
Optimization Algorithms

Derivative-Free (Black-Box) Optimization

Marc Toussaint
Technical University of Berlin

Winter 2024/25

Derivative-Free (Black-Box) Optimization

• Let x ∈ Rn, f : Rn → R, find

argmin
x

f(x)

• Derivative-Free/Blackbox optimization:
– No access to ∇f or ∇2f , sometimes also noisy evaluations f(x)

• Algorithms needs to collect data D about f , and decide on next queries

• Many variants:
– Classical derivative-free, implicit filtering, model-based optimization
– Heuristics: Nelder-Mead, Coordinate search, Twiddle, Pattern Search
– Stochastic Search, evolution strategies, EDAs, other EAs
– Bayesian Optimization, Global Optimization
– others?

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 2/12

Derivative-Free (Black-Box) Optimization

• Let x ∈ Rn, f : Rn → R, find

argmin
x

f(x)

• Derivative-Free/Blackbox optimization:
– No access to ∇f or ∇2f , sometimes also noisy evaluations f(x)

• Algorithms needs to collect data D about f , and decide on next queries

• Many variants:
– Classical derivative-free, implicit filtering, model-based optimization
– Heuristics: Nelder-Mead, Coordinate search, Twiddle, Pattern Search
– Stochastic Search, evolution strategies, EDAs, other EAs
– Bayesian Optimization, Global Optimization
– others?

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 2/12

Implicit Filtering

• Estimates the local gradient using finite differencing

∇ϵf(x) ≈
[1

2ϵ
(f(x+ ϵei)− f(x− ϵei))

]
i=1,..,n

• Lines search along the gradient; if not succesful, decrease ϵ

• Can be extended by using ∇ϵf(x) to update an approximation of the Hessian (as in
BFGS)

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 3/12

Model-based optimization
following Nodecal et al. “Derivative-free optimization”

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 4/12

Model-based optimization

• The previous stochastic serach methods are heuristics to update θ

Why not store the previous data directly?

• Model-based optimization takes the approach
– Store a data set θ = D = {(xi, yi)}ni=1 of previously explored points

(let x̂ be the current minimum in D)
– Compute a (quadratic) model D 7→ f̂(x) = ϕ2(x)

⊤β

– Choose the next point as
x+ = argmin

x
f̂(x) s.t. |x− x̂| < α

– Update D and α depending on f(x+)

• The argmin is solved with constrained optimization methods

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 5/12

Model-based optimization

1: Initialize D with at least 1
2
(n+ 1)(n+ 2) data points

2: repeat
3: Compute a regression f̂(x) = ϕ2(x)⊤β on D

4: Compute x+ = argminx f̂(x) s.t. |x− x̂| < α

5: Compute the improvement ratio ϱ =
f(x̂)−f(x+)

f̂(x̂)−f̂(x+)

6: if ϱ > ϵ then
7: Increase the stepsize α

8: Accept x̂← x+

9: Add to data, D ← D ∪ {(x+, f(x+))}
10: else
11: if det(D) is too small then // Data improvement
12: Compute x+ = argmaxx det(D ∪ {x}) s.t. |x− x̂| < α

13: Add to data, D ← D ∪ {(x+, f(x+))}
14: else
15: Decrease the stepsize α

16: end if
17: end if
18: Prune the data, e.g., remove argmaxx∈∆ det(D \ {x})
19: until x converges

• Variant: Initialize with only n+1 data points and fit a linear model as long as |D| < 1
2
(n+1)(n+2) = dim(ϕ2(x))

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 6/12

Model-based optimization

• Optimal parameters (with data matrix X ∈ Rn×dim(β))

β̂ ls = (X⊤X)-1X⊤y

The determinant det(X⊤X) or det(X) (denoted det(D) on the previous slide) is a
measure for well the data supports the regression. The data improvement explicitly
selects a next evaluation point to increase det(D).

• Nocedal describes in more detail a geometry-improving procedure to update D.

• Model-based optimization is closely related to Bayesian approaches. But
– Should we really prune data to have only a minimal set D (of size dim(β)?)
– Is there another way to think about the “data improvement” selection of x+? (→ maximizing

uncertainty/information gain)

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 7/12

Nelder-Mead method – Downhill Simplex Method

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 8/12

Nelder-Mead method – Downhill Simplex Method

• Let x ∈ Rn

• Maintain n+ 1 points x0, .., xn, sorted by f(x0) < ... < f(xn)

• Compute center c of points

• Reflect: y = c+ α(c− xn)

• If f(y) < f(x0): Expand: y = c+ γ(c− xn)

• If f(y) > f(xn-1): Contract: y = c+ ϱ(c− xn)

• If still f(y) > f(xn): Shrink ∀i=1,..,nxi ← x0 + σ(xi − x0)

• Typical parameters: α = 1, γ = 2, ϱ = −1
2 , σ = 1

2

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 9/12

Coordinate Search

Input: Initial x ∈ Rn

1: repeat
2: for i = 1, .., n do
3: α∗ = argminα f(x+ αei) // Line Search
4: x← x+ α∗ei
5: end for
6: until x converges

• The LineSearch must be approximated
– E.g. abort on any improvement, when f(x+ αei) < f(x)

– Remember the last successful stepsize αi for each coordinate

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 10/12

Twiddle

Input: Initial x ∈ Rn, initial stepsizes αi for all i = 1 : n

1: repeat
2: for i = 1, .., n do
3: x← argminy∈{x−αiei,x,x+αiei} f(y) // twiddle xi

4: Increase αi if x changed; decrease αi otherwise
5: end for
6: until x converges

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 11/12

Pattern Search

– In each iteration k, have a (new) set of search directions Dk = {dki} and test steps of length αk

in these directions
– In each iteration, adapt the search directions Dk and step length αk

Details: See Nocedal et al.

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization – 12/12

