

Optimization Algorithms

Implicit Functions & Differentiable Optimization

Marc Toussaint Technical University of Berlin Winter 2024/25

Outline

- Implicit Functions
 - Definition
 - Implicit Function Theorem and differentiation
- Differentiable Optimization

Implicit Functions

Implicit Functions & Differentiable Optimization - 3/16

What is an Implicit Function?

• A function $F : \mathbb{R}^d \to Y$ can be defined **implicitly**, e.g. via

 $F(x) = \underset{y}{\operatorname{argmin}} f(x, y)$ optimality formulation

or alternatively via

F(x) = y s.t. f(x, y) = 0 standard (root) formulation

• *F* is called *implicit function*, *f* is sometimes called **discriminative function**, as it discriminates "correct" outputs *y* from others.

What is an Implicit Function?

• A function $F : \mathbb{R}^d \to Y$ can be defined **implicitly**, e.g. via

 $F(x) = \underset{y}{\operatorname{argmin}} f(x, y)$ optimality formulation

or alternatively via

F(x) = y s.t. f(x, y) = 0 standard (root) formulation

- *F* is called *implicit function*, *f* is sometimes called **discriminative function**, as it discriminates "correct" outputs *y* from others. Examples:
 - **ML classification**: A classifier $F : \mathbb{R}^d \to \{A, B, C\}$ is represented via a discriminative function f(x, y) that assignes different neg-likelihoods to the three possible outputs $y \in \{A, B, C\}$ (cf. logistic regression, multi-class classification, conditional random fields).
 - Implicit Surface Functions: A 3D surface is implicitly defined as the *set* of points $y \in \mathbb{R}^3$ for which f(y) = 0 (often no parameter x here) (cf. recent work in CV and robotics to use neural implicit functions (NIF) to represent objects and scenes).

Implicit Function Theorem

$$F: x \mapsto y$$
 s.t. $f(x, y) = 0$

where $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$ has *n*-dimensional output

• Is F really well-defined? E.g., what if no y solves f(x, y) = 0? What if multiple y solve f(x, y) = 0?

Implicit Functions & Differentiable Optimization - 5/16

Implicit Function Theorem

• Theorem: Let f(x, y), $x \in \mathbb{R}^d$, $y \in \mathbb{R}^n$ be a continuously differentiable \mathbb{R}^n -valued function (in C^1). Assume we have a point $(x^*, y^*) \in \mathbb{R}^{d+n}$ where

$$f(x^*, y^*) = 0$$
 and $\det \frac{\partial}{\partial y} f(x^*, y^*) \neq 0$.

a) Then there exists a radius r such that for each x, $|x - x^*| < r$, there exists a **unique** y = F(x) such that f(x, y) = 0.

b) The implicit function F is continuously differentiable, and

 $f(x,F(x)) = 0 \quad \Rightarrow \quad \frac{\partial}{\partial x}f(x,y) + \frac{\partial}{\partial y}f(x,y)\frac{\partial}{\partial x}F(x) = 0$ at y = F(x), and since $\frac{\partial}{\partial y}f$ is invertible, we have

$$\frac{\partial}{\partial x}F(x)=-[\frac{\partial}{\partial y}f(x,y)]^{\text{-}1}\frac{\partial}{\partial x}f(x,y)$$
 .

Implicit Functions & Differentiable Optimization - 6/16

Implicit Function Theorem

• Theorem: Let f(x, y), $x \in \mathbb{R}^d$, $y \in \mathbb{R}^n$ be a continuously differentiable \mathbb{R}^n -valued function (in C^1). Assume we have a point $(x^*, y^*) \in \mathbb{R}^{d+n}$ where

$$f(x^*, y^*) = 0$$
 and $\det \frac{\partial}{\partial y} f(x^*, y^*) \neq 0$.

a) Then there exists a radius r such that for each x, $|x - x^*| < r$, there exists a **unique** y = F(x) such that f(x, y) = 0.

b) The implicit function F is continuously differentiable, and

 $f(x,F(x)) = 0 \quad \Rightarrow \quad \frac{\partial}{\partial x}f(x,y) + \frac{\partial}{\partial y}f(x,y)\frac{\partial}{\partial x}F(x) = 0$ at y = F(x), and since $\frac{\partial}{\partial y}f$ is invertible, we have

$$\frac{\partial}{\partial x}F(x)=-[\frac{\partial}{\partial y}f(x,y)]^{\text{-}1}\frac{\partial}{\partial x}f(x,y)$$
 .

• det $\frac{\partial}{\partial y}f(x^*, y^*) \neq 0 \iff$ Jacobian w.r.t. y has full rank $\Leftrightarrow f(x, y) = 0$ has non-zero gradient in all y-directions

Learning and Intelligent Systems Lab, TU Berlin

Implicit Functions & Differentiable Optimization - 6/16

Interpretation in view of Newton step*

(Same statement, just derived as Newton step for root finding)

- Assume you already found y^* to solve $f(x^*, y^*) = 0$ for a given x^* . But now the parameter/input x varies slightly. How does the solution y vary?
- Consider the 1st order Taylor approximation of *f*:

$$f(x,y) = \underbrace{f(x^*,y^*)}_{=0} + \frac{\partial}{\partial x} f(x^*,y^*) (x-x^*) + \frac{\partial}{\partial y} f(x^*,y^*) (y-y^*)$$

If we also want f(x, y) = 0, then we need

$$(y - y^*) = -\left[\frac{\partial}{\partial y}f\right]^{-1} \frac{\partial}{\partial x}f(x - x^*),$$

which is the Newton step for root finding, and coincides with the Implicit Function Theorem.

Implicit Functions & Differentiable Optimization - 7/16

Differentiable Optimization

Implicit Functions & Differentiable Optimization - 8/16

• Consider a parameterized problem

$$x^*(\theta) = \operatorname*{argmin}_x f(\theta, x) \text{ s.t. } g(\theta, x) \le 0, \ h(\theta, x) = 0$$

• Consider a parameterized problem

$$x^*(\theta) = \operatorname*{argmin}_x f(\theta, x) \text{ s.t. } g(\theta, x) \leq 0, \ h(\theta, x) = 0$$

• We define the implicit function $F: \theta \mapsto (x^*, \kappa^*, \lambda^*)$ s.t. $r(\theta, x, \kappa, \lambda) = 0$ for the KKT residual

$$r(\theta, x, \kappa, \lambda) = \begin{pmatrix} \nabla [f(\theta, x) + \lambda^{\!\top} g(\theta, x) + \kappa^{\!\top} h(\theta, x)] \\ h(\theta, x) \\ \mathrm{diag}(\lambda) g(\theta, x) \end{pmatrix}$$

(i.e., for any θ , F outputs the primal and dual solution to the KKT conditions.)

Implicit Functions & Differentiable Optimization - 9/16

• Consider a parameterized problem

$$x^*(\theta) = \operatorname*{argmin}_x f(\theta, x) \text{ s.t. } g(\theta, x) \le 0, \ h(\theta, x) = 0$$

• We define the implicit function $F: \theta \mapsto (x^*, \kappa^*, \lambda^*)$ s.t. $r(\theta, x, \kappa, \lambda) = 0$ for the KKT residual

$$r(\theta, x, \kappa, \lambda) = \begin{pmatrix} \nabla [f(\theta, x) + \lambda^{\!\top} g(\theta, x) + \kappa^{\!\top} h(\theta, x)] \\ h(\theta, x) \\ \mathrm{diag}(\lambda) g(\theta, x) \end{pmatrix}$$

(i.e., for any θ , F outputs the primal and dual solution to the KKT conditions.)

• In particular, at $(x, \kappa, \lambda) = F(\theta)$ we have

$$\frac{\partial}{\partial \theta}F = -[\frac{\partial}{\partial_{x\kappa\lambda}}r]^{\text{--}1} \; \frac{\partial}{\partial \theta}r$$

Learning and Intelligent Systems Lab, TU Berlin

Implicit Functions & Differentiable Optimization - 9/16

$$\frac{\partial}{\partial \theta}F = -\left[\frac{\partial}{\partial_{x\kappa\lambda}}r\right]^{-1} \frac{\partial}{\partial \theta}r$$

– The matrix $\frac{\partial}{\partial x \kappa \lambda} r \in \mathbb{R}^{(n+l+m) \times (n+l+m)}$ is the **KKT Jacobian** (cf. Primal-Dual Newton!)

$$\frac{\partial}{\partial_{x\kappa\lambda}}r = \begin{pmatrix} \nabla^2[f + \lambda^\top g + \kappa^\top h] & \partial_x h^\top & \partial_x g^\top \\ \partial_x h & 0 & 0 \\ \mathrm{diag}(\lambda)\partial_x g & 0 & \mathrm{diag}(g) \end{pmatrix}$$

- The vector $\frac{\partial}{\partial \theta}r \in \mathbb{R}^{n+l+m}$ describes how the KKT residual depends on θ :

$$\frac{\partial}{\partial \theta} r = \begin{pmatrix} \partial_{\theta} \nabla [f + \lambda^{\!\top} g + \kappa^{\!\top} h] \\ \partial_{\theta} h \\ \mathrm{diag}(\lambda) \partial_{\theta} g \end{pmatrix}$$

• E.g., for a small variation $(\theta - \theta^*)$, the new optimum is (in linear approx.) at

$$(x,\kappa,\lambda) = (x^*,\kappa^*,\lambda^*) - \left[\frac{\partial}{\partial x_{\kappa\lambda}}r\right]^{-1} \frac{\partial}{\partial \theta}r \left(\theta - \theta^*\right)$$

Learning and Intelligent Systems Lab, TU Berlin

Implicit Functions & Differentiable Optimization - 10/16

Example

- Assume $\phi(x; \theta)$ is a NN with parameters $\theta \in \mathbb{R}^d$, inputs $x \in \mathbb{R}^n$, outputs $\phi(x; \theta) \in \mathbb{R}^o$
- For given θ , a Newton method converges to $x^* = \operatorname{argmin}_x \phi(x; \theta)^2$ (We assume a least squares form $f(\theta, x) = \phi(x; \theta)^2$, it could be o = 1)
- What is $\frac{dx^*}{d\theta} = \frac{\partial}{\partial\theta} F$?
- Since we have no κ, λ here, we have

$$\begin{split} &\frac{\partial}{\partial \theta}F = -[\frac{\partial}{\partial x}r]^{-1} \frac{\partial}{\partial \theta}r \\ &\frac{\partial}{\partial x}r = \nabla^2 f , \quad \frac{\partial}{\partial \theta}r = \partial_{\theta}\nabla f \\ &\frac{\partial}{\partial \theta}F = -[\nabla^2 f]^{-1} \partial_{\theta}\nabla f \end{split}$$

where we could approximate $\nabla^2 f(x) \approx 2J^{\top}J$, with the NN's Jacobian $J = \partial_x \phi(x; \theta)$.

Learning and Intelligent Systems Lab, TU Berlin

Implicit Functions & Differentiable Optimization - 11/16

Switching Constraints Example

• For $x \in \mathbb{R}$, Consider the problem

$$\min_{x} (x - \theta)^2 \quad \text{s.t.} \quad x \ge 0 \; .$$

What is the implicit function $F(\theta) = x^*$?

Implicit Functions & Differentiable Optimization - 12/16

Switching Constraints Example

• For $x \in \mathbb{R}$, Consider the problem

$$\min_{x} (x - \theta)^2 \text{ s.t. } x \ge 0 .$$

What is the implicit function $F(\theta) = x^*$?

$$F(\theta) = x^* = \max\{0, \theta\}$$

which is non-differentiable at $\theta = 0$.

Learning and Intelligent Systems Lab, TU Berlin

Implicit Functions & Differentiable Optimization - 12/16

Limitation – Constraint Activity Switching

- Note that the KKT residual $r(\theta, x, \kappa, \lambda) = 0$ neglects the conditions $g(\theta, x) \le 0, \lambda \ge 0$
- The Implicit Function Theorem assumes $r \in C^1$ and $\det \partial_{x\kappa\lambda} r \neq 0$, but when constraint activity switches, r changes in a non-differentiable manner.

Limitation – Constraint Activity Switching

- Note that the KKT residual $r(\theta, x, \kappa, \lambda) = 0$ neglects the conditions $g(\theta, x) \le 0, \lambda \ge 0$
- The Implicit Function Theorem assumes $r \in C^1$ and $\det \partial_{x\kappa\lambda} r \neq 0$, but when constraint activity switches, r changes in a non-differentiable manner.
- → In a vicinity of a solution x*, κ*, λ*, we may assume that constraint activity is stable, the inequalities g(x) ≤ 0, λ ≥ 0 remain fulfilled, and that the Jacobian of active constraints have full rank (aka. *constraint qualification assumption*).
 THEN, locally, the implicit function theorem holds and we have the correct gradient.
 - However, in general, constraint activity switches somewhere then we have a discontinuity in the active constraint Jacobians, and in the implicit function gradient.

Limitation – Constraint Activity Switching

- Note that the KKT residual $r(\theta, x, \kappa, \lambda) = 0$ neglects the conditions $g(\theta, x) \le 0, \lambda \ge 0$
- The Implicit Function Theorem assumes $r \in C^1$ and $\det \partial_{x\kappa\lambda} r \neq 0$, but when constraint activity switches, r changes in a non-differentiable manner.
- → In a vicinity of a solution x*, κ*, λ*, we may assume that constraint activity is stable, the inequalities g(x) ≤ 0, λ ≥ 0 remain fulfilled, and that the Jacobian of active constraints have full rank (aka. *constraint qualification assumption*).
 THEN, locally, the implicit function theorem holds and we have the correct gradient.
 - However, in general, constraint activity switches somewhere then we have a discontinuity in the active constraint Jacobians, and in the implicit function gradient.

\Rightarrow NLPs with inequalities are *piece-wise* differentiable!

Classical Literature: "Sensitivity Analysis"

- Lot's of classical literature on differentiation through NLP solutions:
 - Ralph & Dempe. Directional derivatives of the solution of a parametric nonlinear program. 1994.
 Research Report.
 - Fiacco & Kyparisis. Sensitivity analysis in nonlinear programming under second order assumptions. Lecture Notes in Control and Information Sciences, 74-97, 1985.
 - Kyparisis. Sensitivity analysis for nonlinear programs and variational inequalities with nonunique multipliers. Mathematics of Operations Research, 15:286–298, 1990.
 - Levy & Rockafellar. Sensitivity of solutions in nonlinear programs with nonunique multiplier. Recent Adv. in Nonsmooth Optimzation: 215-223, 1995

(More recent publications at NeurIPS (keyword "Differentiable Optimization") ignore this classical literature.)

Implicit Functions & Differentiable Optimization - 14/16

Classical Literature: "Sensitivity Analysis"

• The implicit function $F(\theta)$ is also called *quasi-solution mapping:* Assume a parameterized NLP $\mathcal{P}(\theta)$

 $F: \theta \mapsto \{x: \mathsf{KKT} \text{ hold for } \mathcal{P}(\theta)\}$

"We show **under a standard constraint qualification**, not requiring uniqueness of the multipliers, that the quasi-solution mapping is differentiable in a generalized sense, and we present a formula for its derivative."

• Constant rank constraint qualification (CRCQ): For each subset of the gradients of the active inequality constraints and the gradients of the equality constraints the rank at a vicinity of x^* is constant.

Implicit Functions & Differentiable Optimization - 15/16

Conclusions

- We can analyze how changes in the optimization problem translate to changes of the optimium x^*
- Using the KKT Jacobian, we can provide the gradient of x^* w.r.t. problem parameters θ
- We can embed optimization algos in auto-differentiation computation graphs (torch, tensorflow)
- Important implications for Differentiable Physics
- But: Gradients can be discontinuous across constraint activations

Implicit Functions & Differentiable Optimization – 16/16