
Optimization Algorithms

Appendix

Phase I Optimization, Bound Constraints, Primal-Dual Newton
method

Marc Toussaint
Technical University of Berlin

Winter 2024/25

Phase I Optimization

Learning and Intelligent Systems Lab, TU Berlin Appendix – 2/20

Phase I: Finding a feasible initialization

• We might not have a feasible x ∈ Rn to initialize the NLP solver
– No issue for squared penalty and AugLag
– Also primal-dual can be ok (although it is usually realized as interior point method)
– LogBarrier requires feasible initialization (e.g., also within SQP)

• Phase I Optimization means finding a feasible initial x by solving another
optimization problem

Learning and Intelligent Systems Lab, TU Berlin Appendix – 3/20

Phase I: formulation to minimize infeasibility

• Standard approach: introduce single or multiple variables of infeasibility

• Single (maximum) infeasibility variable

min
(x,s)∈Rn+1

s s.t. ∀i : gi(x) ≤ s, s ≥ 0

– Given initial infeasible x, initialize s = maxi gi(x) > 0

• Individual infeasibility variables

min
(x,s)∈Rn+m

m∑
i=1

si s.t. ∀i : gi(x) ≤ si, si ≥ 0

– Given initial infeasible x, initialize si = max{gi(x), 0}

Learning and Intelligent Systems Lab, TU Berlin Appendix – 4/20

Bound Constraints

Learning and Intelligent Systems Lab, TU Berlin Appendix – 5/20

Bound Constraints

• A bound constrained NLP, with bounds l, u ∈ Rn, l ≤ u

min
l≤x≤u

f(x) s.t. g(x) ≤ 0, h(x) = 0

• Other words:
– simply constrained problem or NLP with simple constraints (Bertsekas)
– box or rectangle constraints

• Since we know how to deal with constraints g, h, we only discuss:

min
l≤x≤u

f(x)

Learning and Intelligent Systems Lab, TU Berlin Appendix – 6/20

Bound Constraints

• A bound constrained NLP, with bounds l, u ∈ Rn, l ≤ u

min
l≤x≤u

f(x) s.t. g(x) ≤ 0, h(x) = 0

• Other words:
– simply constrained problem or NLP with simple constraints (Bertsekas)
– box or rectangle constraints

• Since we know how to deal with constraints g, h, we only discuss:

min
l≤x≤u

f(x)

Learning and Intelligent Systems Lab, TU Berlin Appendix – 6/20

Bound Constraints – Motivation

• Do we need to handle them specially? Not necessarily
– Treat bounds just like any other inequality
– Sound, we know what we’re doing – recommended, if possible

• However, reasons to treat bounds directly:
– The primal-dual Newton method requires Newton steps that respect bounds
– Sometimes undesirable to have an AugLag or LogBarrier with inner/outer loop, only to account

for bounds
– Simpler/more direct solutions to handling bounds other than general (non-linear) inequalities?

• Note: Naively clipping (“projecting”) all queries in a line search can go badly wrong!

Learning and Intelligent Systems Lab, TU Berlin Appendix – 7/20

Bound Constraints – Motivation

• Do we need to handle them specially? Not necessarily
– Treat bounds just like any other inequality
– Sound, we know what we’re doing – recommended, if possible

• However, reasons to treat bounds directly:
– The primal-dual Newton method requires Newton steps that respect bounds
– Sometimes undesirable to have an AugLag or LogBarrier with inner/outer loop, only to account

for bounds
– Simpler/more direct solutions to handling bounds other than general (non-linear) inequalities?

• Note: Naively clipping (“projecting”) all queries in a line search can go badly wrong!

Learning and Intelligent Systems Lab, TU Berlin Appendix – 7/20

Bound Constraints – Motivation

• Do we need to handle them specially? Not necessarily
– Treat bounds just like any other inequality
– Sound, we know what we’re doing – recommended, if possible

• However, reasons to treat bounds directly:
– The primal-dual Newton method requires Newton steps that respect bounds
– Sometimes undesirable to have an AugLag or LogBarrier with inner/outer loop, only to account

for bounds
– Simpler/more direct solutions to handling bounds other than general (non-linear) inequalities?

• Note: Naively clipping (“projecting”) all queries in a line search can go badly wrong!

Learning and Intelligent Systems Lab, TU Berlin Appendix – 7/20

References

• Mainstream: Projected gradient (or rather “projected line search”)
– not focus here, mention briefly
– (SLIDES) Leyffer, S. Bound Constrained Optimization - GIAN Short Course on Optimization:

Applications, Algorithms, and Computation. 30.

• Our focus: Bound-constrained Newton method
– Maintain the strength of Newon method as inner loop in AugLag, primal-dual, etc
– D.P. Bertsekas. Projected Newton methods for optimization problems with simple constraints.

SIAM Journal on Control and Optimization 20, 221-246 (1982).
– Facchinei, F., Júdice, J. & Soares, J. An active set Newton algorithm for large-scale nonlinear

programs with box constraints. SIAM Journal on Optimization 8, 158–186 (1998).
– Cheng, W., Chen, Z. & Li, D. An active set truncated Newton method for large-scale bound

constrained optimization. Computers & Mathematics with Applications 67, 1016–1023 (2014).

Learning and Intelligent Systems Lab, TU Berlin Appendix – 8/20

Bound Constraints & Newton

• Recap basic Newton method:

Input: initial x ∈ Rn, functions f(x),∇f(x),∇2f(x), tolerance θ, parameters (defaults: ϱ+α =

1.2, ϱ−α = 0.5, ϱls = 0.01, λ)
1: initialize stepsize α = 1, fixed damping λ

2: repeat
3: compute δ to solve (∇2f(x) + λI) δ = −∇f(x)
4: while f(x+ αδ) > f(x) + ϱls∇f(x)⊤(αδ) do // line search
5: α← ϱ−αα // decrease stepsize
6: end while
7: x← x+ αδ // step is accepted
8: α← min{ϱ+αα, 1} // increase stepsize
9: until ||αδ||∞ < θ

• Naive approach: clipping: query y = clip(x+ αδ)

– with clip(x) ≡ min(max(x, l), u) elem-wise

• Can go badly wrong – understanding why and when is the key to do it properly

Learning and Intelligent Systems Lab, TU Berlin Appendix – 9/20

Bound Constraints & Newton

• Recap basic Newton method:

Input: initial x ∈ Rn, functions f(x),∇f(x),∇2f(x), tolerance θ, parameters (defaults: ϱ+α =

1.2, ϱ−α = 0.5, ϱls = 0.01, λ)
1: initialize stepsize α = 1, fixed damping λ

2: repeat
3: compute δ to solve (∇2f(x) + λI) δ = −∇f(x)
4: while f(x+ αδ) > f(x) + ϱls∇f(x)⊤(αδ) do // line search
5: α← ϱ−αα // decrease stepsize
6: end while
7: x← x+ αδ // step is accepted
8: α← min{ϱ+αα, 1} // increase stepsize
9: until ||αδ||∞ < θ

• Naive approach: clipping: query y = clip(x+ αδ)

– with clip(x) ≡ min(max(x, l), u) elem-wise

• Can go badly wrong – understanding why and when is the key to do it properly
Learning and Intelligent Systems Lab, TU Berlin Appendix – 9/20

Example

• Core case to consider (from Bertsekas):

• Example problem: x ∈ R2

min
1

2
x⊤Ax s.t. x1 ≥

1

2
, with A =

 200 −160

−160 200



• The standard Newton direction is bad! Naively clipping (projecting line search
queries) sends in the wrong direction!

Learning and Intelligent Systems Lab, TU Berlin Appendix – 10/20

Example

• Core case to consider (from Bertsekas):

• Example problem: x ∈ R2

min
1

2
x⊤Ax s.t. x1 ≥

1

2
, with A =

 200 −160

−160 200



• The standard Newton direction is bad! Naively clipping (projecting line search
queries) sends in the wrong direction!

Learning and Intelligent Systems Lab, TU Berlin Appendix – 10/20

Active Set Identification

• The key is to (try to) identify the active set!
– This is consistent to our general understanding of the complexity of constrained optimization: If

the active inequalities were known apriori, everything would be much simpler! (Recall complexity
of Simplex.) This is the same for the simple bound inequalities.

– For general inequalities, we had the LogBarrier relaxing the hard decision of active constraints,
and AugLag using the indicator [gi(x) ≥ 0 ∨ λi > 0]

• Bertsekas proposes to define the active set as:

I+(x) = {i : 0 ≥ xi ≥ ϵ,∇fi(x) ≥ 0}

(where he assumes l = 0, i.e., x ≥ 0 as bounds)

• Facchinei proposes:

L(x) := {i : xi ≤ li + ai(x)∇fi(x)} (1)

U(x) := {i : xi ≥ ui + bi(x) ∇fi(x)} (2)
Learning and Intelligent Systems Lab, TU Berlin Appendix – 11/20

Hessian Modification for Active Set

• Assuming we had the active set identified, how can we modify the Newton method?

• (Active variables could be hard-assigned to bound.)

• We compute Newton step only for the free variables!
– The free variables form a hyperplane – we want a Newton step only in this hyperplane
– Following Bertsekas: Let H be the original Hessian, we delete correlations of active bound

variables to free variables, by deleting off-diagonal entries for the active variables

H ← removei(H) :



A
... B

· · · hii · · ·

B⊤
... C



←



0

A
... B
0

0 · · · 0 hii 0 · · · 0
0

B⊤
... C
0



The curvature along i remains, but it becomes decorrelated from all other variables

Learning and Intelligent Systems Lab, TU Berlin Appendix – 12/20

Hessian Modification for Active Set

• Assuming we had the active set identified, how can we modify the Newton method?

• (Active variables could be hard-assigned to bound.)

• We compute Newton step only for the free variables!
– The free variables form a hyperplane – we want a Newton step only in this hyperplane
– Following Bertsekas: Let H be the original Hessian, we delete correlations of active bound

variables to free variables, by deleting off-diagonal entries for the active variables

H ← removei(H) :



A
... B

· · · hii · · ·

B⊤
... C



←



0

A
... B
0

0 · · · 0 hii 0 · · · 0
0

B⊤
... C
0



The curvature along i remains, but it becomes decorrelated from all other variables
Learning and Intelligent Systems Lab, TU Berlin Appendix – 12/20

Newton method with Bound Constraints

Input: initial x ∈ Rn, functions f(x),∇f(x),∇2f(x), bounds l, u, parameters θ, ϱ+α , ϱ−α , ϱls, λ

1: initialize stepsize α = 1, fixed damping λ

2: x← clip(x) // otherwise the first ∇f(x),∇2f(x) are horribly wrong
3: repeat
4: compute g ← ∇f(x), H ← ∇2f(x)

5: Identify I = {i : (x = l ∧ gi > 0) ∨ (x = u ∧ gi < 0)} // no ϵ; assume previous clip
6: H ← removeI(H) // delete correlations
7: compute δ to solve (H + λI) δ = −g
8: while f(y) > f(x) + ϱls∇f(x)⊤(y − x), for y = clip(x+ αδ), do // line search
9: α← ϱ−αα // decrease stepsize

10: end while
11: x← y // step is accepted
12: α← min{ϱ+αα, 1} // increase stepsize
13: until ||αδ||∞ < θ

– since we clip within line search, clipped xi are exactly on bound and identified in next iteration
– δ can point away from bound (depending on gi only), to free a previously bound xi

Learning and Intelligent Systems Lab, TU Berlin Appendix – 13/20

• Line search sometimes an issue, when bound variable was not yet identified

• Facchinei mentions a “nonmonotone stabilization technique proposed in [27]”,
which seems very interesting alternative to naive Wolfe in bound-constrained case!

Learning and Intelligent Systems Lab, TU Berlin Appendix – 14/20

Projected-Gradient Methods

• Nice tutorial reference:
– (SLIDES) Leyffer, S. Bound Constrained Optimization - GIAN Short Course on Optimization:

Applications, Algorithms, and Computation. 30.

• Let δ = −∇f(x) (gradient directly)
– Consider the full line (infinite half-line) projected (clipped)
– Identify the piece-wise linear pieces of this path
– Find minimizer along this full path

Learning and Intelligent Systems Lab, TU Berlin Appendix – 15/20

Primal-Dual interior-point Newton Method

Learning and Intelligent Systems Lab, TU Berlin Appendix – 16/20

Primal-Dual interior-point Newton Method

• In the unconstraint case, Newton methods find a point x for which ∇f(x) = 0

• The KKT conditions generalize the condition ∇f(x) = 0 to the constraint case, and
can be interpreted as saddle point conditions L(x, κ, λ)

• We think of the KKT conditions as an equation system r(x, κ, λ) = 0, and use a
Newton method for solving it

• This leads to a primal-dual algorithm that adapts (x, κ, λ) concurrently.
The Newton steps are done in the (x, κ, λ) ∈ Rn+l+m space.

Learning and Intelligent Systems Lab, TU Berlin Appendix – 17/20

Primal-Dual interior-point Newton Method

• We consider the KKT equation system

∇f(x) + λ⊤ ∂
∂xg(x) + κ⊤ ∂

∂xh(x) = 0

h(x) = 0

diag(λ)g(x) + µ1m = 0

– With the 1st, 2nd, and relaxed 4th KKT condition
– The ineq feasibility g(x) ≤ 0 and λ ≥ 0 is implicit.

• We re-write this as

r(x, κ, λ) = 0 , r(x, κ, λ)
def
=


∇[f(x) + λ⊤g(x) + κ⊤h(x)]

h(x)

diag(λ) g(x) + µ1m


Learning and Intelligent Systems Lab, TU Berlin Appendix – 18/20

Primal-Dual interior-point Newton Method

• We compute the regularized Newton step δ in (x, κ, λ)-space as

δ = −[∂
∂xκλ

r(x, κ, λ) + λ̂I]-1 r(x, λ)

• With the KKT Jacobian ∂
∂xκλ

r ∈ R(n+l+m)×(n+l+m) replacing the role of the
Hessian:

∂
∂xκλ

r(x, κ, λ) =


∇2[f(x) + λ⊤g(x) + κ⊤h(x)] ∂

∂xh(x)
⊤ ∂

∂xg(x)
⊤

∂
∂xh(x) 0 0

diag(λ) ∂
∂xg(x) 0 diag(g(x))



• Pseudo code → just like Newton method, but with δ as above

Learning and Intelligent Systems Lab, TU Berlin Appendix – 19/20

Primal-Dual interior-point Newton Method

• We compute the regularized Newton step δ in (x, κ, λ)-space as

δ = −[∂
∂xκλ

r(x, κ, λ) + λ̂I]-1 r(x, λ)

• With the KKT Jacobian ∂
∂xκλ

r ∈ R(n+l+m)×(n+l+m) replacing the role of the
Hessian:

∂
∂xκλ

r(x, κ, λ) =


∇2[f(x) + λ⊤g(x) + κ⊤h(x)] ∂

∂xh(x)
⊤ ∂

∂xg(x)
⊤

∂
∂xh(x) 0 0

diag(λ) ∂
∂xg(x) 0 diag(g(x))



• Pseudo code → just like Newton method, but with δ as above

Learning and Intelligent Systems Lab, TU Berlin Appendix – 19/20

Primal-Dual interior-point Newton Method

• The method uses the Hessians ∇2f(x),∇2gi(x),∇2hj(x)

– One can approximate the constraint Hessians ∇2gi(x),∇2hj(x) ≈ 0

– Gauss-Newton approximation: f(x) = ϕ(x)⊤ϕ(x) only requires ∇ϕ(x)

• No need for nested iterations, as with penalty/barrier methods!

• The above formulation allows for a duality gap µ

– Choosing µ = 0 is not robust
– We adapt µ on the fly, before each Newton step:
– First evaluate the current duality measure µ̃ = − 1

m

∑m
i=1 λigi(x), then choose µ = 1

2
µ̃ to half that

– See also Boyd sec 11.7.3.

• The dual feasibility λi ≥ 0 needs to be handled explicitly by the root finder!
– Specialized method for bound-constrained optimization

Learning and Intelligent Systems Lab, TU Berlin Appendix – 20/20

