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Implicit Functions
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What is an Implicit Function?
e Afunction F : R? — Y can be defined implicitly, e.g. via

F(z) = argmin f(z,y) optimality formulation
Yy

or alternatively via
F(x)=y st f(z,y)=0 standard (root) formulation

e F'is called implicit function, f is sometimes called discriminative function, as it
discriminates “correct” outputs y from others.
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What is an Implicit Function?
e Afunction F : R? — Y can be defined implicitly, e.g. via

F(z) = argmin f(z,y) optimality formulation
Yy

or alternatively via
F(x)=y st f(z,y)=0 standard (root) formulation

e F'is called implicit function, f is sometimes called discriminative function, as it
discriminates “correct” outputs y from others. Examples:

— ML classification: A classifier F : R* — {A, B, C} is represented via a discriminative function
f(z,y) that assignes different neg-likelihoods to the three possible outputs y € { A, B, C'} (cf.
logistic regression, multi-class classification, conditional random fields).

— Implicit Surface Functions: A 3D surface is implicitly defined as the set of points y € R? for
which f(y) = 0 (often no parameter z here) (cf. recent work in CV and robotics to use neural
implicit functions (NIF) to represent objects and scenes).

— Control & Robot Motion: Optimal control and robot are described via optimality principles, e.g.,
motion such that various constraints h(environment, motion) = 0 are fulfilled.
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Implicit Function Theorem

F:z—y st f(x,y)=0

where f : R? x R® — R" has n-dimensional output

e Is F really well-defined? E.g., what if no y solves f(z,y) = 0? What if multiple y
solve f(x,y) =07
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Implicit Function Theorem

e Theorem: Let f(z,y), » € R% y € R™ be a continuously differentiable R™-valued function (in
C"). Assume we have a point (z*,y*) € R4 where

fl@*,y") =0 and det g f(z*,y") #0.

a) Then there exists a radius r such that for each z, |z — z*| < r, there exists a unique
y = F(x) such that f(z,y) = 0.
b) The implicit function F' is continuously differentiable, and
fla, F) =0 = Zfley)+ L (zy)&F@)=0 aty=F(z),
and since a%f is invertible, we have
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Implicit Function Theorem

e Theorem: Let f(z,y), » € R% y € R™ be a continuously differentiable R™-valued function (in
C"). Assume we have a point (z*,y*) € R4 where

fl@*,y") =0 and det g f(z*,y") #0.

a) Then there exists a radius r such that for each z, |z — z*| < r, there exists a unique
y = F(x) such that f(z,y) = 0.
b) The implicit function F' is continuously differentiable, and

f(x F()=0 = Zf(z,y)+ & f(ry)&F()=0 aty=F(),
and since 3y 9 fis invertible, we have

2F(@) =~ [&f@ & f(z,y) .

o det a%f(:p*,y*) # 0 < Jacobian w.r.t. y has fullrank < f(z,y) = 0 has non-zero gradient in all y-directions
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Interpretation in view of Newton step*

(Same statement, just derived as Newton step for root finding)

e Assume you already found y* to solve f(z*,y*) = 0 for a given z*. But now the
parameter/input z varies slightly. How does the solution y vary?

e Consider the 1st order Taylor approximation of f:

fley) = f@*y) + & fat,y) (@ —a%) + 2 f (2%, y") (y —y7)
—_——

=0

If we also want f(x,y) = 0, then we need
(y—y") = (2 2f (@),

which is the Newton step for root finding, and coincides with the Implicit Function Theorem.
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Differentiable Optimization
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The KKT Implicit Function
e Consider a parameterized problem

x*(0) = argmin f(6,x) s.t. g(6,2) <0, h(0,z) =0
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The KKT Implicit Function
e Consider a parameterized problem

x*(0) = argmin f(6,x) s.t. g(6,2) <0, h(0,z) =0

o We define the implicit function F': 6 — (z*,k*, \*) s.t. r(0,z,k,\) = 0 for the
KKT residual

VIf(0,2) +Xg(0,2) + £Th(0, 2)]
r(0,z, Kk, \) = h(0, x)
diag(A)g(6, )

(i.e., for any 6, F' outputs the primal and dual solution to the KKT conditions.)
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The KKT Implicit Function
e Consider a parameterized problem
x*(0) = arggrcnin f(0,z) st. g(6,x) <0, h(0,2) =0
e We define the implicit function ' : 0 — (z*, k*, \*) s.t. r(0,z,k,\) = 0 for the
KKT residual

VIf(O,2) + Ag(0,2) + kTh(0, z)]
r(0,z, Kk, \) = h(0, x)
diag(A)g(0, z)
(i.e., for any 6, F' outputs the primal and dual solution to the KKT conditions.)
e In particular, at (z,k,\) = F(0) we have

lé) _ o -1 0
@F = _[az;m 7"} %'f’ .
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The KKT Implicit Function

0 _ 0 -1 0
%F = —[awmr} %7" .

— The matrix 52 r € ROHHm)x(n++m) s the KKT Jacobian (cf. Primal-Dual Newton!)

ls]
Oz

T =

duh 0 0
diag(\)d.g 0  diag(g)

V2 f+Ag+k'n] 8.n" ang]

— The vector 27 € R**'*™ describes how the KKT residual depends on 6:

AV [f+ g+ £h
dgh
diag(A)deg

r =

g

e E.g., for a small variation (§ — 6*), the new optimum is (in linear approx.) at

(,5,A) = (2", &%, X°) = [2r]h Gyr (0 - 6%)
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Example

Assume ¢(x; 0) is a NN with parameters 6 € RY, inputs = € R™, outputs ¢(z;6) € R®

For given 6, a Newton method converges to z* = argmin,, ¢(z; 6)?
(We assume a least squares form f(0,x) = ¢(x;0)?, it could be o = 1)

P )
Whatls%_@F?

Since we have no «, A here, we have

0 9,11 0
%F = —[%7"} 1 %7‘
Lr=V2f, Zr=0,Vf

LF = —[V2f]! 0,Vf

where we could approximate V2 f(x) = 2J7.J, with the NN’s Jacobian J = 9, ¢(x; 9).
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Switching Constraints Example
e For z € R, Consider the problem
min(z — 0)? st. £>0.

What is the implicit function F(0) = z*?
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Switching Constraints Example
e For z € R, Consider the problem
min(z — 0)? st. £>0.

What is the implicit function F(0) = z*?

F(0) = z* = max{0,0}

which is non-differentiable at 8 = 0.
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Limitation — Constraint Activity Switching

¢ Note that the KKT residual r(0, z, x, A) = 0 neglects the conditions g(0,z) < 0,A >0

e The Implicit Function Theorem assumes r € C* and det 9,7 # 0, but when constraint
activity switches, r changes in a non-differentiable manner.
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Limitation — Constraint Activity Switching

¢ Note that the KKT residual r(0, z, x, A) = 0 neglects the conditions g(0,z) < 0,A >0

e The Implicit Function Theorem assumes r € C* and det 9,7 # 0, but when constraint
activity switches, r changes in a non-differentiable manner.

— In a vicinity of a solution z*, x*, A\*, we may assume that constraint activity is stable, the
inequalities g(x) < 0, A > 0 remain fulfilled, and that the Jacobian of active constraints have
full rank (aka. constraint qualification assumption).

THEN, locally, the implicit function theorem holds and we have the correct gradient.

e However, in general, constraint activity switches somewhere — then we have a discontinuity
in the active constraint Jacobians, and in the implicit function gradient.

Learning and Intelligent Systems Lab, TU Berlin Implicit Functions & Differentiable Optimization — 13/16



Limitation — Constraint Activity Switching

¢ Note that the KKT residual r(0, z, x, A) = 0 neglects the conditions g(0,z) < 0,A >0

e The Implicit Function Theorem assumes r € C* and det 9,7 # 0, but when constraint
activity switches, r changes in a non-differentiable manner.

— In a vicinity of a solution z*, x*, A\*, we may assume that constraint activity is stable, the
inequalities g(x) < 0, A > 0 remain fulfilled, and that the Jacobian of active constraints have
full rank (aka. constraint qualification assumption).

THEN, locally, the implicit function theorem holds and we have the correct gradient.

e However, in general, constraint activity switches somewhere — then we have a discontinuity
in the active constraint Jacobians, and in the implicit function gradient.

= NLPs with inequalities are piece-wise differentiable!
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Classical Literature: “Sensitivity Analysis”

e Lot’s of classical literature on differentiation through NLP solutions:

— Ralph & Dempe. Directional derivatives of the solution of a parametric nonlinear program. 1994.
Research Report.

— Fiacco & Kyparisis. Sensitivity analysis in nonlinear programming under second order assumptions.
Lecture Notes in Control and Information Sciences, 74-97, 1985.

— Kyparisis. Sensitivity analysis for nonlinear programs and variational inequalities with nonunique multipliers.
Mathematics of Operations Research, 15:286—298, 1990.

— Levy & Rockafellar. Sensitivity of solutions in nonlinear programs with nonunique multiplier. Recent Adv. in
Nonsmooth Optimzation: 215-223, 1995

(More recent publications at NeurlPS (keyword “Differentiable Optimization”) ignore
this classical literature.)
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Classical Literature: “Sensitivity Analysis”

e The implicit function F'(9) is also called quasi-solution mapping: Assume a
parameterized NLP P(6)

F 10+ {z: KKT hold for P(6)}

“We show under a standard constraint qualification, not requiring uniqueness of
the multipliers, that the quasi-solution mapping is differentiable in a generalized
sense, and we present a formula for its derivative.”

e Constant rank constraint qualification (CRCQ): For each subset of the gradients of
the active inequality constraints and the gradients of the equality constraints the
rank at a vicinity of z* is constant.
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Conclusions

e We can analyze how changes in the optimization problem translate to changes of the
optimium z*

e Using the KKT Jacobian, we can provide the gradient of 2* w.r.t. problem parameters ¢

e We can embed optimization algos in auto-differentiation computation graphs (torch,
tensorflow)

¢ Important implications for Differentiable Physics

e But: Gradients can be discontinuous across constraint activations
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