi, yi) does not directly
influence the solution β∗. Active points are support vectors.

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 11/29



[from ML lecture]
• Let (x, ξ) be the primal variables, (α, µ) the dual, we derive the dual problem:

min
β,ξ

||β||2 + C
n∑

i=1

ξi s.t. yi(x
⊤
iβ) ≥ 1− ξi , ξi ≥ 0 (1)

L(β, ξ, α, µ) = ||β||2 + C
n∑

i=1

ξi −
n∑

i=1

αi[yi(x
⊤
iβ)− (1− ξi)]−

n∑
i=1

µiξi (2)

∂βL
!
= 0 ⇒ 2β =

n∑
i=1

αiyixi (3)

∂ξL
!
= 0 ⇒ ∀i : αi = C − µi (4)

l(α, µ) = min
β,ξ

L(β, ξ, α, µ) = − 1
4

n∑
i=1

n∑
i′=1

αiαi′yiyi′ x̂
⊤
i x̂i′ +

n∑
i=1

αi (5)

max
α,µ

l(α, µ) s.t. 0 ≤ αi ≤ C (6)

• 2: Lagrangian (with negative Lagrange terms because of ≥ instead of ≤ )
• 3: the optimal β∗ depends only on xiyi for which αi > 0 → support vectors
• 5: This assumes that xi = (1, x̂i) includes the constant feature 1 (so that the statistics become centered)
• 6: This is the dual problem. µi ≥ 0 implies αi ≤ C
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Algorithms for Convex Programming

• All the ones we discussed for non-linear optimization!
– log barrier (“interior point method”, “[central] path following”)
– augmented Lagrangian
– primal-dual Newton

• The simplex algorithm, walking on the constraints

(The emphasis in the notion of interior point methods is to distinguish from
constraint walking methods.)
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Simplex Algorithm
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Simplex Algorithm
Georg Dantzig (1947)
Note: Not to confuse with the Nelder-Mead method (downhill simplex method)

• Consider an LP
min
x

c⊤x s.t. Gx ≤ h, Ax = b

• Note that in a linear program an optimum is always located at a vertex
(If there are multiple optimal, at least one of them is at a vertex.)
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Simplex Algorithm

• The Simplex Algorithm walks along the edges of the polytope, at every vertex
choosing the edge that decreases c⊤x most

• This either terminates at a vertex, or leads to an unconstrained edge (−∞ optimum)

• In practise this procedure is done by “pivoting on the simplex tableaux”
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Simplex Algorithm vs. Interior methods

• The simplex algorithm is often efficient, but in worst case exponential in n and m!
(In high dimensions constraints may intersect and form edges and vertices in a combinatorial way.)

• Sitting on an edge/face/vertex ↔ hard decisions on which constraints are active
– The simplex algorithm is sequentially making decisions on which constraints might be active – by

walking through this combinatorial space.

• Interior point methods do exactly the opposite:
– They “postpone” (or relax) hard decisions about active/non-active constraints,
– approach the optimal vertex from the inside of the polytope; avoiding the polytope surface
– have polynomial worst-case guaranteed

• Historically:
– Before 50ies: Penalty and barrier methods methods were standard
– From 50s: Simplex Algorithm
– From 70s: More theoretical understanding, interior point methods (and more recently Augmented

Lagrangian methods) again more popular
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Sequential Quadratic Programming
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Quadratic Programming

min
x

1

2
x⊤Qx+ c⊤x s.t. Gx ≤ h, Ax = b

• Efficient Algorithms:
– Interior point (log barrier)
– Augmented Lagrangian

• Highly relevant applications:
– Support Vector Machines
– Similar types of max-margin modelling methods
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Sequential Quadratic Programming (SQP)

• SQP is another standard method for non-linear programs
– It can be understood as generalization of the Newton method to the constrained case:
– The Newton method for minx f(x) approximates f using 2nd-order Taylor, and computes the

optimal step δ∗ for this approximation
– SQP approximates costs f and constraints g, h using Taylor, and then computes the optimal step

δ∗ for this approximation

• In each iteration we consider Taylor approximations:
– 2nd order for: f(x+ δ) ≈ f(x) +∇f(x)⊤δ + 1

2
δ⊤Hδ

– 1st order for: g(x+ δ) ≈ g(x) +∇g(x)⊤δ , h(x+ δ) ≈ h(x) +∇h(x)⊤δ

• Then we compute the optimal step δ∗ solving the QP:

min
δ

f(x) +∇f(x)⊤δ + 1

2
δ⊤∇2f(x)δ s.t. g(x) +∇g(x)⊤δ ≤ 0 , h(x) +∇h(x)⊤δ = 0
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Sequential Quadratic Programming (SQP)

• If f were a 2nd-order polynomial and g, h linear, then δ∗ would jump directly to the optimum

• Otherwise, backtracking line search

• Note: Solving each QP to compute the search step δ∗ requires a constrained solver, which
itself might have two nested loops (e.g. using log-barrier or AugLag) → three nested loops

• But: To solve the QP-step, you need no queries of the original problem!
→ SQP can be query efficient. It invests in solving an approximate QP to minimize querying
the original problem

• Potentially more prone to non-smoothness (local Taylor might be misleading)
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Baseline methods for constrained optimization

• We now learnt about four baseline methods to tackle constrained optimization:
– Log barrier method
– Augmented Lagrangian method
– Primal-dual Newton
– Sequential Quadratic Programming
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LP-relaxations of discrete problems*
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Integer linear programming (ILP)

• An integer linear program (for simplicity binary) is

min
x

c⊤x s.t. Ax = b, xi ∈ {0, 1}

• Examples:
– Travelling Salesman: minxij

∑
ij cijxij with xij ∈ {0, 1} and constraints ∀j :

∑
i xij = 1 (columns

sum to 1), ∀j :
∑

i xji = 1, ∀ij : tj − ti ≤ n− 1 + nxij (where ti are additional integer variables).
– MaxSAT problem: In conjunctive normal form, each clause contributes an additional variable and

a term in the objective function; each clause contributes a constraint
– Search the web for The Power of Semidefinite Programming Relaxations for MAXSAT
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LP relaxations of integer linear programs

• Instead of solving
min
x

c⊤x s.t. Ax = b, xi ∈ {0, 1}

we solve
min
x

c⊤x s.t. Ax = b, x ∈ [0, 1]

• Clearly, the relaxed solution will be a lower bound on the integer solution
(sometimes also called “outer bound” because [0, 1] ⊃ {0, 1})

• Computing the relaxed solution is interesting
– as an “approximation” or initialization to the integer problem
– in cases where the optimal relaxed solution happens to be integer
– for using the lower bound for branch-and-bound tree search over the discrete variable
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Example*: MAP inference in MRFs
• Given integer random variables xi, i = 1, .., n, a pairwise Markov Random Field (MRF) is

defined as
f(x) =

∑
(ij)∈E

fij(xi, xj) +
∑
i

fi(xi)

where E denotes the set of edges. Problem: find maxx f(x).
(Note: any general (non-pairwise) MRF can be converted into a pair-wise one, blowing up the number of variables)

• Reformulate with indicator variables

bi(x) = [xi = x] , bij(x, y) = [xi = x] [xj = y]

These are nm+ |E|m2 binary variables
• The indicator variables need to fulfil the constraints

bi(x), bij(x, y) ∈ {0, 1}∑
x

bi(x) = 1 because xi takes eactly one value∑
y

bij(x, y) = bi(x) consistency between indicators
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Example*: MAP inference in MRFs

• Finding maxx f(x) of a MRF is then equivalent to

max
bi(x),bij(x,y)

∑
(ij)∈E

∑
x,y

bij(x, y) fij(x, y) +
∑
i

∑
x

bi(x) fi(x)

such that
bi(x), bij(x, y) ∈ {0, 1} ,

∑
x

bi(x) = 1 ,
∑
y

bij(x, y) = bi(x)

• The LP-relaxation replaces the constraint to be

bi(x), bij(x, y) ∈ [0, 1] ,
∑
x

bi(x) = 1 ,
∑
y

bij(x, y) = bi(x)

This set of feasible b’s is called marginal polytope (because it describes the a space of
“probability distributions” that are marginally consistent (but not necessarily globally
normalized!))

Learning and Intelligent Systems Lab, TU Berlin Convex Optimization – 27/29



Example*: MAP inference in MRFs

• Solving the original MAP problem is NP-hard
Solving the LP-relaxation is really efficient

• If the solution of the LP-relaxation turns out to be integer, we’ve solved the originally
NP-hard problem!
If not, the relaxed problem can be discretized to be a good initialization for discrete
optimization

• For binary attractive MRFs (a common case) the solution will always be integer
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Conclusions

• Convex Problems are an important special case
– Convergence of backtracking line search← bounded Hessian→ convexity
– Some applications are convex

• Algorithms for convex programs are same as we discussed before

• Baseline methods for constrained optimization:
– Log barrier method
– Augmented Lagrangian method
– Primal-dual Newton
– Sequential Quadratic Programming
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