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A core aspect in black-box opt is: What do we estimate from the data?
– gradient (as in implicit filtering)
– a local model fθ(x) (model-based opt.)
– a distribution pθ(x) of “good” points (EDAs)

• The θ is what we extract/capture/maintain from the data of previous evaluations
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A general stochastic search scheme

• A general stochastic search scheme:
– The algorithm maintains some information θ

– This θ defines a search distribution pθ(x)

– In each iteration it takes λ samples {xi}λi=1 ∼ pθ(x)

– Each xi is evaluated → new data D = {(xi, f(xi))}λi=1

– The new data D is used to update θ

Input: initial θ, function f(x), distribution model pθ(x), update heuristic h(θ,D)

Output: final θ and best point x
1: repeat
2: Sample {xi}λi=1 ∼ pθ(x)

3: Evaluate samples, D = {(xi, f(xi))}λi=1

4: Update θ ← h(θ,D)

5: until θ converges
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Evolutionary Algorithms (EAs)

• EAs can well be described as special kinds of parameterizing pθ(x) and updating θ

– The θ typically is a set of good points found so far (parents)
– Mutation & Crossover define pθ(x)

– The samples D are called offspring
– The θ-update is often a selection of the best, or “fitness-proportional” or rank-based

• Categories of EAs:
– Evolution Strategies: x ∈ Rn, often Gaussian pθ(x)

– Genetic Algorithms: x ∈ {0, 1}n, crossover & mutation define pθ(x)

– Genetic Programming: x are programs/trees, crossover & mutation
– Estimation of Distribution Algorithms: θ directly defines pθ(x)
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Evolution Strategies & EDAs

(as they address continuous optimization in Rn)
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Evolution Strategies: Gaussian Search Distribution

[From 1960s/70s. Rechenberg/Schwefel]

• The parameter θ defines a Gaussian search distribution pθ(x)

• In the simplest case, θ is just the mean θ = (x̂), assuming fixed σ2:

pθ(x) = N(x | x̂, σ2)

• We sample λ “offspring” x ∼ pθ to get new data D

• What is a reasonable upate heuristic θ ← h(θ,D)?

– Selection: Given D = {(xi, f(xi))}λi=1, select the µ best: Dµ = bestOfµ(D)

– Compute the new mean x̂ from Dµ

• This algorithm is called “(µ, λ)-ES” (Evolution Strategy)
– The Gaussian is meant to represent a “species”
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“Elitarian” Selection: (µ+ λ)-ES

• To make search monotonous(!), the algorithm also stores the previous elite Dµ

– θ = (x̂, Dµ) now includes the mean x̂ and previously selected

• The update heuristic θ ← h(θ,D) selects from the union of new and elite:
– Select the µ best Dµ ← bestOfµ(Dµ ∪D)

– Compute the new mean x̂ from Dµ

• Special case: (1 + 1)-ES = Greedy Local Search/Hill Climber

• Special case: (1 + λ)-ES = Local Search
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• Assuming a fixed σ and isotropic N(x | x̂, σ2) is limiting
– No notion of going forward (downhill/momentum)
– No adaptation of σ
– Should steps smaller/larger/correlated depending on local Hessian!
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Covariance Matrix Adaptation (CMA-ES)

[Hansen, N. (2006)]
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Covariance Matrix Adaptation (CMA-ES)

• In Covariance Matrix Adaptation

θ = (x̂, σ, C, ϱσ, ϱc) , pθ(x) = N(x | x̂, σ2C)

where C is the covariance matrix of the search distribution

• The θ maintains two more pieces of information: ϱσ and ϱc capture the “path”
(motion) of the mean x̂ in recent iterations

• Rough outline of the θ-update:
– Let Dµ = bestOfµ(D) be the selected
– Compute the new mean x̂ of Dµ

– Update ϱσ and ϱc proportional to x̂k+1 − x̂k

– Update σ depending on |ϱσ|
– Update C depending on ϱcϱ

⊤
c (rank-1-update) and Var(Dµ)
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CMA references
Hansen: The CMA evolution strategy: a comparing review. 2006

Hansen et al.: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. PPSN 2004
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CMA conclusions

• Good starting point for an off-the-shelf blackbox algorithm

• It includes components like estimating the local gradient (ϱσ, ϱc), the local “Hessian”
(Var(Dµ)), smoothing out local minima (large populations)

• But is this tackling global optimization?
“For “large enough” populations local minima are avoided”

(But not really.)
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Estimation of Distribution Algorithms (EDAs)

• In general, θ can model a distribution pθ(x) for any spaces (also discrete/hybrid) using any
distribution representation (Bayesian Networks, probabilistic grammars, generative ML, etc)

• The update heuristic θ ← h(θ,D) typically let’s “pθ(x) estimate Dµ”, e.g. by likelihood
maximization

θ ← argmin
θ

−
∑
x∈Dµ

log pθ(x) + regularization

– The regularization is important, otherwise the new offspring would “overfit” on the previous elite
and not explore

– E.g. ensure sufficient entropy
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• Stochastic grammars to “learn” a distribution of selected structures

[Toussaint, GECCO 2003]
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Estimation of Distribution Algorithms (EDAs)

• EDAs learn correlations and structures in selected
Agakov,..,Toussaint,..,: Using Machine Learning to Focus Iterative Optimization. CGO 2006

Toussaint: Compact representations as a search strategy: Compression EDAs. Theoretical Computer Science, 2006

– E.g., if in all selected distributions, the 3rd bit equals the 7th bit, then the search distribution pθ(x)
should put higher probability on such candidates

– In discrete domains, graphical models can be used to learn the dependencies between variables,
e.g. Bayesian Optimization Algorithm (BOA)

– In continuous domains, CMA is an example for an EDA
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Simulated Annealing (accepts also uphill steps)

• Could be viewed as extension to avoid getting stuck in local optima, which accepts steps
with f(y) > f(x) – but better viewed as sampling technique (see next page)

Input: initial point x (≡ θ), function f(x), proposal distribution q(y|x) (≡ px(y))
1: initialilze the temperature T = 1

2: repeat
3: Sample single y ∼ q(y|x)
4: Acceptance probability A = min

{
1, e

f(x)−f(y)
T

q(x|y)
q(y|x)

}
5: With probability A update x← y

6: Decrease T , e.g. T ← (1− ϵ)T for small ϵ
7: until x converges

• Typically: q(y|x) ∝ exp{− 1
2 (y − x)2/σ2}

• Instance of our general scheme for x ≡ θ, pθ(x) ≡ q(x|θ), λ = 1, update stochastic as above
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Simulated Annealing

• Simulated Annealing is a Markov chain Monte Carlo (MCMC) method.
– Must read!: An Introduction to MCMC for Machine Learning
– These are iterative methods to sample from a distribution, in our case

p(x) ∝ e
−f(x)

T

• For a fixed temperature T , one can prove that the set of accepted points is distributed as
p(x) (but non-i.i.d.!) The acceptance probability

A = min
{
1, e

f(x)−f(y)
T

q(x|y)
q(y|x)

}
compares the f(y) and f(x), but also the reversibility of q(y|x)

• When cooling the temperature, samples focus at the extrema. Guaranteed to sample all
extrema eventually
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Simulated Annealing

[MCMC introduction (2003)]
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Stochastic search conclusions

Input: initial θ, function f(x), distribution model pθ(x), update heuristic h(θ,D)

Output: final θ and best point x
1: repeat
2: Sample {xi}λi=1 ∼ pθ(x)

3: Evaluate samples, D = {(xi, f(xi))}λi=1

4: Update θ ← h(θ,D)

5: until θ converges

• The framework is very general

• Algorithms differ in choice of θ, pθ(x), and h(t,D)

• The update h(θ,D) “should train the distribution pθ(x) to match good points”
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