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Implicit Functions
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What is an Implicit Function?
• A function F : Rd → Y can be defined implicitly, e.g. via

F (x) = argmin
y

f(x, y) optimality formulation

or alternatively via

F (x) = y s.t. f(x, y) = 0 standard (root) formulation

• F is called implicit function, f is sometimes called discriminative function, as it
discriminates “correct” outputs y from others.

Examples:
– ML classification: A classifier F : Rd → {A,B,C} is represented via a discriminative function

f(x, y) that assignes different neg-likelihoods to the three possible outputs y ∈ {A,B,C} (cf.
logistic regression, multi-class classification, conditional random fields).

– Implicit Surface Functions: A 3D surface is implicitly defined as the set of points y ∈ R3 for
which f(y) = 0 (often no parameter x here) (cf. recent work in CV and robotics to use neural
implicit functions (NIF) to represent objects and scenes).

– Control & Robot Motion: Optimal control and robot are described via optimality principles, e.g.,
motion such that various constraints h(environment,motion) = 0 are fulfilled.
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Implicit Function Theorem

F : x 7→ y s.t. f(x, y) = 0

where f : Rd × Rn → Rn has n-dimensional output

• Is F really well-defined? E.g., what if no y solves f(x, y) = 0? What if multiple y

solve f(x, y) = 0?
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Implicit Function Theorem

• Theorem: Let f(x, y), x ∈ Rd, y ∈ Rn be a continuously differentiable Rn-valued function (in
C1). Assume we have a point (x∗, y∗) ∈ Rd+n where

f(x∗, y∗) = 0 and det ∂
∂yf(x

∗, y∗) ̸= 0 .

a) Then there exists a radius r such that for each x, |x− x∗| < r, there exists a unique
y = F (x) such that f(x, y) = 0.
b) The implicit function F is continuously differentiable, and

f(x, F (x)) = 0 ⇒ ∂
∂xf(x, y) +

∂
∂yf(x, y)

∂
∂xF (x) = 0 at y = F (x),

and since ∂
∂yf is invertible, we have

∂
∂xF (x) = −[ ∂

∂yf(x, y)]
-1 ∂

∂xf(x, y) .

• det ∂
∂y

f(x∗, y∗) ̸= 0 ⇔ Jacobian w.r.t. y has full rank ⇔ f(x, y) = 0 has non-zero gradient in all y-directions
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Interpretation in view of Newton step*
(Same statement, just derived as Newton step for root finding)

• Assume you already found y∗ to solve f(x∗, y∗) = 0 for a given x∗. But now the
parameter/input x varies slightly. How does the solution y vary?

• Consider the 1st order Taylor approximation of f :

f(x, y) = f(x∗, y∗)︸ ︷︷ ︸
=0

+ ∂
∂xf(x

∗, y∗) (x− x∗) + ∂
∂yf(x

∗, y∗) (y − y∗)

If we also want f(x, y) = 0, then we need

(y − y∗) = −[ ∂
∂yf ]

-1 ∂
∂xf (x− x∗) ,

which is the Newton step for root finding, and coincides with the Implicit Function Theorem.
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Differentiable Optimization
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The KKT Implicit Function

• Consider a parameterized problem

x∗(θ) = argmin
x

f(θ, x) s.t. g(θ, x) ≤ 0, h(θ, x) = 0

• We define the implicit function F : θ 7→ (x∗, κ∗, λ∗) s.t. r(θ, x, κ, λ) = 0 for the
KKT residual

r(θ, x, κ, λ) =


∇[f(θ, x) + λ⊤g(θ, x) + κ⊤h(θ, x)]

h(θ, x)

diag(λ)g(θ, x)



(i.e., for any θ, F outputs the primal and dual solution to the KKT conditions.)

• In particular, at (x, κ, λ) = F (θ) we have

∂
∂θF = −[ ∂

∂xκλ
r]-1 ∂

∂θr .
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The KKT Implicit Function

∂
∂θF = −[ ∂

∂xκλ
r]-1 ∂

∂θr .

– The matrix ∂
∂xκλ

r ∈ R(n+l+m)×(n+l+m) is the KKT Jacobian (cf. Primal-Dual Newton!)

∂
∂xκλ

r =


∇2[f + λ⊤g + κ⊤h] ∂xh

⊤ ∂xg
⊤

∂xh 0 0
diag(λ)∂xg 0 diag(g)



– The vector ∂
∂θ

r ∈ Rn+l+m describes how the KKT residual depends on θ:

∂
∂θ

r =


∂θ∇[f + λ⊤g + κ⊤h]

∂θh
diag(λ)∂θg



• E.g., for a small variation (θ − θ∗), the new optimum is (in linear approx.) at

(x, κ, λ) = (x∗, κ∗, λ∗)− [ ∂
∂xκλ

r]-1 ∂
∂θr (θ − θ∗)
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Example

• Assume ϕ(x; θ) is a NN with parameters θ ∈ Rd, inputs x ∈ Rn, outputs ϕ(x; θ) ∈ Ro

• For given θ, a Newton method converges to x∗ = argminx ϕ(x; θ)
2

(We assume a least squares form f(θ, x) = ϕ(x; θ)2, it could be o = 1)

• What is dx∗

dθ = ∂
∂θF?

• Since we have no κ, λ here, we have

∂
∂θF = −[ ∂

∂xr]
-1 ∂

∂θr

∂
∂xr = ∇2f , ∂

∂θr = ∂θ∇f
∂
∂θF = −[∇2f ]-1 ∂θ∇f

where we could approximate ∇2f(x) ≈ 2J⊤J , with the NN’s Jacobian J = ∂xϕ(x; θ).
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Switching Constraints Example

• For x ∈ R, Consider the problem

min
x

(x− θ)2 s.t. x ≥ 0 .

What is the implicit function F (θ) = x∗?

F (θ) = x∗ = max{0, θ}

x∗

θ

which is non-differentiable at θ = 0.
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Limitation – Constraint Activity Switching

• Note that the KKT residual r(θ, x, κ, λ) = 0 neglects the conditions g(θ, x) ≤ 0, λ ≥ 0

• The Implicit Function Theorem assumes r ∈ C1 and det ∂xκλr ̸= 0, but when constraint
activity switches, r changes in a non-differentiable manner.

→ In a vicinity of a solution x∗, κ∗, λ∗, we may assume that constraint activity is stable, the
inequalities g(x) ≤ 0, λ ≥ 0 remain fulfilled, and that the Jacobian of active constraints have
full rank (aka. constraint qualification assumption).
THEN, locally, the implicit function theorem holds and we have the correct gradient.

• However, in general, constraint activity switches somewhere – then we have a discontinuity
in the active constraint Jacobians, and in the implicit function gradient.

⇒ NLPs with inequalities are piece-wise differentiable!
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Classical Literature: “Sensitivity Analysis”

• Lot’s of classical literature on differentiation through NLP solutions:
– Ralph & Dempe. Directional derivatives of the solution of a parametric nonlinear program. 1994.

Research Report.

– Fiacco & Kyparisis. Sensitivity analysis in nonlinear programming under second order assumptions.
Lecture Notes in Control and Information Sciences, 74-97, 1985.

– Kyparisis. Sensitivity analysis for nonlinear programs and variational inequalities with nonunique multipliers.
Mathematics of Operations Research, 15:286–298, 1990.

– Levy & Rockafellar. Sensitivity of solutions in nonlinear programs with nonunique multiplier. Recent Adv. in
Nonsmooth Optimzation: 215-223, 1995

(More recent publications at NeurIPS (keyword “Differentiable Optimization”) ignore
this classical literature.)
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Classical Literature: “Sensitivity Analysis”

• The implicit function F (θ) is also called quasi-solution mapping: Assume a
parameterized NLP P(θ)

F : θ 7→ {x : KKT hold for P(θ)}

“We show under a standard constraint qualification, not requiring uniqueness of
the multipliers, that the quasi-solution mapping is differentiable in a generalized
sense, and we present a formula for its derivative.”

• Constant rank constraint qualification (CRCQ): For each subset of the gradients of
the active inequality constraints and the gradients of the equality constraints the
rank at a vicinity of x∗ is constant.
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Conclusions

• We can analyze how changes in the optimization problem translate to changes of the
optimium x∗

• Using the KKT Jacobian, we can provide the gradient of x∗ w.r.t. problem parameters θ

• We can embed optimization algos in auto-differentiation computation graphs (torch,
tensorflow)

• Important implications for Differentiable Physics

• But: Gradients can be discontinuous across constraint activations
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