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A core aspect in black-box opt is: What do we estimate from the data?
— gradient (as in implicit filtering)
— alocal model fy(x) (model-based opt.)
— adistribution py(x) of “good” points (EDAs)

e The 6 is what we extract/capture/maintain from the data of previous evaluations
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A general stochastic search scheme

e A general stochastic search scheme:
— The algorithm maintains some information 6
— This 6 defines a search distribution pe ()
— In each iteration it takes \ samples {z;}; ~ po(z)
— Each z; is evaluated — new data D = {(z, f(z:))}ie1
— The new data D is used to update 0

Input: initial 6, function f(x), distribution model pg (), update heuristic h(6, D)
Output: final  and best point

1: repeat

2 Sample {z;}}; ~ po(z)

3 Evaluate samples, D = {(z, f(z:))}

4: Update 6 < h(0, D)

5: until 6 converges
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Evolutionary Algorithms (EAs)

e EAs can well be described as special kinds of parameterizing pg(z) and updating 6
— The 6 typically is a set of good points found so far (parents)
— Mutation & Crossover define po(z)
— The samples D are called offspring
— The 6-update is often a selection of the best, or “fithess-proportional” or rank-based

e Categories of EAs:
— Evolution Strategies: = € R", often Gaussian pg(x)
— Genetic Algorithms: = € {0,1}", crossover & mutation define pg(z)
— Genetic Programming: x are programs/trees, crossover & mutation
— Estimation of Distribution Algorithms: 6 directly defines po(z)
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Evolution Strategies & EDAs

(as they address continuous optimization in R™)
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Evolution Strategies: Gaussian Search Distribution

[From 1960s/70s. Rechenberg/Schwefel]

The parameter 0 defines a Gaussian search distribution py(x)
In the simplest case, 0 is just the mean 6 = (&), assuming fixed o2:

po(x) = N(z| &, 0%)

We sample \ “offspring” x ~ py to get new data D

What is a reasonable upate heuristic 6 < h(6, D)?
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Evolution Strategies: Gaussian Search Distribution

[From 1960s/70s. Rechenberg/Schwefel]

The parameter 0 defines a Gaussian search distribution py(x)
In the simplest case, 0 is just the mean 6 = (&), assuming fixed o2:

po(x) = N(z| &, 0%)

We sample \ “offspring” x ~ py to get new data D

What is a reasonable upate heuristic 6 < h(6, D)?
— Selection: Given D = {(z, f(z:))};1, select the 1 best: D, = bestOf, (D)
— Compute the new mean & from D,

e This algorithm is called “(u, A\)-ES” (Evolution Strategy)
— The Gaussian is meant to represent a “species”

Learning and Intelligent Systems Lab, TU Berlin Stochastic Search & EDAs — 6/19



“Elitarian” Selection: (u+ \)-ES

o To make search monotonous(!), the algorithm also stores the previous elite D,,
— 0 = (&, D,) now includes the mean z and previously selected
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“Elitarian” Selection: (u+ \)-ES

o To make search monotonous(!), the algorithm also stores the previous elite D,,
— 0 = (&, D,) now includes the mean z and previously selected

e The update heuristic § < h(6, D) selects from the union of new and elite:
— Select the p best D, < bestOf, (D, U D)
— Compute the new mean & from D,,

e Special case: (1+ 1)-ES = Greedy Local Search/Hill Climber
e Special case: (1+ )\)-ES = Local Search

Learning and Intelligent Systems Lab, TU Berlin Stochastic Search & EDAs — 7/19



e Assuming a fixed o and isotropic N(x | #,0?) is limiting
— No notion of going forward (downhill/momentum)
— No adaptation of o
— Should steps smaller/larger/correlated depending on local Hessian!
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Covariance Matrix Adaptation (CMA-ES)

Generation 1 Generation 2 Generation 3

Generation 4 Generation 5 Generation 6

[Hansen, N. (2006)]
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Covariance Matrix Adaptation (CMA-ES)
e In Covariance Matrix Adaptation
0 =(2,0,C, 00,0, po(z)=N(z|E oC)

where C' is the covariance matrix of the search distribution

e The # maintains two more pieces of information: o, and o. capture the “path”
(motion) of the mean z in recent iterations

e Rough outline of the 6-update:

— Let D, = bestOf, (D) be the selected
Compute the new mean # of D,,

Update o, and g. proportional to &1 — T«
Update o depending on |o.|
Update C' depending on g.o.. (rank-1-update) and Var(D,,)
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CMA references

Hansen: The CMA evolution strategy: a comparing review. 2006
Hansen et al.: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. PPSN 2004
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CMA conclusions

e Good starting point for an off-the-shelf blackbox algorithm

¢ ltincludes components like estimating the local gradient (o,, o.), the local “Hessian”
(Var(D,)), smoothing out local minima (large populations)

e But is this tackling global optimization?

“For “large enough” populations local minima are avoided”
(But not really.)
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Estimation of Distribution Algorithms (EDAs)

e In general, # can model a distribution py(x) for any spaces (also discrete/hybrid) using any
distribution representation (Bayesian Networks, probabilistic grammars, generative ML, etc)

e The update heuristic 6§ < h(0, D) typically let’s “py(x) estimate D,”, e.g. by likelihood
maximization

0 <« argmin — Y logps(z) + regularization
o
€D,

— The regularization is important, otherwise the new offspring would “overfit” on the previous elite
and not explore
— E.g. ensure sufficient entropy
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e Stochastic grammars to “learn” a distribution of selected structures
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[Toussaint, GECCO 2003]
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Estimation of Distribution Algorithms (EDAs)

e EDAs learn correlations and structures in selected
Agakov,.., Toussaint,..,: Using Machine Learning to Focus lterative Optimization. CGO 2006
Toussaint: Compact representations as a search strategy: Compression EDAs. Theoretical Computer Science, 2006

— E.g., if in all selected distributions, the 3rd bit equals the 7th bit, then the search distribution p(z)
should put higher probability on such candidates

— In discrete domains, graphical models can be used to learn the dependencies between variables,
e.g. Bayesian Optimization Algorithm (BOA)

— In continuous domains, CMA is an example for an EDA
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Simulated Annealing (accepts also uphill steps)

e Could be viewed as extension to avoid getting stuck in local optima, which accepts steps
with f(y) > f(x) — but better viewed as sampling technique (see next page)

Input: initial point = (= 6), function f(z), proposal distribution ¢(y|z) (= px(v))
1: initialilze the temperature T' = 1
2: repeat

3: Sample single y ~ g(y|x)
f'(w);f'(iz)

Acceptance probability A = min {1, e

4 a(=|y) }
5: With probability A update = < y

6

7

q(ylz)

Decrease T, e.9. T <+ (1 — €)T for small e
. until z converges

o Typically: q(y|z) o exp{—3(y — z)*/o*}
e Instance of our general scheme for x = 0, py(z) = q(x|6), A = 1, update stochastic as above
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Simulated Annealing

e Simulated Annealing is a Markov chain Monte Carlo (MCMC) method.
— Must read!: An Introduction to MCMC for Machine Learning
— These are iterative methods to sample from a distribution, in our case

—f(z)

p(z)oce T

e For a fixed temperature T, one can prove that the set of accepted points is distributed as
p(x) (but non-i.i.d.!) The acceptance probability

A = min {1, RIEHG: q(zly) !
q(ylr)

compares the f(y) and f(x), but also the reversibility of ¢(y|x)

e When cooling the temperature, samples focus at the extrema. Guaranteed to sample all
extrema eventually
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Simulated Annealing
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[MCMC introduction (2003)]
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Stochastic search conclusions

Input: initial 0, function f(x), distribution model py (), update heuristic h(6, D)
Output: final  and best point

1: repeat
2 Sample {z;}} , ~ pg(z)
3: Evaluate samples, D = {(z;, f(=:))}2

4: Update 6 < h(0, D)
5: until 6 converges

e The framework is very general
¢ Algorithms differ in choice of 8, py(x), and h(t, D)
e The update h(0, D) “should train the distribution py(x) to match good points”
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