

Optimization Algorithms

Derivative-Free (Black-Box) Optimization

Marc Toussaint Technical University of Berlin Winter 2024/25

Derivative-Free (Black-Box) Optimization

• Let $x \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$, find

 $\underset{x}{\operatorname{argmin}} \ f(x)$

- Derivative-Free/Blackbox optimization:
 - No access to ∇f or $\nabla^2 f$, sometimes also noisy evaluations f(x)

Derivative-Free (Black-Box) Optimization

• Let $x \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$, find

 $\underset{x}{\operatorname{argmin}} \ f(x)$

- Derivative-Free/Blackbox optimization:
 - No access to ∇f or $\nabla^2 f$, sometimes also noisy evaluations f(x)
- Algorithms needs to collect data D about f, and decide on next queries
- Many variants:
 - Classical derivative-free, implicit filtering, model-based optimization
 - Heuristics: Nelder-Mead, Coordinate search, Twiddle, Pattern Search
 - Stochastic Search, evolution strategies, EDAs, other EAs
 - Bayesian Optimization, Global Optimization
 - others?

Learning and Intelligent Systems Lab, TU Berlin

Implicit Filtering

• Estimates the local gradient using finite differencing

$$\nabla_{\!\epsilon} f(x) \approx \left[\frac{1}{2\epsilon} (f(x + \epsilon e_i) - f(x - \epsilon e_i)) \right]_{i=1,\dots,n}$$

- Lines search along the gradient; if not succesful, decrease ϵ
- Can be extended by using $\nabla_{\!\epsilon} f(x)$ to update an approximation of the Hessian (as in BFGS)

following Nodecal et al. "Derivative-free optimization"

Derivative-Free (Black-Box) Optimization - 4/12

- The previous stochastic serach methods are heuristics to update θ *Why not store the previous data directly?*
- Model-based optimization takes the approach
 - Store a data set $\theta = D = \{(x_i, y_i)\}_{i=1}^n$ of previously explored points (let \hat{x} be the current minimum in D)
 - Compute a (quadratic) model $D \mapsto \hat{f}(x) = \phi_2(x)^\top \beta$
 - Choose the next point as

$$x^+ = \operatorname*{argmin}_x \hat{f}(x)$$
 s.t. $|x - \hat{x}| < \alpha$

– Update D and α depending on $f(x^+)$

 $\bullet\,$ The ${\rm argmin}$ is solved with constrained optimization methods

```
1: Initialize D with at least \frac{1}{2}(n+1)(n+2) data points
            2: repeat
                    Compute a regression \hat{f}(x) = \phi_2(x)^{\top}\beta on D
            3:
                    Compute x^+ = \operatorname{argmin}_x \hat{f}(x) s.t. |x - \hat{x}| < \alpha
            4:
                    Compute the improvement ratio \rho = \frac{f(\hat{x}) - f(x^+)}{\hat{f}(\hat{x}) - \hat{f}(x^+)}
            5:
                    if \rho > \epsilon then
            6:
                         Increase the stepsize \alpha
            7:
                         Accept \hat{x} \leftarrow x^+
            R٠
                         Add to data, D \leftarrow D \cup \{(x^+, f(x^+))\}
            9:
                    else
           10:
                         if det(D) is too small then
                                                                                                                   // Data improvement
           11:
                              Compute x^+ = \operatorname{argmax}_x \det(D \cup \{x\}) s.t. |x - \hat{x}| < \alpha
           12:
                              Add to data. D \leftarrow D \cup \{(x^+, f(x^+))\}
           13:
                        else
           14:
                              Decrease the stepsize \alpha
           15:
                         end if
           16:
                    end if
           17:
                    Prune the data, e.g., remove \operatorname{argmax}_{x \in \Lambda} \det(D \setminus \{x\})
           18:
Learning and lift9ltig
```

Derivative-Free (Black-Box) Optimization - 6/12

• Optimal parameters (with data matrix $X \in \mathbb{R}^{n \times \dim(\beta)}$)

$$\hat{\boldsymbol{\beta}}^{\mathsf{ls}} = (\boldsymbol{X}^{\!\top} \boldsymbol{X})^{\!-\!1} \boldsymbol{X}^{\!\top} \boldsymbol{y}$$

The determinant $det(\mathbf{X}^{\top}\mathbf{X})$ or $det(\mathbf{X})$ (denoted det(D) on the previous slide) is a measure for well the data supports the regression. The data improvement explicitly selects a next evaluation point to increase det(D).

- Nocedal describes in more detail a geometry-improving procedure to update D.
- Model-based optimization is closely related to Bayesian approaches. But
 - Should we really prune data to have only a minimal set D (of size dim(β)?)
 - Is there another way to think about the "data improvement" selection of x^+ ? (\rightarrow maximizing uncertainty/information gain)

Nelder-Mead method – Downhill Simplex Method

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at the beginning of the step, here a strabaction, is shown, top. The simplex at the end of the step can be any one of (a) a reflection away from the high point, (b) a reflection and expansion away from the high point, (c) a contraction along one dimension from the high point, or (d) a contraction along all dimensions towards the low point. An appropriate sequence of such steps will always converge to a minimum of the function.

Derivative-Free (Black-Box) Optimization - 8/12

Nelder-Mead method – Downhill Simplex Method

- Let $x \in \mathbb{R}^n$
- Maintain n + 1 points $x_0, ..., x_n$, sorted by $f(x_0) < ... < f(x_n)$
- Compute center c of points
- Reflect: $y = c + \alpha(c x_n)$
- If $f(y) < f(x_0)$: Expand: $y = c + \gamma(c x_n)$
- If $f(y) > f(x_{n-1})$: Contract: $y = c + \varrho(c x_n)$
- If still $f(y) > f(x_n)$: Shrink $\forall_{i=1,..,n} x_i \leftarrow x_0 + \sigma(x_i x_0)$

• Typical parameters:
$$\alpha = 1, \gamma = 2, \varrho = -\frac{1}{2}, \sigma = \frac{1}{2}$$

Learning and Intelligent Systems Lab, TU Berlin

Derivative-Free (Black-Box) Optimization - 9/12

Coordinate Search

```
// Line Search
```

- The LineSearch must be approximated
 - E.g. abort on any improvement, when $f(x + \alpha e_i) < f(x)$
 - Remember the last successful stepsize α_i for each coordinate

Twiddle

Pattern Search

- In each iteration k, have a (new) set of search directions $D_k = \{d_{ki}\}$ and test steps of length α_k in these directions
- In each iteration, adapt the search directions D_k and step length α_k

Details: See Nocedal et al.

Derivative-Free (Black-Box) Optimization - 12/12