

Optimization Algorithms

Stochastic Search & EDAs

Marc Toussaint Technical University of Berlin Winter 2024/25

A core aspect in black-box opt is: *What do we estimate from the data?*

- gradient (as in implicit filtering)
- a local model $f_{\theta}(x)$ (model-based opt.)
- a distribution $p_{\theta}(x)$ of "good" points (EDAs)
- The θ is what we extract/capture/maintain from the data of previous evaluations

A general stochastic search scheme

- A general stochastic search scheme:
	- The algorithm maintains some information θ
	- This θ defines a *search* distribution $p_{\theta}(x)$
	- In each iteration it takes λ samples $\{x_i\}_{i=1}^{\lambda} \sim p_\theta(x)$
	- Each x_i is evaluated $\;\rightarrow\;$ new data $D=\{(x_i,f(x_i))\}_{i=1}^{\lambda}$
	- $-$ The new data D is used to update θ

Input: initial θ , function $f(x)$, distribution model $p_{\theta}(x)$, update heuristic $h(\theta, D)$ **Output:** final θ and best point x

1: **repeat**

- 2: Sample $\{x_i\}_{i=1}^{\lambda} \sim p_{\theta}(x)$
- 3: Evaluate samples, $D = \{(x_i, f(x_i))\}_{i=1}^{\lambda}$
- 4: Update $\theta \leftarrow h(\theta, D)$
- 5: **until** θ converges

Evolutionary Algorithms (EAs)

- EAs can well be described as special kinds of parameterizing $p_{\theta}(x)$ and updating θ
	- The θ typically is a set of good points found so far (parents)
	- Mutation & Crossover define $p_{\theta}(x)$
	- The samples D are called offspring
	- The θ -update is often a selection of the best, or "fitness-proportional" or rank-based
- Categories of EAs:
	- $-$ Evolution Strategies: $x \in \mathbb{R}^n$, often Gaussian $p_\theta(x)$
	- **− Genetic Algorithms**: $x \in \{0, 1\}^n$, crossover & mutation define $p_{\theta}(x)$
	- $-$ **Genetic Programming**: x are programs/trees, crossover & mutation
	- **Estimation of Distribution Algorithms**: θ directly defines $p_{\theta}(x)$

Evolution Strategies & EDAs

(as they address continuous optimization in \mathbb{R}^n)

Stochastic Search & EDAs – 5/19

Evolution Strategies: Gaussian Search Distribution

[From 1960s/70s. Rechenberg/Schwefel]

- The parameter θ defines a Gaussian search distribution $p_{\theta}(x)$
- In the simplest case, θ is just the mean $\theta = (\hat{x})$, assuming fixed σ^2 :

$$
p_{\theta}(x) = \mathcal{N}(x \mid \hat{x}, \sigma^2)
$$

- We sample λ "offspring" $x \sim p_\theta$ to get new data D
- What is a reasonable upate heuristic $\theta \leftarrow h(\theta, D)$?

Evolution Strategies: Gaussian Search Distribution

[From 1960s/70s. Rechenberg/Schwefel]

- The parameter θ defines a Gaussian search distribution $p_{\theta}(x)$
- In the simplest case, θ is just the mean $\theta = (\hat{x})$, assuming fixed σ^2 :

$$
p_{\theta}(x) = \mathcal{N}(x \mid \hat{x}, \sigma^2)
$$

- We sample λ "offspring" $x \sim p_\theta$ to get new data D
- What is a reasonable upate heuristic $\theta \leftarrow h(\theta, D)$?
	- Selection: Given $D=\{(x_i,f(x_i))\}_{i=1}^\lambda,$ select the μ best: $D_\mu=$ bestOf $_\mu(D)$
	- Compute the new mean \hat{x} from D_{μ}

Evolution Strategies: Gaussian Search Distribution

[From 1960s/70s. Rechenberg/Schwefel]

- The parameter θ defines a Gaussian search distribution $p_{\theta}(x)$
- In the simplest case, θ is just the mean $\theta = (\hat{x})$, assuming fixed σ^2 :

$$
p_{\theta}(x) = \mathcal{N}(x \mid \hat{x}, \sigma^2)
$$

- We sample λ "offspring" $x \sim p_\theta$ to get new data D
- What is a reasonable upate heuristic $\theta \leftarrow h(\theta, D)$?
	- Selection: Given $D=\{(x_i,f(x_i))\}_{i=1}^\lambda,$ select the μ best: $D_\mu=$ bestOf $_\mu(D)$
	- Compute the new mean \hat{x} from D_{μ}
- This algorithm is called " (μ, λ) -ES" (Evolution Strategy)
	- The Gaussian is meant to represent a "species"

"Elitarian" Selection: (µ + λ)**-ES**

- To make search monotonous(!), the algorithm also stores the previous elite D_{μ}
	- $\theta = (\hat{x}, D_{\mu})$ now includes the mean \hat{x} and previously selected

"Elitarian" Selection: (µ + λ)**-ES**

- To make search monotonous(!), the algorithm also stores the previous elite D_{μ}
	- $\theta = (\hat{x}, D_{\mu})$ now includes the mean \hat{x} and previously selected
- The update heuristic $\theta \leftarrow h(\theta, D)$ selects from the union of new and elite:
	- Select the μ best $D_{\mu} \leftarrow \text{bestOf}_{\mu}(D_{\mu} \cup D)$
	- Compute the new mean \hat{x} from D_{μ}

"Elitarian" Selection: (µ + λ)**-ES**

- To make search monotonous(!), the algorithm also stores the previous elite D_{μ}
	- $\theta = (\hat{x}, D_{\mu})$ now includes the mean \hat{x} and previously selected
- The update heuristic $\theta \leftarrow h(\theta, D)$ selects from the union of new and elite:
	- Select the μ best $D_{\mu} \leftarrow \text{bestOf}_{\mu}(D_{\mu} \cup D)$
	- Compute the new mean \hat{x} from D_{μ}
- Special case: (1 + 1)**-ES = Greedy Local Search/Hill Climber**
- Special case: $(1 + \lambda)$ **-ES = Local Search**
- Assuming a fixed σ and isotropic $\mathcal{N}(x \,|\, \hat{x}, \sigma^2)$ is limiting
	- No notion of going *forward* (downhill/momentum)
	- No adaptation of σ
	- Should steps smaller/larger/correlated depending on local Hessian!

Covariance Matrix Adaptation (CMA-ES)

[Hansen, N. (2006)] Stochastic Search & EDAs – 9/19

Covariance Matrix Adaptation (CMA-ES)

• In Covariance Matrix Adaptation

$$
\theta = (\hat{x}, \sigma, C, \varrho_{\sigma}, \varrho_{c}), \quad p_{\theta}(x) = \mathcal{N}(x \mid \hat{x}, \sigma^{2}C)
$$

where C is the covariance matrix of the search distribution

- The θ maintains two more pieces of information: ρ_{σ} and ρ_{c} capture the "path" (motion) of the mean \hat{x} in recent iterations
- Rough outline of the θ -update:
	- Let D_{μ} = bestOf_u (D) be the selected
	- Compute the new mean \hat{x} of D_{μ}
	- Update ϱ_{σ} and ϱ_{c} proportional to $\hat{x}_{k+1} \hat{x}_{k}$
	- Update σ depending on $|\rho_{\sigma}|$
	- Update C depending on $\varrho_c\varrho_c^{\top}$ (rank-1-update) and Var (D_μ)

CMA references

Hansen: *The CMA evolution strategy: a comparing review*. 2006

Function	f _{stop}	init		n CMA-ES	DЕ		RES LOS
$f_{\text{Acklev}}(x)$	$1e-3$	$[-30, 30]^{n}$	20	2667			.6.0e4
			30	3701	12481	$1.1e5$ $9.3e4$	
			100	11900	36801		
$f_{\text{Griewank}}(x)$	$1e-3$	$[-600, 600]^{n}$	20	3111	8691		~ 100 km $^{-1}$
			30	4455		$11410 * 8.5e-3/2e5$	~ 1
			100	12796	31796		
$f_{\rm Rastrigin}(x)$	0.9	$[-5.12, 5.12]^{n}$	20	68586	12971		.9.2e4
		$DE: [-600, 600]^n$	30	147416	20150 $*$		1.0e52.3e5
			100	1010989	73620		
$f_{\rm Rastrigin}(Ax)$	0.9	$[-5.12, 5.12]^{n}$ 30			152000 $171/1.25e6$ *		
					100 1011556 $944/1.25e6$ *		\sim 100 \pm
$f_{\text{Schwefel}}(x)$	$1e-3$	$[-500, 500]^{n}$	5	43810	$2567 *$.7.4e4
			10	240899	$5522*$.5.6e5

Hansen et al.: *Evaluating the CMA Evolution Strategy on Multimodal Test Functions*. PPSN 2004

CMA conclusions

- Good starting point for an off-the-shelf blackbox algorithm
- It includes components like estimating the local gradient ($\varrho_{\sigma}, \varrho_{c}$), the local "Hessian" $(Var(D_u))$, smoothing out local minima (large populations)
- But is this tackling global optimization?

"For "large enough" populations local minima are avoided" (But not really.)

Estimation of Distribution Algorithms (EDAs)

- In general, θ can model a distribution $p_{\theta}(x)$ for any spaces (also discrete/hybrid) using any distribution representation (Bayesian Networks, probabilistic grammars, generative ML, etc)
- The update heuristic $\theta \leftarrow h(\theta, D)$ typically let's " $p_{\theta}(x)$ estimate D_{μ} ", e.g. by likelihood maximization

$$
\theta \leftarrow \mathop{\rm argmin}_{\theta} \ -\!\!\sum_{x \in D_{\mu}} \log p_{\theta}(x) + \text{regularization}
$$

- The regularization is important, otherwise the new offspring would "overfit" on the previous elite and not explore
- E.g. ensure sufficient entropy

• Stochastic grammars to "learn" a distribution of selected structures

[Toussaint, GECCO 2003]

Estimation of Distribution Algorithms (EDAs)

• EDAs *learn* correlations and structures in selected

Agakov,..,Toussaint,..,: *Using Machine Learning to Focus Iterative Optimization*. CGO 2006

Toussaint: *Compact representations as a search strategy: Compression EDAs*. Theoretical Computer Science, 2006

- E.g., if in all selected distributions, the 3rd bit equals the 7th bit, then the search distribution $p_{\theta}(x)$ should put higher probability on such candidates
- In discrete domains, graphical models can be used to learn the dependencies between variables, e.g. **Bayesian Optimization Algorithm (BOA)**
- In continuous domains, CMA is an example for an EDA

Simulated Annealing (accepts also uphill steps)

• Could be viewed as extension to avoid getting stuck in local optima, which accepts steps with $f(y) > f(x)$ – but better viewed as sampling technique (see next page)

Input: initial point $x \equiv \theta$, function $f(x)$, **proposal distribution** $q(y|x) \equiv p_x(y)$

- 1: initialilze the temperature $T = 1$
- 2: **repeat**
- 3: Sample single $y ∼ q(y|x)$
- 4: Acceptance probability $A = \min\left\{1, e^{\frac{f(x)-f(y)}{T}} \frac{q(x|y)}{q(y|x)}\right\}$
- 5: With probability A update $x \leftarrow y$
- 6: Decrease T, e.g. $T \leftarrow (1 \epsilon)T$ for small ϵ

7: **until** x converges

- Typically: $q(y|x) \propto \exp\{-\frac{1}{2}(y-x)^2/\sigma^2\}$
- Instance of our general scheme for $x \equiv \theta$, $p_{\theta}(x) \equiv q(x|\theta)$, $\lambda = 1$, update stochastic as above

Simulated Annealing

- Simulated Annealing is a Markov chain Monte Carlo (MCMC) method.
	- Must read!: *An Introduction to MCMC for Machine Learning*
	- These are iterative methods to sample from a distribution, in our case

$$
p(x) \propto e^{\frac{-f(x)}{T}}
$$

• For a fixed temperature T, one can prove that the set of accepted points is distributed as $p(x)$ (but non-i.i.d.!) The acceptance probability

$$
A = \min\left\{1, e^{\frac{f(x) - f(y)}{T}} \frac{q(x|y)}{q(y|x)}\right\}
$$

compares the $f(y)$ and $f(x)$, but also the reversibility of $q(y|x)$

• When cooling the temperature, samples focus at the extrema. Guaranteed to sample all extrema *eventually*

Simulated Annealing

[MCMC introduction (2003)]

Learning and Intelligent Systems Lab, TU Berlin

Stochastic Search & EDAs – 18/19

Stochastic search conclusions

Input: initial θ , function $f(x)$, distribution model $p_{\theta}(x)$, update heuristic $h(\theta, D)$ **Output:** final θ and best point x

1: **repeat**

- 2: Sample ${x_i}_{i=1}^{\lambda} \sim p_{\theta}(x)$
- 3: Evaluate samples, $D = \{(x_i, f(x_i))\}_{i=1}^{\lambda}$
- 4: Update $\theta \leftarrow h(\theta, D)$
- 5: **until** θ converges
- The framework is very general
- Algorithms differ in choice of θ , $p_{\theta}(x)$, and $h(t, D)$
- The update $h(\theta, D)$ "should train the distribution $p_{\theta}(x)$ to match good points"

