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• For consistency with references, we change our notation a bit:

• We consider the problem

min
w∈Rd

f(w)
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Stochastic Gradient Descent Basics & Convergence
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Plain Gradient Descent – Recall

• Plain gradient descent iterates, e.g. with constant α

w ← w − α∇f(w)

• Core issue (cf. Part 1): Stepsize! (e.g., small gradient→ small step?)

• Solution: Backtracking line search
– Theorem: Gradient descent with backtracking line search converges exponentially with

convergence rate γ = (1− 2m
M
ϱlsϱ

−
α )

– we have regret O(γt) for some γ < 1
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Typical Setting for Stochastic Gradient Descent

• Additive cost function:

min
w

1

n

n∑
i=1

fi(w)

– E.g.: least squares problem minw

∑n
i=1 ϕi(w)2

• Core example: Machine Learning, with data D = {(xi, yi)}ni=1

f(w) =
1

n

n∑
i=1

ℓ(f(xi;w), yi) +
λ

2
||w||2

• We are interested in large n (big data)
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Stochastic Gradient Descent (SGD)

• Instead of computing ∇f in each iteration, we only compute ∇fi of one cost
component

– E.g., only the gradient w.r.t. a mini-batch (subset) of the full data

• Stochastic Gradient Descent:

Input: initial w0 ∈ Rn, gradient functions ∇fi(w), stepsize schedule αk

1: for k = 0, .., do
2: Sample i uniformly (iid) from {1, .., n}
3: wk+1 ← wk − αk∇fi(wk)

4: end for

• ∇fi(w) has expectation E{∇fi(w)} = ∇f(w)
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• Instead of computing ∇f in each iteration, we only compute ∇fi of one cost
component

– E.g., only the gradient w.r.t. a mini-batch (subset) of the full data

• Stochastic Gradient Descent (episodic):

Input: initial w0 ∈ Rn, gradient functions ∇fi(w), stepsize schedule αk,
1: initialize k = 0

2: for episode j = 0, .., do
3: for i = 1, .., n (or i = RandomPermutation({1, .., n})) do
4: wk+1 ← wk − αk∇fi(wk)

5: k ← k + 1

6: end for
7: end for

• ∇fi(w) has expectation E{∇fi(w)} = ∇f(w)
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Converenge of SGD

• SGD is a method to find a point such that ∇f(w) ≈ 0

• Convergence analysis investigates how ||∇f(wk)|| decreases with k (in expectation)

• Mathematics: see “Stochastic Approximation”

• Typical assumptions:
– Lipschitz continuity of ∇f(w):

∃L ∈ R s.t. ∀w, w̄ : ||∇f(w)−∇f(w̄)|| ≤ L ||w − w̄|| ,

where ||w|| =
√
w2 is the L2-norm; L is called Lipschitz constant.

– This means, “the change of gradient ∇f(w) is limited”
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Convergence of SGD

• Theorem: Assuming ∇f(w) is L-continuous, and Var{∇fi(w)} = σ2, we have

min
k
{E

{
||∇f(wk)||2

}
} ≤ f(w0)− f∗∑t-1

k=0 αk

+

∑t-1
k=0 α

2
k∑t-1

k=0 αk

Lσ2

2

• Implications:
– If gradient had no noise σ = 0 (plain GD): constant α leads to convergence O(1/t)

– Stochasticity: rate is determined by
∑t-1

k=0 α2
k∑t-1

k=0
αk

. Ensure limt

∑t-1
k=0 α

2
k <∞ and limt

∑t-1
k=0 αk =∞.

– Constant α is bad choice: right becomes a constant αLσ2

2

– Diminishing step size αk = α0
1+γk

is good: we have
∑

k αk = O(log t) and error O(1/ log(t))
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Converenge of SGD – Derivation

• Based on assuming Lipschitz continuity of ∇f(w), we derive how SGD decreases
function values in expectation:

– We assume ||∇f(w)−∇f(w̄)|| ≤ L ||w − w̄|| for any w, w̄.
– For any step δ = w − w̄ the Hessian ∇2f(w) fulfills ||∇2f(w)δ|| ≤ L||δ||.
– Using this in a 2nd order Taylor, it follows

f(w) ≤ f(w̄) +∇f(w̄)⊤(w − w̄) +
1

2
L(w − w̄)2 .

– And applying this to wk+1 ← wk − αk∇fi(wk), we get in expectation

E{f(wk+1)} ≤ f(wk)− αk||∇f(wk)||2 +
1

2
α2
k L E

{
||∇fi(wk)||2

}
.
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Converenge of SGD – Derivation
• From this, we derive how ||∇f(wk)|| decreases with k in expectation:

– Assume σ2 is the variance of ∇fi(w), and rearrange terms

E{f(wk+1)} ≤ f(wk)− αk||∇f(wk)||2 + α2
k
L

2
E
{
||∇fi(wk)||2

}
≤ f(wk)− αk||∇f(wk)||2 + α2

k
Lσ2

2

αk||∇f(wk)||2 ≤ f(wk)− E{f(wk+1)}+ α2
k
Lσ2

2

– Sum over k = 1, ..t, pull min. gradient out of left sum, and notice the telescope sum on the right:
t∑

k=1

αk-1||∇f(wk)||2 ≤
t∑

k=1

[f(wk-1)− E{f(wk)}] +
t∑

k=1

α2
k-1

Lσ2

2

min
k
{E

{
||∇f(wk)||2

}
}

t∑
k=1

αk-1 ≤ f(w0)− E{f(wt)}+
t∑

k=1

α2
k
Lσ2

2

– Replace E{f(wt)} ≥ f∗, and rearrange terms:

min
k
{E

{
||∇f(wk)||2

}
} ≤ f(w0)− f∗∑t-1

k=0 αk

+

∑t-1
k=0 α

2
k∑t-1

k=0 αk

Lσ2
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When is SGD efficient?

(from Bottou “tricks”)
• For strongly convex assumptions, deterministic gradient can converge exponentially,

requiring O(log 1
ρ ) iterations to reach precision ρ. SGD requires O( 1ρ ) iterations.

• HOWEVER: The time-per-iteration is also important!: (see 3rd line)

2GD = “2nd order gradient method” (that uses some approx. of the inv. Hessian)

→ for large n, SGD is faster!
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Practical Recommendations

(from Bottou “tricks”)

• Randomly shuffle i, but then ‘zip’ through

• In ML: Monitor training and validation after each zip, through full data

• Use learning rate αk = α0

1+α0λk
, when λ is a known minimal eigenvalue of Hessian

(e.g., L2-regularization in ML)

• Empirically choose best α0 on small data subset
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How to improve Stochastic Gradient Descent
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How to improve over basic SGD?

• There are three core approaches:

• Gradient Variance Reduction

• 2nd-order information

• Momemtum Methods
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Reducing Gradient Variance

• Use flexible mini-batch sizes,

wk+1 ← wk +
αk

|Bk|
∑
i∈Bk

∇fi(wk)

and increase |Bk| over time. But how? (cf. Bottou et al. Sec 5.2)

• Gradient aggregation: E.g., store all gradients ∇fj(w[j]) you’ve seen latest for j, then
sample i, update w[i] ← wk, query&store ∇fi(wk) and iterate (Bottou Sec 5.3.2)

wk+1 ← wk + (1/n)

n∑
j=1

∇fj(w[j])

• Iterate Averaging: Let wk create “noise”, but care about w̄t =
1

t−k

∑t
k′=k wk′ .

(Polyak-Ruppert method)

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent – 16/22



Reducing Gradient Variance

• Use flexible mini-batch sizes,

wk+1 ← wk +
αk

|Bk|
∑
i∈Bk

∇fi(wk)

and increase |Bk| over time. But how? (cf. Bottou et al. Sec 5.2)

• Gradient aggregation: E.g., store all gradients ∇fj(w[j]) you’ve seen latest for j, then
sample i, update w[i] ← wk, query&store ∇fi(wk) and iterate (Bottou Sec 5.3.2)

wk+1 ← wk + (1/n)

n∑
j=1

∇fj(w[j])

• Iterate Averaging: Let wk create “noise”, but care about w̄t =
1

t−k

∑t
k′=k wk′ .

(Polyak-Ruppert method)

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent – 16/22



Reducing Gradient Variance

• Use flexible mini-batch sizes,

wk+1 ← wk +
αk

|Bk|
∑
i∈Bk

∇fi(wk)

and increase |Bk| over time. But how? (cf. Bottou et al. Sec 5.2)

• Gradient aggregation: E.g., store all gradients ∇fj(w[j]) you’ve seen latest for j, then
sample i, update w[i] ← wk, query&store ∇fi(wk) and iterate (Bottou Sec 5.3.2)

wk+1 ← wk + (1/n)

n∑
j=1

∇fj(w[j])

• Iterate Averaging: Let wk create “noise”, but care about w̄t =
1

t−k

∑t
k′=k wk′ .

(Polyak-Ruppert method)
Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent – 16/22



Second Order Information

• Try to estimate Hessian, e.g. stochastic version of BFGS
– Many possible approaches & maths, Sec 6
– But require more complex operations that plain SG

→ Estimate diagonal of Hessian, or “scaling” of gradient only coordinate-wise

• RMSprop (running avg. of elem-wise gradient squares)

vk ← (1− λ) vk-1 + λ [∇fi(wk)]
2 [elem-wise]

wk+1 ← wk −
αk√
vk + µ

∇fi(wk) [elem-wise]

• Adagrad (accumulate squares for diminishing stepsize with constant α)

vk ← vk-1 + [∇fi(wk)]
2 [elem-wise]

wk+1 ← wk −
α√

vk + µ
∇fi(wk) [elem-wise]

(“Theoretical explaination for good performance pending”; Bottou et al, Sec 6.5)
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Why divide by
√
⟨g2⟩?

• RMSprop makes a step − αk√
⟨g2⟩+µ

∇fi (elem-wise), where
〈
g2
〉

averages gradient

squares (elem-wise) – Why?

• Scale invariance: Rescaling fi ← afi scales ∇if and
√
⟨g2⟩ equally

• Accounts for different conditioning along different coordinates

• Gradient steps in all directions become somewhat equal/normalized

• If fi has some curvature, e.g. fi = aw2, then ∇fi = 2aw, and
√
⟨g2⟩ ∝ a

•
√
⟨g2⟩ is proportional to curvature, and mimics a diagonal Hessian
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SGD with Momentum

• SGD with momentum: (c.f. conjugate gradient method)

wk+1 ← wk − αk∇fi(wk) + βk(wk − wk-1)

Written as low-pass of the adaptation step (mk = wk+1 − wk):

mk ← βkmk-1 − αk∇fi(wk) , wk+1 ← wk +mk

Recommended version, easier to tune with constant beta β and decay αk = α0/(1 + λk):

mk ← β mk-1 − (1− β) αk∇fi(wk) , wk+1 ← wk +mk

• Nesterov Accelerated Gradient (“Nesterov Momentum”):

w̃k ← wk + βk(wk − wk-1)

wk+1 ← w̃k − αk∇fi(w̃k)

Yurii Nesterov (1983): A method for solving the convex programming problm with convergence rate O(1/k2)
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Adam

• Adam: A Method for Stochastic Optimization (DP. Kingma, J. Ba) arXiv:1412.6980

“Our method is designed to combine the advantages of two recently popular
methods: AdaGrad (Duchi et al., 2011), which works well with sparse gra- dients,
and RMSProp (Tieleman & Hinton, 2012), which works well in on-line and
non-stationary settings”

(Roughly, Adam = cleaner version of RMSprop with momentum.)

• Prove convergence rate

1

T

T∑
k=1

[f(wk)− f(w∗)] ≤ O(1/T )
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Adam

(all operations interpreted element-wise) arXiv:1412.6980
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Adam & Nadam

• Adam interpretations (everything element-wise!):
– mt ≈ ⟨g⟩ the mean gradient in the recent iterations
– vt ≈

〈
g2
〉

the mean gradient-square in the recent iterations
– m̂t, v̂t are bias corrected (check: in first iteration, t = 1, we have m̂t = gt, unbiased, as desired)
– ∆θ ≈ − α√

⟨g2⟩
g would be a Newton step if

√
⟨g2⟩ were the Hessian...

• Incorporate Nesterov into Adam: Replace parameter update by

θt ← θt-1 − α/(
√

v̂t + ϵ) · (β1m̂t +
(1− β1)gt
1− βt

1

)

Dozat: Incorporating Nesterov Momentum into Adam, ICLR’16
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Appendix: Convergence & Convergence Rate
• Convergence: limxk = x∗ ⇔ ∀ϵ > 0 : ∃K : ∀k > k : |xk − x∗| ≤ ϵ

• Convergence Rate: limk→∞
xk+1−x∗

xk−x∗ = µ

• We care about convergence of the gradient limk→∞ |gk| = 0 to zero

• Typically you try to prove a step-wise decrease inequality, e.g.:

|gk+1| ≤ µ |gk|

We call this “convergence with rate µ”, which is also called linear convergence
(“convergence with linear step-wise reduction”) or exponential convergence, as we have
|gk| ≤ O(µk).

• Or one directly finds a converging upper bound, e.g.

|gk| ≤ O(1/k)

We call this “converges to zero with 1/k”, but not with a constant (“linear”) rate, but slower.
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