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Phase I: Finding a feasible initialization

e We might not have a feasible = € R™ to initialize the NLP solver
— No issue for squared penalty and AuglLag
— Also primal-dual can be ok (although it is usually realized as interior point method)
— LogBarrier requires feasible initialization (e.g., also within SQP)

e Phase | Optimization means finding a feasible initial = by solving another
optimization problem
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Phase I: formulation to minimize infeasibility

e Standard approach: introduce single or multiple variables of infeasibility
e Single (maximum) infeasibility variable

. Sr)nei]gn+1 s 8t Vi gi(x) <s, s>0

— Given initial infeasible z, initialize s = max; g;(xz) > 0
¢ Individual infeasibility variables
m

. 81)2%31+st1- st Vi gi(x) <si, 8,>0
’ i=1

— Given initial infeasible z, initialize s; = max{g;(z),0}
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Bound Constraints
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Bound Constraints
e A bound constrained NLP, with bounds I, u € R"?, [ <u

min f(z) s.t. g(x) <0, h(z) =0

1<zx<u

e Other words:
— simply constrained problem or NLP with simple constraints (Bertsekas)
— box or rectangle constraints
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Bound Constraints
e A bound constrained NLP, with bounds I, u € R"?, [ <u

min f(z) s.t. g(x) <0, h(z) =0

1<z<lu

e Other words:
— simply constrained problem or NLP with simple constraints (Bertsekas)
— box or rectangle constraints

e Since we know how to deal with constraints g, h, we only discuss:
min f(z)

I<z<u

Learning and Intelligent Systems Lab, TU Berlin Appendix — 6/20



Bound Constraints — Motivation

e Do we need to handle them specially? Not necessarily
— Treat bounds just like any other inequality
— Sound, we know what we're doing — recommended, if possible
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Bound Constraints — Motivation

e Do we need to handle them specially? Not necessarily
— Treat bounds just like any other inequality
— Sound, we know what we're doing — recommended, if possible

e However, reasons to treat bounds directly:
— The primal-dual Newton method requires Newton steps that respect bounds

— Sometimes undesirable to have an AuglLag or LogBarrier with inner/outer loop, only to account
for bounds

— Simpler/more direct solutions to handling bounds other than general (non-linear) inequalities?
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Bound Constraints — Motivation

e Do we need to handle them specially? Not necessarily
— Treat bounds just like any other inequality
— Sound, we know what we're doing — recommended, if possible

e However, reasons to treat bounds directly:
— The primal-dual Newton method requires Newton steps that respect bounds

— Sometimes undesirable to have an AuglLag or LogBarrier with inner/outer loop, only to account
for bounds

— Simpler/more direct solutions to handling bounds other than general (non-linear) inequalities?

¢ Note: Naively clipping (“projecting”) all queries in a line search can go badly wrong!
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SIAM Journal on Control and Optimization 20, 221-246 (1982).
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Bound Constraints & Newton

e Recap basic Newton method:

Input: initial = € R™, functions f(z), Vf(z), V2 f(z), tolerance 6, parameters (defaults: o =

1.2, 05 = 0.5, gis = 0.01, A)
1: initialize stepsize a = 1, fixed damping A
2: repeat
3 compute § to solve (V2f(z) + AI) § = —Vf(x)
4 while f(z 4+ a8) > f(z) + 0sVf(z) () do
5: a4 0o O
6: end while
7 T4 T+ ad
8 a + min{of o, 1}
9: until |ad]ec < 0

// line search
// decrease stepsize

// step is accepted
// increase stepsize

¢ Naive approach: clipping: query y = clip(z + «0)
— with clip(z) = min(max(z, 1), u) elem-wise
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Bound Constraints & Newton

e Recap basic Newton method:

Input: initial = € R™, functions f(z), Vf(z), V2 f(z), tolerance 6, parameters (defaults: o =
1.2, 06 = 0.5,0s = 0.01, })
1: initialize stepsize a = 1, fixed damping A

2: repeat

3 compute § to solve (V2f(z) + AI) § = —Vf(x)

4 while f(z + ad) > f(z) + asVf(z) (ad) do // line search
5: (ORI // decrease stepsize
6: end while

7 T+ x4+ ad // step is accepted
8 a + min{ ot o, 1} // increase stepsize
9: until |ad]ec < 0

¢ Naive approach: clipping: query y = clip(z + «0)
— with clip(z) = min(max(z, 1), u) elem-wise

e Can go badly wrong — understanding why and when is the key to do it properly
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X+ V(%)

Example Q&é&-owg(xwk

e Core case to consider (from Bertsekas):

CONTOURS DF_P

Fic. 1

e Example problem: z ¢ R?

. With A= (200 —160
~160 200

|

1
min 53:TA$ st oz >
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X+ V(%)

Example %4*“,‘”“““’1* ‘

Xy~ DR (Xy)

e Core case to consider (from Bertsekas):
CONTOURS DF_P

FiG. 1
e Example problem: z ¢ R?
1 1 . _
min-a'Az st oz >, with A= [ 200 —160
2 2 ~160 200

e The standard Newton direction is bad! Naively clipping (projecting line search
queries) sends in the wrong direction!
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Active Set Identification

e The key is to (try to) identify the active set!

— This is consistent to our general understanding of the complexity of constrained optimization: If
the active inequalities were known apriori, everything would be much simpler! (Recall complexity

of Simplex.) This is the same for the simple bound inequalities.

— For general inequalities, we had the LogBarrier relaxing the hard decision of active constraints,

and Auglag using the indicator [g;(z) > 0V A; > 0]

e Bertsekas proposes to define the active set as:
It(x)={i: 0>xz; > ¢ Vfi(z) >0}

(where he assumes [ = 0, i.e., z > 0 as bounds)

e Facchinei proposes:

L(z):={i: z; <l; + ai(z)Vfi(z)}
U(z) :={i: xi >+ bi(z) Vfi(x)}
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Hessian Modification for Active Set

e Assuming we had the active set identified, how can we modify the Newton method?
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Hessian Modification for Active Set

e Assuming we had the active set identified, how can we modify the Newton method?

e (Active variables could be hard-assigned to bound.)

¢ We compute Newton step only for the free variables!
— The free variables form a hyperplane — we want a Newton step only in this hyperplane

— Following Bertsekas: Let H be the original Hessian, we delete correlations of active bound
variables to free variables, by deleting off-diagonal entries for the active variables

0

H < remove;(H) : e hy |« |0---0 hiy 0---0
B" . C BT : c
0

The curvature along ¢ remains, but it becomes decorrelated from all other variables

Learning and Intelligent Systems Lab, TU Berlin Appendix — 12/20



Newton method with Bound Constraints

Input: initial € R™, functions f(z), Vf(x), V2 f(z), bounds I, u, parameters 0, o, 0z , 0is, A
1: initialize stepsize a = 1, fixed damping A

2: x « clip(z) // otherwise the first Vf (), V2 f(x) are horribly wrong
3: repeat

4 compute g < Vf(x), H < V2f(x)

5: ldentify I={i: (x=1ANg;>0)V(z=uAg; <0)} // no €; assume previous clip
6: H + remove;(H) // delete correlations
7: compute ¢ to solve (H + A\I) § = —g

8. while f(y) > f(z) + 0sVf(z) (y — 2), fory = clip(z + ad), do // line search
9: Q4 Oq @ // decrease stepsize
10: end while

11: Ty // step is accepted
12: a + min{pd a,1} // increase stepsize

13: until |ad]e < 0

— since we clip within line search, clipped z; are exactly on bound and identified in next iteration

— § can point away from bound (depending on g; only), to free a previously bound z;
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e Line search sometimes an issue, when bound variable was not yet identified

e Facchinei mentions a “nonmonotone stabilization technique proposed in [27]",
which seems very interesting alternative to naive Wolfe in bound-constrained case!
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Projected-Gradient Methods

o Nice tutorial reference:

— (SLIDES) Leyffer, S. Bound Constrained Optimization - GIAN Short Course on Optimization:
Applications, Algorithms, and Computation. 30.

x—tg 7

e Let 6 = —Vf(z) (gradient directly) | /’};[x—zg]
— Consider the full line (infinite half-line) projected (clipped) ‘ g

— Identify the piece-wise linear pieces of this path ﬂ
— Find minimizer along this full path ‘ //
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Primal-Dual interior-point Newton Method
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Primal-Dual interior-point Newton Method

In the unconstraint case, Newton methods find a point « for which Vf(z) =0
The KKT conditions generalize the condition Vf(z) = 0 to the constraint case, and
can be interpreted as saddle point conditions L(z, k, \)

We think of the KKT conditions as an equation system r(z, k, A\) = 0, and use a
Newton method for solving it

This leads to a primal-dual algorithm that adapts (z, x, \) concurrently.
The Newton steps are done in the (z, x, \) € R"+™ gpace.
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Primal-Dual interior-point Newton Method

e We consider the KKT equation system

Vf(x) + )\T%g(x) + ﬁTa%h(x) =0
h(z) =0
diag(A)g(z) + plpm =0

— With the 1st, 2nd, and relaxed 4th KKT condition
— The ineq feasibility g(z) < 0 and A > 0 is implicit.

o We re-write this as

x
T(:L'v K, >\) =0 ) T(:Ea K, >\) d:ef h(.’IJ)

Learning and Intelligent Systems Lab, TU Berlin

Appendix — 18/20



Primal-Dual interior-point Newton Method
e We compute the regularized Newton step ¢ in (z, x, A)-space as

0= —[aikr(aﬂ, ko A) 4+ AL (2, A)

e With the KKT Jacobian ;% € R("+m)x(ntlm) ygplacing the role of the

Hessian:
V2[f(x) + Ng(x) + &Th(x)] Zh(z)"  Zg(=)
go—r (2, 6, A) = 2 p(x) 0 0
diag()) Zg(x) 0 diag(g(x))
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Primal-Dual interior-point Newton Method
e We compute the regularized Newton step ¢ in (z, x, A)-space as

§ = —[52—r(x, k, A) + A (2, \)

awh‘,)\

e With the KKT Jacobian ;% € R("+m)x(ntlm) ygplacing the role of the

Hessian:
V2[f(x) + Ng(x) + &Th(x)] Zh(z)"  Zg(=)
go—r (2, 6, A) = 2 p(x) 0 0
diag()) £g(x) 0 diag(g(z))

e Pseudo code — just like Newton method, but with § as above
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Primal-Dual interior-point Newton Method

e The method uses the Hessians V2f(z), V3g;(z), VZh;(z)
— One can approximate the constraint Hessians V2g;(x), V2h;(x) =~ 0
— Gauss-Newton approximation: f(z) = ¢(x) ¢(x) only requires V()

e No need for nested iterations, as with penalty/barrier methods!

e The above formulation allows for a duality gap
— Choosing 1 = 0 is not robust
— We adapt i on the fly, before each Newton step:
— First evaluate the current duality measure i = —- >

1 Aigi(x), then choose p = 1 i to half that
— See also Boyd sec 11.7.3.

e The dual feasibility \; > 0 needs to be handled explicitly by the root finder!
— Specialized method for bound-constrained optimization
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