

Optimization Algorithms

Derivative-Free (Black-Box) Optimization

Marc Toussaint Technical University of Berlin Winter 2024/25

Derivative-Free (Black-Box) Optimization

• Let $x \in \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$, find

 $argmin f(x)$ \boldsymbol{r}

- Derivative-Free/Blackbox optimization:
	- $-$ No access to $\nabla \! f$ or $\nabla^2 f,$ sometimes also noisy evaluations $f(x)$

Derivative-Free (Black-Box) Optimization

• Let $x \in \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$, find

 $argmin f(x)$ x

- Derivative-Free/Blackbox optimization:
	- $-$ No access to $\nabla \! f$ or $\nabla^2 f,$ sometimes also noisy evaluations $f(x)$
- Algorithms needs to collect *data* D about f, and decide on next queries
- Many variants:
	- Classical derivative-free, implicit filtering, model-based optimization
	- Heuristics: Nelder-Mead, Coordinate search, Twiddle, Pattern Search
	- Stochastic Search, evolution strategies, EDAs, other EAs
	- Bayesian Optimization, Global Optimization
	- others?

Learning and Intelligent Systems Lab, TU Berlin

Implicit Filtering

• Estimates the local gradient using finite differencing

$$
\nabla_{\!\epsilon} f(x) \approx \left[\frac{1}{2\epsilon} (f(x + \epsilon e_i) - f(x - \epsilon e_i)) \right]_{i=1,\dots,n}
$$

- Lines search along the gradient; if not succesful, decrease ϵ
- Can be extended by using $\nabla_{\epsilon} f(x)$ to update an approximation of the Hessian (as in BFGS)

following Nodecal et al. "Derivative-free optimization"

Derivative-Free (Black-Box) Optimization – 4/12

- The previous stochastic serach methods are heuristics to update θ *Why not store the previous data directly?*
- Model-based optimization takes the approach
	- $-$ Store a data set $\theta = D = \{(x_i, y_i)\}_{i=1}^n$ of previously explored points (let \hat{x} be the current minimum in D)
	- Compute a (quadratic) model $D \mapsto \hat{f}(x) = \phi_2(x)^\top \beta$
	- Choose the next point as

$$
x^{+} = \operatorname*{argmin}_{x} \hat{f}(x) \text{ s.t. } |x - \hat{x}| < \alpha
$$

- Update D and α depending on $f(x^+)$

• The argmin is solved with constrained optimization methods

```
1: Initialize D with at least \frac{1}{2}(n+1)(n+2) data points
         2: repeat
         3: Compute a regression \hat{f}(x) = \phi_2(x)^\top \beta on D
         4: Compute x^+ = \operatorname{argmin}_x \hat{f}(x) s.t. |x - \hat{x}| < \alpha5: Compute the improvement ratio \rho = \frac{f(\hat{x}) - f(x^{+})}{\hat{x}(-\hat{x}) - \hat{x}(-\hat{x}^{+})}\hat{f}(\hat{x})-\hat{f}(x^+)6: if \rho > \epsilon then
         7: Increase the stepsize \alpha8: Accept \hat{x} \leftarrow x^+9: Add to data, D \leftarrow D \cup \{(x^+, f(x^+))\}10: else
        11: if det(D) is too small then // Data improvement
        12: Compute x^+ = \operatorname{argmax}_x \det(D \cup \{x\}) s.t. |x - \hat{x}| < \alpha13: Add to data, D \leftarrow D \cup \{(x^+, f(x^+))\}14: else
        15: Decrease the stepsize \alpha16: end if
        17: end if
        18: Prune the data, e.g., remove \operatorname{argmax}_{x \in \Lambda} \det(D \setminus \{x\})Learning and IrtOlig Until rac Leonweriges
```
Derivative-Free (Black-Box) Optimization – 6/12

• Optimal parameters (with data matrix $X \in \mathbb{R}^{n \times \dim(\beta)}$)

$$
\hat{\beta}^{\textsf{ls}} = (\boldsymbol X^\top\!\boldsymbol X)^{\textsf{-1}}\boldsymbol X^\top\! y
$$

The determinant $\det(\mathbf{X}^\top \mathbf{X})$ or $\det(\mathbf{X})$ (denoted $\det(D)$ on the previous slide) is a measure for well the data supports the regression. The data improvement explicitly selects a next evaluation point to increase $det(D)$.

- Nocedal describes in more detail a geometry-improving procedure to update D .
- Model-based optimization is closely related to Bayesian approaches. But
	- Should we really prune data to have only a minimal set D (of size $\dim(\beta)$?)
	- Is there another way to think about the "data improvement" selection of x^+ ? (\rightarrow maximizing uncertainty/information gain)

Nelder-Mead method – Downhill Simplex Method

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at the beginning of the step, here a tetrahedron, is shown, top. The simplex at the end of the step can be any one of (a) a reflection away from the high point, (b) a reflection and expansion away from the high point, (c) a contraction along one dimension from the high point, or (d) a contraction along all dimensions towards the low point. An appropriate sequence of such steps will always converge to a minimum of the function.

Derivative-Free (Black-Box) Optimization – 8/12

Nelder-Mead method – Downhill Simplex Method

- Let $x \in \mathbb{R}^n$
- Maintain $n + 1$ points x_0, \ldots, x_n , sorted by $f(x_0) < \ldots < f(x_n)$
- Compute center c of points
- Reflect: $y = c + \alpha(c x_n)$
- If $f(y) < f(x_0)$: Expand: $y = c + \gamma(c x_n)$
- If $f(y) > f(x_{n-1})$: Contract: $y = c + \rho(c x_n)$
- If still $f(y) > f(x_n)$: Shrink $\forall_{i=1...n} x_i \leftarrow x_0 + \sigma(x_i x_0)$

• Typical parameters:
$$
\alpha = 1, \gamma = 2, \varrho = -\frac{1}{2}, \sigma = \frac{1}{2}
$$

Learning and Intelligent Systems Lab, TU Berlin

Derivative-Free (Black-Box) Optimization – 9/12

Coordinate Search

```
Input: Initial x \in \mathbb{R}^n1: repeat
2: for i = 1, ..., n do
3: \alpha^* = \operatorname{argmin}_{\alpha} f(x + \alpha e_i) // Line Search
4: x \leftarrow x + \alpha^* e_i5: end for
6: until x converges
```
- The LineSearch must be approximated
	- E.g. abort on any improvement, when $f(x + \alpha e_i) < f(x)$
	- Remember the last successful stepsize α_i for each coordinate

Twiddle

Derivative-Free (Black-Box) Optimization – 11/12

Pattern Search

- In each iteration k, have a (new) set of search directions $D_k = \{d_{ki}\}\$ and test steps of length α_k in these directions
- In each iteration, adapt the search directions D_k and step length α_k

Details: See Nocedal et al.

Derivative-Free (Black-Box) Optimization – 12/12