

Optimization Algorithms

Stochastic Search & EDAs

Marc Toussaint Technical University of Berlin Winter 2024/25 A core aspect in black-box opt is: What do we estimate from the data?

- gradient (as in implicit filtering)
- a local model $f_{\theta}(x)$ (model-based opt.)
- a distribution $p_{\theta}(x)$ of "good" points (EDAs)
- The θ is what we extract/capture/maintain from the data of previous evaluations

A general stochastic search scheme

- A general stochastic search scheme:
 - The algorithm maintains some information θ
 - This θ defines a *search* distribution $p_{\theta}(x)$
 - In each iteration it takes λ samples $\{x_i\}_{i=1}^{\lambda} \sim p_{\theta}(x)$
 - Each x_i is evaluated \rightarrow new data $D = \{(x_i, f(x_i))\}_{i=1}^{\lambda}$
 - The new data D is used to update θ

Input: initial θ , function f(x), distribution model $p_{\theta}(x)$, update heuristic $h(\theta, D)$ **Output:** final θ and best point x

1: repeat

- 2: Sample $\{x_i\}_{i=1}^{\lambda} \sim p_{\theta}(x)$
- 3: Evaluate samples, $D = \{(x_i, f(x_i))\}_{i=1}^{\lambda}$
- 4: Update $\theta \leftarrow h(\theta, D)$
- 5: **until** θ converges

Evolutionary Algorithms (EAs)

- EAs can well be described as special kinds of parameterizing $p_{\theta}(x)$ and updating θ
 - The θ typically is a set of good points found so far (parents)
 - Mutation & Crossover define $p_{\theta}(x)$
 - The samples D are called offspring
 - The θ -update is often a selection of the best, or "fitness-proportional" or rank-based
- Categories of EAs:
 - **Evolution Strategies**: $x \in \mathbb{R}^n$, often Gaussian $p_{\theta}(x)$
 - Genetic Algorithms: $x \in \{0,1\}^n$, crossover & mutation define $p_{\theta}(x)$
 - Genetic Programming: x are programs/trees, crossover & mutation
 - Estimation of Distribution Algorithms: θ directly defines $p_{\theta}(x)$

Evolution Strategies & EDAs

(as they address continuous optimization in \mathbb{R}^n)

Evolution Strategies: Gaussian Search Distribution

[From 1960s/70s. Rechenberg/Schwefel]

- The parameter θ defines a Gaussian search distribution $p_{\theta}(x)$
- In the simplest case, θ is just the mean $\theta = (\hat{x})$, assuming fixed σ^2 :

$$p_{\theta}(x) = \mathcal{N}(x \,|\, \hat{x}, \sigma^2)$$

- We sample λ "offspring" $x \sim p_{\theta}$ to get new data D
- What is a reasonable upate heuristic $\theta \leftarrow h(\theta, D)$?

Evolution Strategies: Gaussian Search Distribution

[From 1960s/70s. Rechenberg/Schwefel]

- The parameter θ defines a Gaussian search distribution $p_{\theta}(x)$
- In the simplest case, θ is just the mean $\theta = (\hat{x})$, assuming fixed σ^2 :

$$p_{\theta}(x) = \mathcal{N}(x \,|\, \hat{x}, \sigma^2)$$

- We sample λ "offspring" $x \sim p_{\theta}$ to get new data D
- What is a reasonable upate heuristic $\theta \leftarrow h(\theta, D)$?
 - Selection: Given $D = \{(x_i, f(x_i))\}_{i=1}^{\lambda}$, select the μ best: $D_{\mu} = \text{bestOf}_{\mu}(D)$
 - Compute the new mean \hat{x} from D_{μ}

Evolution Strategies: Gaussian Search Distribution

[From 1960s/70s. Rechenberg/Schwefel]

- The parameter θ defines a Gaussian search distribution $p_{\theta}(x)$
- In the simplest case, θ is just the mean $\theta = (\hat{x})$, assuming fixed σ^2 :

$$p_{\theta}(x) = \mathcal{N}(x \,|\, \hat{x}, \sigma^2)$$

- We sample λ "offspring" $x \sim p_{\theta}$ to get new data D
- What is a reasonable upate heuristic $\theta \leftarrow h(\theta, D)$?
 - Selection: Given $D = \{(x_i, f(x_i))\}_{i=1}^{\lambda}$, select the μ best: $D_{\mu} = \text{bestOf}_{\mu}(D)$
 - Compute the new mean \hat{x} from D_{μ}
- This algorithm is called " (μ, λ) -ES" (Evolution Strategy)
 - The Gaussian is meant to represent a "species"

"Elitarian" Selection: $(\mu + \lambda)$ -ES

- To make search monotonous(!), the algorithm also stores the previous elite D_{μ}
 - $\theta = (\hat{x}, D_{\mu})$ now includes the mean \hat{x} and previously selected

"Elitarian" Selection: $(\mu + \lambda)$ -ES

- To make search monotonous(!), the algorithm also stores the previous elite D_{μ}
 - $\theta = (\hat{x}, D_{\mu})$ now includes the mean \hat{x} and previously selected
- The update heuristic $\theta \leftarrow h(\theta, D)$ selects from the union of new and elite:
 - Select the μ best $D_{\mu} \leftarrow \mathsf{bestOf}_{\mu}(D_{\mu} \cup D)$
 - Compute the new mean \hat{x} from D_{μ}

"Elitarian" Selection: $(\mu + \lambda)$ -ES

- To make search monotonous(!), the algorithm also stores the previous elite D_{μ}
 - $\theta = (\hat{x}, D_{\mu})$ now includes the mean \hat{x} and previously selected
- The update heuristic $\theta \leftarrow h(\theta, D)$ selects from the union of new and elite:
 - Select the μ best $D_{\mu} \leftarrow \mathsf{bestOf}_{\mu}(D_{\mu} \cup D)$
 - Compute the new mean \hat{x} from D_{μ}
- Special case: (1+1)-ES = Greedy Local Search/Hill Climber
- Special case: $(1 + \lambda)$ -ES = Local Search

- Assuming a fixed σ and isotropic $\mathcal{N}(x\,|\,\hat{x},\sigma^2)$ is limiting
 - No notion of going *forward* (downhill/momentum)
 - No adaptation of σ
 - Should steps smaller/larger/correlated depending on local Hessian!

Covariance Matrix Adaptation (CMA-ES)

Generation 4

Generation 5

Generation 3

Generation 6

[Hansen, N. (2006)] Stochastic Search & EDAs – 9/19

Covariance Matrix Adaptation (CMA-ES)

• In Covariance Matrix Adaptation

$$\theta = (\hat{x}, \sigma, C, \varrho_{\sigma}, \varrho_{c}), \quad p_{\theta}(x) = \mathcal{N}(x \,|\, \hat{x}, \sigma^{2}C)$$

where C is the covariance matrix of the search distribution

- The θ maintains two more pieces of information: ρ_{σ} and ρ_{c} capture the "path" (motion) of the mean \hat{x} in recent iterations
- Rough outline of the θ -update:
 - Let $D_{\mu} = \mathsf{bestOf}_{\mu}(D)$ be the selected
 - Compute the new mean \hat{x} of D_{μ}
 - Update $arrho_{\sigma}$ and $arrho_{c}$ proportional to $\hat{x}_{k+1} \hat{x}_{k}$
 - Update σ depending on $|\varrho_\sigma|$
 - Update C depending on $\rho_c \rho_c^{\top}$ (rank-1-update) and Var (D_{μ})

CMA references

Hansen: The CMA evolution strategy: a comparing review. 2006

Function	$f_{\rm stop}$	init	n	CMA-ES	DE	RES	LOS
$f_{ m Ackley}(x)$	1e-3	$[-30, 30]^n$	20	2667			6.0e4
-			30	3701	12481	1.1e5	9.3e4
			100	11900	36801		
$f_{ m Griewank}(x)$	1e-3	$[-600, 600]^n$	20	3111	8691		
			30	4455	11410 '	* 8.5e-3/2e5	
			100	12796	31796		
$f_{ m Rastrigin}(x)$	0.9	$[-5.12, 5.12]^n$	20	68586	12971		9.2e4
0		DE: $[-600, 600]^n$	30	147416	20150	1.0e5	2.3e5
			100	1010989	73620		
$f_{ m Rastrigin}(Ax)$	0.9	$[-5.12, 5.12]^n$	30	152000	171/1.25e6 '	· .	
0			100	1011556	944/1.25e6 *	•	
$f_{ m Schwefel}(x)$	1e-3	$[-500, 500]^n$	5	43810	2567 $^{\circ}$	· .	7.4e4
			10	240899	5522 $^{\circ}$	•	5.6e5

Hansen et al.: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. PPSN 2004

CMA conclusions

- Good starting point for an off-the-shelf blackbox algorithm
- It includes components like estimating the local gradient (*ρ_σ*, *ρ_c*), the local "Hessian" (Var(*D_μ*)), smoothing out local minima (large populations)
- But is this tackling global optimization?

"For "large enough" populations local minima are avoided" (But not really.)

Estimation of Distribution Algorithms (EDAs)

- In general, θ can model a distribution p_θ(x) for any spaces (also discrete/hybrid) using any distribution representation (Bayesian Networks, probabilistic grammars, generative ML, etc)
- The update heuristic $\theta \leftarrow h(\theta, D)$ typically let's " $p_{\theta}(x)$ estimate D_{μ} ", e.g. by likelihood maximization

$$\theta \leftarrow \underset{\theta}{\operatorname{argmin}} -\sum_{x \in D_{\mu}} \log p_{\theta}(x) + \text{regularization}$$

- The regularization is important, otherwise the new offspring would "overfit" on the previous elite and not explore
- E.g. ensure sufficient entropy

• Stochastic grammars to "learn" a distribution of selected structures

[Toussaint, GECCO 2003]

Estimation of Distribution Algorithms (EDAs)

• EDAs learn correlations and structures in selected

Agakov,..,Toussaint,..,: Using Machine Learning to Focus Iterative Optimization. CGO 2006

Toussaint: Compact representations as a search strategy: Compression EDAs. Theoretical Computer Science, 2006

- E.g., if in all selected distributions, the 3rd bit equals the 7th bit, then the search distribution $p_{\theta}(x)$ should put higher probability on such candidates
- In discrete domains, graphical models can be used to learn the dependencies between variables, e.g. **Bayesian Optimization Algorithm (BOA)**
- In continuous domains, CMA is an example for an EDA

Simulated Annealing (accepts also uphill steps)

• Could be viewed as extension to avoid getting stuck in local optima, which accepts steps with f(y) > f(x) – but better viewed as sampling technique (see next page)

Input: initial point $x (\equiv \theta)$, function f(x), proposal distribution $q(y|x) (\equiv p_x(y))$

- 1: initialilze the temperature T = 1
- 2: repeat
- 3: Sample single $y \sim q(y|x)$
- 4: Acceptance probability $A = \min\left\{1, e^{\frac{f(x)-f(y)}{T}} \frac{q(x|y)}{q(y|x)}\right\}$
- 5: With probability A update $x \leftarrow y$
- 6: Decrease T, e.g. $T \leftarrow (1 \epsilon)T$ for small ϵ

7: **until** x converges

- Typically: $q(y|x) \propto \exp\{-\frac{1}{2}(y-x)^2/\sigma^2\}$
- Instance of our general scheme for $x \equiv \theta$, $p_{\theta}(x) \equiv q(x|\theta)$, $\lambda = 1$, update stochastic as above

Simulated Annealing

- Simulated Annealing is a Markov chain Monte Carlo (MCMC) method.
 - Must read!: An Introduction to MCMC for Machine Learning
 - These are iterative methods to sample from a distribution, in our case

$$p(x) \propto e^{\frac{-f(x)}{T}}$$

• For a fixed temperature T, one can prove that the set of accepted points is distributed as p(x) (but non-i.i.d.!) The acceptance probability

$$A = \min \left\{ 1, e^{\frac{f(x) - f(y)}{T}} \frac{q(x|y)}{q(y|x)} \right\}$$

compares the f(y) and f(x), but also the reversibility of q(y|x)

• When cooling the temperature, samples focus at the extrema. Guaranteed to sample all extrema *eventually*

Simulated Annealing

[MCMC introduction (2003)]

Stochastic Search & EDAs - 18/19

Stochastic search conclusions

Input: initial θ , function f(x), distribution model $p_{\theta}(x)$, update heuristic $h(\theta, D)$ **Output:** final θ and best point x

1: repeat

- 2: Sample $\{x_i\}_{i=1}^{\lambda} \sim p_{\theta}(x)$
- 3: Evaluate samples, $D = \{(x_i, f(x_i))\}_{i=1}^{\lambda}$
- 4: Update $\theta \leftarrow h(\theta, D)$
- 5: **until** θ converges
- The framework is very general
- Algorithms differ in choice of θ , $p_{\theta}(x)$, and h(t, D)
- The update $h(\theta, D)$ "should train the distribution $p_{\theta}(x)$ to match good points"

