

Optimization Algorithms

Stochastic Gradient Descent

Marc Toussaint Technical University of Berlin Winter 2024/25

References

- Léon Bottou: Stochastic Gradient Descent Tricks! (2012)
- Bottou, Curtis, Nocedal: Optimization Methods for Large-Scale Machine Learning (2018)
- Lecture by Mark Schmidt "SGD Convergence Rate"
- Nemirovski et al: Robust Stochastic Approximation Approach to Stochastic (2009)
- Lecture by Christopher De Sa https://www.cs.cornell.edu/courses/cs4787/2020sp/
- Wikipedia "Stochastic approximation"

- For consistency with references, we change our notation a bit:
- We consider the problem

 $\min_{w\in\mathbb{R}^d}f(w)$

Stochastic Gradient Descent Basics & Convergence

Plain Gradient Descent – Recall

• Plain gradient descent iterates, e.g. with constant α

$$w \leftarrow w - \alpha \nabla f(w)$$

- Core issue (cf. Part 1): Stepsize! (e.g., small gradient \rightarrow small step?)
- Solution: Backtracking line search
 - Theorem: Gradient descent with backtracking line search converges exponentially with convergence rate $\gamma = (1 2\frac{m}{M}\varrho_{ls}\varrho_{\alpha}^{-})$
 - we have regret $O(\gamma^t)$ for some $\gamma < 1$

Typical Setting for Stochastic Gradient Descent

• Additive cost function:

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

- E.g.: least squares problem $\min_w \sum_{i=1}^n \phi_i(w)^2$
- Core example: Machine Learning, with data $D = \{(x_i, y_i)\}_{i=1}^n$

$$f(w) = rac{1}{n} \sum_{i=1}^n \ell(f(x_i;w),y_i) + rac{\lambda}{2} \|w\|^2$$

• We are interested in large n (big data)

Stochastic Gradient Descent (SGD)

- Instead of computing ∇f in each iteration, we only compute ∇f_i of *one* cost component
 - E.g., only the gradient w.r.t. a mini-batch (subset) of the full data
- Stochastic Gradient Descent:

• $\nabla f_i(w)$ has expectation $\mathbb{E}\{\nabla f_i(w)\} = \nabla f(w)$

Learning and Intelligent Systems Lab, TU Berlin

Stochastic Gradient Descent (SGD)

- Instead of computing ∇*f* in each iteration, we only compute ∇*f_i* of *one* cost component
 - E.g., only the gradient w.r.t. a mini-batch (subset) of the full data
- Stochastic Gradient Descent (episodic):

•
$$\nabla f_i(w)$$
 has expectation $\mathbb{E}\{\nabla f_i(w)\} = \nabla f(w)$

Learning and Intelligent Systems Lab, TU Berlin

Stochastic Gradient Descent - 7/22

Converenge of SGD

- SGD is a method to find a point such that $\nabla f(w) \approx 0$
- Convergence analysis investigates how $\|\nabla f(w_k)\|$ decreases with k (in expectation)

Converenge of SGD

- SGD is a method to find a point such that $\nabla f(w) \approx 0$
- Convergence analysis investigates how $\|\nabla f(w_k)\|$ decreases with k (in expectation)
- Mathematics: see "Stochastic Approximation"
- Typical assumptions:
 - Lipschitz continuity of $\nabla f(w)$:

 $\exists L \in \mathbb{R} \text{ s.t. } \forall w, \bar{w} : \|\nabla f(w) - \nabla f(\bar{w})\| \le L \|w - \bar{w}\|,$

where $||w|| = \sqrt{w^2}$ is the L_2 -norm; L is called Lipschitz constant.

– This means, "the change of gradient $\nabla f(w)$ is limited"

Convergence of SGD

• **Theorem**: Assuming $\nabla f(w)$ is *L*-continuous, and $Var{\{\nabla f_i(w)\}} = \sigma^2$, we have

$$\min_{k} \{ \mathbb{E} \{ \|\nabla f(w_{k})\|^{2} \} \} \leq \frac{f(w_{0}) - f^{*}}{\sum_{k=0}^{t-1} \alpha_{k}} + \frac{\sum_{k=0}^{t-1} \alpha_{k}^{2}}{\sum_{k=0}^{t-1} \alpha_{k}} \frac{L\sigma^{2}}{2}$$

Convergence of SGD

• **Theorem**: Assuming $\nabla f(w)$ is *L*-continuous, and $Var{\{\nabla f_i(w)\}} = \sigma^2$, we have

$$\min_{k} \{ \mathbb{E} \{ \|\nabla f(w_{k})\|^{2} \} \} \leq \frac{f(w_{0}) - f^{*}}{\sum_{k=0}^{t-1} \alpha_{k}} + \frac{\sum_{k=0}^{t-1} \alpha_{k}^{2}}{\sum_{k=0}^{t-1} \alpha_{k}} \frac{L\sigma^{2}}{2}$$

- Implications:
 - If gradient had no noise $\sigma = 0$ (plain GD): constant α leads to convergence O(1/t)

Convergence of SGD

• **Theorem**: Assuming $\nabla f(w)$ is *L*-continuous, and $Var{\{\nabla f_i(w)\}} = \sigma^2$, we have

$$\min_{k} \{ \mathbb{E} \{ \|\nabla f(w_{k})\|^{2} \} \} \leq \frac{f(w_{0}) - f^{*}}{\sum_{k=0}^{t-1} \alpha_{k}} + \frac{\sum_{k=0}^{t-1} \alpha_{k}^{2}}{\sum_{k=0}^{t-1} \alpha_{k}} \frac{L\sigma^{2}}{2}$$

- Implications:
 - If gradient had no noise $\sigma = 0$ (plain GD): constant α leads to convergence O(1/t)
 - Stochasticity: rate is determined by $\frac{\sum_{k=0}^{t-1} \alpha_k^2}{\sum_{k=0}^{t-1} \alpha_k}$. Ensure $\lim_t \sum_{k=0}^{t-1} \alpha_k^2 < \infty$ and $\lim_t \sum_{k=0}^{t-1} \alpha_k = \infty$.
 - Constant α is bad choice: right becomes a constant $\frac{\alpha L \sigma^2}{2}$
 - Diminishing step size $\alpha_k = \frac{\alpha_0}{1+\gamma k}$ is good: we have $\sum_k \alpha_k = O(\log t)$ and error $O(1/\log(t))$

Converenge of SGD – Derivation

- Based on assuming Lipschitz continuity of ∇*f*(*w*), we derive how SGD decreases function values in expectation:
 - We assume $\|\nabla f(w) \nabla f(\bar{w})\| \le L \|w \bar{w}\|$ for any w, \bar{w} .
 - For any step $\delta = w \bar{w}$ the Hessian $\nabla^2 f(w)$ fulfills $\|\nabla^2 f(w)\delta\| \leq L\|\delta\|$.
 - Using this in a 2nd order Taylor, it follows

$$f(w) \le f(\bar{w}) + \nabla f(\bar{w})^{\mathsf{T}}(w - \bar{w}) + \frac{1}{2} L(w - \bar{w})^2$$
.

- And applying this to $w_{k+1} \leftarrow w_k - \alpha_k \nabla f_i(w_k)$, we get in expectation

$$\mathbb{E}\{f(w_{k+1})\} \le f(w_k) - \alpha_k \|\nabla f(w_k)\|^2 + \frac{1}{2} \alpha_k^2 L \mathbb{E}\{\|\nabla f_i(w_k)\|^2\}.$$

Converenge of SGD – Derivation

- From this, we derive how $\|\nabla f(w_k)\|$ decreases with k in expectation:
 - Assume σ^2 is the variance of $\nabla f_i(w)$, and rearrange terms

$$\mathbb{E}\{f(w_{k+1})\} \leq f(w_k) - \alpha_k \|\nabla f(w_k)\|^2 + \alpha_k^2 \frac{L}{2} \mathbb{E}\{\|\nabla f_i(w_k)\|^2\} \\ \leq f(w_k) - \alpha_k \|\nabla f(w_k)\|^2 + \alpha_k^2 \frac{L\sigma^2}{2} \\ \alpha_k \|\nabla f(w_k)\|^2 \leq f(w_k) - \mathbb{E}\{f(w_{k+1})\} + \alpha_k^2 \frac{L\sigma^2}{2}$$

- Sum over k = 1, ..t, pull min. gradient out of left sum, and notice the telescope sum on the right:

$$\sum_{k=1}^{t} \alpha_{k-1} \|\nabla f(w_k)\|^2 \le \sum_{k=1}^{t} [f(w_{k-1}) - \mathbb{E}\{f(w_k)\}] + \sum_{k=1}^{t} \alpha_{k-1}^2 \frac{L\sigma^2}{2}$$
$$\min_k \{\mathbb{E}\{\|\nabla f(w_k)\|^2\}\} \sum_{k=1}^{t} \alpha_{k-1} \le f(w_0) - \mathbb{E}\{f(w_t)\} + \sum_{k=1}^{t} \alpha_k^2 \frac{L\sigma^2}{2}$$

- Replace $\mathbb{E}\{f(w_t)\} \ge f^*$, and rearrange terms:

$$\min_{k} \{ \mathbb{E} \{ \| \nabla f(w_k) \|^2 \} \} \le \frac{f(w_0) - f^*}{\sum_{k=0}^{t-1} \alpha_k} + \frac{\sum_{k=0}^{t-1} \alpha_k^2}{\sum_{k=0}^{t-1} \Re_k} \frac{L\sigma^2}{2}$$

Learning and Intelligent Systems Lab, TU Berlin

When is SGD efficient?

(from Bottou "tricks")

- For strongly convex assumptions, deterministic gradient can converge exponentially, requiring $O(\log \frac{1}{\rho})$ iterations to reach precision ρ . SGD requires $O(\frac{1}{\rho})$ iterations.
- HOWEVER: The time-per-iteration is also important!: (see 3rd line)

	\mathbf{GD}	$2 { m GD}$	\mathbf{SGD}	2SGD
Time per iteration:	n	n	1	1
Iterations to accuracy ρ :	$\log \frac{1}{\rho}$	$\log \log \frac{1}{\rho}$	1/ ho	1/ ho
Time to accuracy ρ :	$n \log \frac{1}{\rho}$	$n \log \log \frac{1}{\rho}$	1/ ho	1/ ho
Time to excess error ε :	$\frac{1}{\varepsilon^{1/\alpha}} \log^2 \frac{1}{\varepsilon}$	$\frac{1}{\varepsilon^{1/\alpha}} \log \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}$	$1/\varepsilon$	$1/\varepsilon$

2GD = "2nd order gradient method" (that uses some approx. of the inv. Hessian)

ightarrow for large n, SGD is faster!

(from Bottou "tricks")

• Randomly shuffle *i*, but then 'zip' through

(from Bottou "tricks")

- Randomly shuffle *i*, but then 'zip' through
- In ML: Monitor training and validation after each zip, through full data

(from Bottou "tricks")

- Randomly shuffle *i*, but then 'zip' through
- In ML: Monitor training and validation after each zip, through full data
- Use learning rate $\alpha_k = \frac{\alpha_0}{1+\alpha_0\lambda k}$, when λ is a known minimal eigenvalue of Hessian (e.g., L_2 -regularization in ML)

(from Bottou "tricks")

- Randomly shuffle *i*, but then 'zip' through
- In ML: Monitor training and validation after each zip, through full data
- Use learning rate $\alpha_k = \frac{\alpha_0}{1+\alpha_0\lambda k}$, when λ is a known minimal eigenvalue of Hessian (e.g., L_2 -regularization in ML)
- Empirically choose best α_0 on small data subset

How to improve Stochastic Gradient Descent

How to improve over basic SGD?

- There are three core approaches:
- Gradient Variance Reduction
- 2nd-order information
- Momemtum Methods

Reducing Gradient Variance

• Use flexible mini-batch sizes,

$$w_{k+1} \leftarrow w_k + \frac{\alpha_k}{|B_k|} \sum_{i \in B_k} \nabla f_i(w_k)$$

and increase $|B_k|$ over time. But how? (cf. Bottou et al. Sec 5.2)

Reducing Gradient Variance

• Use flexible mini-batch sizes,

$$w_{k+1} \leftarrow w_k + \frac{\alpha_k}{|B_k|} \sum_{i \in B_k} \nabla f_i(w_k)$$

and increase $|B_k|$ over time. But how? (cf. Bottou et al. Sec 5.2)

Gradient aggregation: E.g., store all gradients ∇f_j(w_[j]) you've seen latest for j, then sample i, update w_[i] ← w_k, query&store ∇f_i(w_k) and iterate (Bottou Sec 5.3.2)

$$w_{k+1} \leftarrow w_k + (1/n) \sum_{j=1}^n \nabla f_j(w_{[j]})$$

Reducing Gradient Variance

• Use flexible mini-batch sizes,

$$w_{k+1} \leftarrow w_k + \frac{\alpha_k}{|B_k|} \sum_{i \in B_k} \nabla f_i(w_k)$$

and increase $|B_k|$ over time. But how? (cf. Bottou et al. Sec 5.2)

Gradient aggregation: E.g., store all gradients ∇f_j(w_[j]) you've seen latest for j, then sample i, update w_[i] ← w_k, query&store ∇f_i(w_k) and iterate (Bottou Sec 5.3.2)

$$w_{k+1} \leftarrow w_k + (1/n) \sum_{j=1}^n \nabla f_j(w_{[j]})$$

• *Iterate* Averaging: Let w_k create "noise", but care about $\bar{w}_t = \frac{1}{t-k} \sum_{k'=k}^t w_{k'}$. (Polyak-Ruppert method)

Learning and Intelligent Systems Lab, TU Berlin

Stochastic Gradient Descent - 16/22

Second Order Information

- Try to estimate Hessian, e.g. stochastic version of BFGS
 - Many possible approaches & maths, Sec 6
 - But require more complex operations that plain SG

Second Order Information

- Try to estimate Hessian, e.g. stochastic version of BFGS
 - Many possible approaches & maths, Sec 6
 - But require more complex operations that plain SG
- \rightarrow Estimate diagonal of Hessian, or "scaling" of gradient only coordinate-wise

Second Order Information

- Try to estimate Hessian, e.g. stochastic version of BFGS
 - Many possible approaches & maths, Sec 6
 - But require more complex operations that plain SG
- \rightarrow Estimate diagonal of Hessian, or "scaling" of gradient only coordinate-wise
 - **RMSprop** (running avg. of elem-wise gradient squares)

$$\begin{aligned} v_k \leftarrow (1 - \lambda) \ v_{k-1} + \lambda \ [\nabla f_i(w_k)]^2 \quad [\text{elem-wise}] \\ w_{k+1} \leftarrow w_k - \frac{\alpha_k}{\sqrt{v_k + \mu}} \nabla f_i(w_k) \quad [\text{elem-wise}] \end{aligned}$$

• Adagrad (accumulate squares for diminishing stepsize with constant α)

$$\begin{split} v_k &\leftarrow v_{k-1} + [\nabla f_i(w_k)]^2 \quad [\text{elem-wise}] \\ w_{k+1} &\leftarrow w_k - \frac{\alpha}{\sqrt{v_k + \mu}} \nabla f_i(w_k) \quad [\text{elem-wise}] \end{split}$$

("Theoretical explaination for good performance pending"; Bottou et al, Sec 6.5) Learning and Intelligent Systems Lab, TU Berlin Descent – 17/22

Why divide by $\sqrt{\langle g^2 angle}$?

• RMSprop makes a step $-\frac{\alpha_k}{\sqrt{\langle g^2 \rangle + \mu}} \nabla f_i$ (elem-wise), where $\langle g^2 \rangle$ averages gradient squares (elem-wise) – Why?

Why divide by $\sqrt{\langle g^2 angle}$?

- RMSprop makes a step $-\frac{\alpha_k}{\sqrt{\langle g^2 \rangle + \mu}} \nabla f_i$ (elem-wise), where $\langle g^2 \rangle$ averages gradient squares (elem-wise) Why?
- Scale invariance: Rescaling $f_i \leftarrow a f_i$ scales $\nabla_i f$ and $\sqrt{\langle g^2 \rangle}$ equally
- · Accounts for different conditioning along different coordinates
- Gradient steps in all directions become somewhat equal/normalized

Why divide by $\sqrt{\langle g^2 angle}$?

- RMSprop makes a step $-\frac{\alpha_k}{\sqrt{\langle g^2 \rangle + \mu}} \nabla f_i$ (elem-wise), where $\langle g^2 \rangle$ averages gradient squares (elem-wise) Why?
- Scale invariance: Rescaling $f_i \leftarrow a f_i$ scales $\nabla_i f$ and $\sqrt{\langle g^2 \rangle}$ equally
- · Accounts for different conditioning along different coordinates
- Gradient steps in all directions become somewhat equal/normalized
- If f_i has some curvature, e.g. $f_i = aw^2$, then $\nabla f_i = 2aw$, and $\sqrt{\langle g^2 \rangle} \propto a$
- $\sqrt{\langle g^2 \rangle}$ is proportional to curvature, and mimics a diagonal Hessian

SGD with Momentum

• SGD with momentum: (c.f. conjugate gradient method)

$$w_{k+1} \leftarrow w_k - \alpha_k \nabla f_i(w_k) + \beta_k(w_k - w_{k-1})$$

Written as low-pass of the adaptation step $(m_k = w_{k+1} - w_k)$:

$$m_k \leftarrow \beta_k m_{k-1} - \alpha_k \nabla f_i(w_k), \quad w_{k+1} \leftarrow w_k + m_k$$

Recommended version, easier to tune with constant beta β and decay $\alpha_k = \alpha_0/(1 + \lambda k)$:

 $m_k \leftarrow \beta \ m_{k-1} - (1-\beta) \ \alpha_k \nabla f_i(w_k) , \quad w_{k+1} \leftarrow w_k + m_k$

SGD with Momentum

• SGD with momentum: (c.f. conjugate gradient method)

$$w_{k+1} \leftarrow w_k - \alpha_k \nabla f_i(w_k) + \beta_k(w_k - w_{k-1})$$

Written as low-pass of the adaptation step ($m_k = w_{k+1} - w_k$):

$$m_k \leftarrow \beta_k m_{k-1} - \alpha_k \nabla f_i(w_k), \quad w_{k+1} \leftarrow w_k + m_k$$

Recommended version, easier to tune with constant beta β and decay $\alpha_k = \alpha_0/(1 + \lambda k)$:

$$m_k \leftarrow \beta \ m_{k-1} - (1-\beta) \ \alpha_k \nabla f_i(w_k) , \quad w_{k+1} \leftarrow w_k + m_k$$

• Nesterov Accelerated Gradient ("Nesterov Momentum"):

$$\tilde{w}_k \leftarrow w_k + \beta_k (w_k - w_{k-1})$$
$$w_{k+1} \leftarrow \tilde{w}_k - \alpha_k \nabla f_i(\tilde{w}_k)$$

Yurii Nesterov (1983): A method for solving the convex programming problm with convergence rate $O(1/k^2)$ Learning and Intelligent Systems Lab. 10 Berlin Stochastic Gradient Descent – 19/22

Adam

• Adam: A Method for Stochastic Optimization (DP. Kingma, J. Ba) arXiv:1412.6980

"Our method is designed to combine the advantages of two recently popular methods: AdaGrad (Duchi et al., 2011), which works well with sparse gra- dients, and RMSProp (Tieleman & Hinton, 2012), which works well in on-line and non-stationary settings"

(Roughly, Adam = cleaner version of RMSprop with momentum.)

• Prove convergence rate

$$\frac{1}{T} \sum_{k=1}^{T} [f(w_k) - f(w^*)] \le O(1/T)$$

Stochastic Gradient Descent - 20/22

Adam

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α : Stepsize **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ $q_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot q_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

arXiv:1412.6980 Stochastic Gradient Descent – 21/22

Adam & Nadam

- Adam interpretations (everything element-wise!):
 - $m_t pprox \langle g
 angle$ the mean gradient in the recent iterations
 - $v_t pprox \langle g^2
 angle$ the mean gradient-square in the recent iterations
 - \hat{m}_t, \hat{v}_t are bias corrected (check: in first iteration, t = 1, we have $\hat{m}_t = g_t$, unbiased, as desired)
 - $\Delta\theta \approx -rac{lpha}{\sqrt{\langle g^2
 angle}} \; g \;$ would be a Newton step if $\sqrt{\langle g^2
 angle} \;$ were the Hessian...

Adam & Nadam

- Adam interpretations (everything element-wise!):
 - $m_t pprox \langle g
 angle$ the mean gradient in the recent iterations
 - $v_t pprox \left\langle g^2
 ight
 angle$ the mean gradient-square in the recent iterations
 - \hat{m}_t, \hat{v}_t are bias corrected (check: in first iteration, t = 1, we have $\hat{m}_t = g_t$, unbiased, as desired)

$$-\Delta heta pprox -rac{lpha}{\sqrt{\langle g^2
angle}} \ g$$
 would be a Newton step if $\sqrt{\langle g^2
angle}$ were the Hessian...

· Incorporate Nesterov into Adam: Replace parameter update by

$$\theta_t \leftarrow \theta_{t-1} - \alpha / (\sqrt{\hat{v}_t} + \epsilon) \cdot (\beta_1 \hat{m}_t + \frac{(1 - \beta_1)g_t}{1 - \beta_1^t})$$

Dozat: Incorporating Nesterov Momentum into Adam, ICLR'16

Appendix: Convergence & Convergence Rate

- Convergence: $\lim x_k = x^* \iff \forall \epsilon > 0$: $\exists K : \forall k > k : |x_k x^*| \le \epsilon$
- Convergence Rate: $\lim_{k\to\infty} \frac{x_{k+1}-x^*}{x_k-x^*} = \mu$
- We care about convergence of the gradient $\lim_{k\to\infty} |g_k| = 0$ to zero

Appendix: Convergence & Convergence Rate

- Convergence: $\lim x_k = x^* \iff \forall \epsilon > 0$: $\exists K : \forall k > k : |x_k x^*| \le \epsilon$
- Convergence Rate: $\lim_{k\to\infty} \frac{x_{k+1}-x^*}{x_k-x^*} = \mu$
- We care about convergence of the gradient $\lim_{k\to\infty} |g_k| = 0$ to zero
- Typically you try to prove a step-wise decrease inequality, e.g.:

 $|g_{k+1}| \le \mu \ |g_k|$

We call this "convergence with rate μ ", which is also called linear convergence ("convergence with linear step-wise reduction") or exponential convergence, as we have $|g_k| \leq O(\mu^k)$.

• Or one directly finds a converging upper bound, e.g.

 $|g_k| \le O(1/k)$

We call this "converges to zero with 1/k", but not with a constant ("linear") rate, but slower.