Optimization Algorithms

Derivative-Free (Black-Box) Optimization

Marc Toussaint
Technical University of Berlin
Winter 2024/25

Derivative-Free (Black-Box) Optimization
e letzeR™ f: R*" > R, find

argmin f(x)

¢ Derivative-Free/Blackbox optimization:
— No access to Vf or V2 £, sometimes also noisy evaluations f(x)

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization — 2/12

Derivative-Free (Black-Box) Optimization
e letzeR™ f: R*" > R, find

argmin f(x)
x
¢ Derivative-Free/Blackbox optimization:
— No access to Vf or V2 £, sometimes also noisy evaluations f(x)

e Algorithms needs to collect data D about f, and decide on next queries

e Many variants:
— Classical derivative-free, implicit filtering, model-based optimization
— Heuiristics: Nelder-Mead, Coordinate search, Twiddle, Pattern Search
— Stochastic Search, evolution strategies, EDAs, other EAs
— Bayesian Optimization, Global Optimization

— others?
Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization — 2/12

Implicit Filtering

e Estimates the local gradient using finite differencing

Vi)~ [(T + ee) — fla — eer)

i=1,..,n

e Lines search along the gradient; if not succesful, decrease ¢
e Can be extended by using V, f(z) to update an approximation of the Hessian (as in
BFGS)

Derivative-Free (Black-Box) Optimization — 3/12

Learning and Intelligent Systems Lab, TU Berlin

Model-based optimization

following Nodecal et al. “Derivative-free optimization”

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization — 4/12

Model-based optimization

e The previous stochastic serach methods are heuristics to update 6
Why not store the previous data directly?

e Model-based optimization takes the approach

— Store adata set @ = D = {(zi,y:) }i=, of previously explored points
(let & be the current minimum in D)

— Compute a (quadratic) model D f(:v) = ¢o(z)'B

— Choose the next point as

b = argmin f(z) st |z — 2| < a

— Update D and « depending on f(z)
e The argmin is solved with constrained optimization methods

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization — 5/12

Model-based optimization

1: Initialize D with at least 1 (n + 1)(n + 2) data points

2: repeat

3: Compute a regression f(z) = ¢2(z)"Bon D

4 Compute # = argmin,, f(z) st. |z — 2| < o

: : 2)—f(zt

5: Compute the improvement ratio o = %

6: if o > e then

7 Increase the stepsize

8: Accept & < zt

9: Add to data, D « DU {(zt, f(zT))}
10: else
11: if det(D) is too small then // Data improvement
12 Compute z = argmax, det(D U {z}) st. |z — 2| < «
13: Add to data, D «+ DU {(zt, f(zT))}
14: else
15: Decrease the stepsize o
16: end if
17: end if
18: Prune the data, e.g., remove argmax, A det(D \ {z})

Learing and @Ml @ONMEIGES Derivative-Free (Black-Box) Optimization — 6/12

Model-based optimization
e Optimal parameters (with data matrix X € R*dim(5))
B|S — (XTX)—IXTy

The determinant det(X X)) or det(X) (denoted det(D) on the previous slide) is a
measure for well the data supports the regression. The data improvement explicitly
selects a next evaluation point to increase det(D).

¢ Nocedal describes in more detail a geometry-improving procedure to update D.

e Model-based optimization is closely related to Bayesian approaches. But
— Should we really prune data to have only a minimal set D (of size dim(3)?)

— |s there another way to think about the “data improvement” selection of 21 ? (— maximizing
uncertainty/information gain)

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization — 7/12

Nelder-Mead method — Downhill Simplex Method

simplex st beginuing of step

high Tow

(@ E

reflection and expansion
(O]

©

)
Figure 1041, Possible outcomes for a step in the downhill simplex mefhod The simplex at the
of the

2 confraction along one dimension from the high point, or (d) a contraction along all dimensions fowards
the low point. An appropriate sequence of such steps will always comverge to 3 miniznan of the fimction.

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization — 8/12

Nelder-Mead method — Downhill Simplex Method

o Letzx c R

e Maintain n + 1 points zy, .., z,,, sorted by f(zg) < ... < f(zy)
e Compute center c of points

o Reflect: y = c+ a(c — z,)

o If f(y) < f(xo): Expand: y =c+ v(c —xy)

o If f(y) > f(xzy1): Contract: y = ¢+ o(c — x,)

o Ifstill f(y) > f(xn): Shrink V=1, n2; < zo + o(z; — 20)

e Typical parameters: a = 1,7y =2,0=—-1,0 =3

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization — 9/12

Coordinate Search

Input: Initial z € R™
1: repeat
2: fori=1,..,ndo
3 a* = argmin,, f(z + ae;) // Line Search
4 T+ T+ a*e;
5: end for
6: until = converges

e The LineSearch must be approximated
— E.g. abort on any improvement, when f(z + ae;) < f(x)
— Remember the last successful stepsize a; for each coordinate

Learning and Intelligent Systems Lab, TU Berlin

Derivative-Free (Black-Box) Optimization — 10/12

Twiddle

Input: Initial z € R™, initial stepsizes «; foralli =1:n
1: repeat
2 fori=1,..,ndo
3 T4 ArgMinye o giei zatae;} (V) // twiddle x;
4 Increase «; if x changed; decrease «; otherwise
5 end for
6: until z converges

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization — 11/12

Pattern Search

— In each iteration k, have a (new) set of search directions Dy, = {dx;} and test steps of length «y,
in these directions

— In each iteration, adapt the search directions Dj, and step length ay,

Details: See Nocedal et al.

Learning and Intelligent Systems Lab, TU Berlin Derivative-Free (Black-Box) Optimization — 12/12

