Optimization Algorithms

Reinforcement Learning & Optimization

Marc Toussaint
Technical University of Berlin
Winter 2024/25

¢ Reinforcement Learning is an optimization problem — how far can we get with
standard optimization approaches rather than specialized RL methods?

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 2/18

Reinforcement Learning Basics

e The world: An MDP (8, A, P, R, Py,) with state space 8, action space A, transition
probabilities P(s;41 | s¢, ar), reward fct R(s, a;), initial state distribution Py(sg), and
discounting factor ~ € [0, 1].

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 3/18

Reinforcement Learning Basics

e The world: An MDP (8, A, P, R, Py,) with state space 8, action space A, transition
probabilities P(s;41 | s¢, ar), reward fct R(s, a;), initial state distribution Py(sg), and

discounting factor ~ € [0, 1].
e The agent: A policy m(a|s:).

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 3/18

Reinforcement Learning Basics
e The world: An MDP (8, A, P, R, Py,) with state space 8, action space A, transition
probabilities P(s;41 | s¢, ar), reward fct R(s, a;), initial state distribution Py(sg), and
discounting factor ~ € [0, 1].
e The agent: A policy m(a|s:).

e Together they define the path distribution (£ = (so.7+1, ao.7)) @\ @\ @\
()
()

T

Pr(§) = P(s0) Hﬂ(at\st) P(sp41]st, ar)
t=0

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 3/18

Reinforcement Learning Basics

e The world: An MDP (8, A, P, R, Py,) with state space 8, action space A, transition
probabilities P(s;41 | s¢, ar), reward fct R(s, a;), initial state distribution Py(sg), and
discounting factor ~ € [0, 1].

e The agent: A policy m(a|s:).

e Together they define the path distribution (£ = (so.7+1, ao.7)) @\ @\ @\
T (o ()
Pr(§) = P(s0) [(ailse) Pseaalst, ar) oo R®
t=0

and the expected total return

J(m) = Eenp { 01 Risprar) } = /é Po(€) R(E) de
R(¢)

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 3/18

Reinforcement Learning Basics

e We assume the policy my(als) is parameterized by some 6 € R™
e The problem is

max J(0) or m@ax/ng(f) R(¢) d¢

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 4/18

Reinforcement Learning Basics

e We assume the policy my(als) is parameterized by some 6 € R™
e The problem is

max J(0) or Inaax/gpg(ﬁ) R(¢) d¢

J(0) is just a function we want to optimize
J(0) is a “weighted sum” over all paths (cf. additive cost function & SGD)

We can't really compute/evaluate f(60) exactly — we can only get a sample £ ~ Py and R(£) in
each iteration (cf. SGD case!)

Different: >, fi(z) « fixed distribution over i; f5 Py(&)R(&) + non-stationary distribution over £

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 4/18

Reinforcement Learning Basics

e We assume the policy my(als) is parameterized by some 6 € R™
e The problem is

max J(0) or Ineax/gpg(ﬁ) R(¢) d¢

J(0) is just a function we want to optimize
J(0) is a “weighted sum” over all paths (cf. additive cost function & SGD)

We can't really compute/evaluate f(60) exactly — we can only get a sample £ ~ Py and R(£) in
each iteration (cf. SGD case!)

Different: >, fi(z) « fixed distribution over i; f5 Py(&)R(&) + non-stationary distribution over £

Can knowing about the MDP process simplify the optimization problem?

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 4/18

Can knowing about the MDP process simplify the optimization problem?

e Yes, in at least 2 ways:

e Bellman optimality — we understand sth. about the optimal policy beyond KKT
¢ Policy gradients — we can derive gradients

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 5/18

Bellman optimality condition

¢ In general optimization, optima z* are only characterized by KKT, or stationarity

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 6/18

Bellman optimality condition

¢ In general optimization, optima z* are only characterized by KKT, or stationarity

e When maxy J(6), we know another condition of optimality: Bellman optimality
— The value function V*(x) over state space fulfills

V*(s) = max [R(s, a) + VEy s {V” (5,)}}

— Knowing that function implies the optimal policy 7*

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 6/18

Bellman optimality condition

¢ In general optimization, optima z* are only characterized by KKT, or stationarity
e When maxy J(6), we know another condition of optimality: Bellman optimality
— The value function V*(x) over state space fulfills

V*(s) = max [R(s, a) + VEy s {V” (5,)}]

— Knowing that function implies the optimal policy 7*

— But that also raises a problem! If 7y is parameteric! And/or V (s) is parameteric! We raise extra
function approximation problems. Read:
Lagoudakis & Parr: Least-squares policy iteration. JMLR 2003

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 6/18

Bellman optimality condition

¢ In general optimization, optima z* are only characterized by KKT, or stationarity

e When maxy J(6), we know another condition of optimality: Bellman optimality
— The value function V*(x) over state space fulfills

V*(s) = max [R(s, a) + VEy s {V” (5,)}}

— Knowing that function implies the optimal policy 7*
— But that also raises a problem! If 7y is parameteric! And/or V (s) is parameteric! We raise extra
function approximation problems. Read:
Lagoudakis & Parr: Least-squares policy iteration. JMLR 2003
e The Bellman optimality condition truely exploits the MDP structure, and gives
further conditions on the optimum beyond stationarity of J(9).

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 6/18

e Learning (=optimizing) while collecting more and more data
— Unusual from the optimization perspective < instable “target” (objective, £-distribution)
— Leads to breadth of RL-methodologies (model-based/model-free RL, TD-, Q-learning, etc)

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 7/18

e Learning (=optimizing) while collecting more and more data
— Unusual from the optimization perspective < instable “target” (objective, £-distribution)
— Leads to breadth of RL-methodologies (model-based/model-free RL, TD-, Q-learning, etc)

e But there are also trends to avoid this
— “Offline RL, classical system identification, model-based RL
— separating data collection issue from optimization issue

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 7/18

Stochastic Policy Gradient

e Recall

J(0) = / Py(€) R(€) de
3
e We have
WJ(0) = Y / Py(€) R(€) de = / Py(€)V) log Py(€)R(€)de
=Egp{Vylog Pp(§)R(§)} = E&W{Zio Vo logw(at|st)R(§)}

H H ’_
_ ng{ SH Gy logr(adse) vt S 47 ~try }
—_——
Qe

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 8/18

Deterministic Policy Gradient

e However, in practise, policies are often not stochastic. Esp. neural networks. We
have a = 7my(s) € R?, parameterized by 6. What is the correct gradient then?

e As introduced in reference [2]:
U (0) = Egop, {vm(s) V@™ (s,0)|,_. (S)}

(NOTE: unusual convention about Jacobians... I'd write it 9,Q™ (s, a)0s7(s))

Silver et al: Deterministic policy gradient algorithms. 2014

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 9/18

Deterministic Policy Gradient

e However, in practise, policies are often not stochastic. Esp. neural networks. We
have a = 7my(s) € R?, parameterized by 6. What is the correct gradient then?

e As introduced in reference [2]:
U (0) = Egop, {vm(s) V@™ (s,0)|,_. (S)}

(NOTE: unusual convention about Jacobians... I'd write it 9,Q™ (s, a)0s7(s))

Silver et al: Deterministic policy gradient algorithms. 2014

e So we in principle also have a gradient! But very noisy! Better: D4PG

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 9/18

Conclusions

e Can knowing about the MDP process simplify the optimization problem? Yes:
— Bellman optimality, gradients
— interleaved learning/optimization and data collection
— Esp. if “reward signal” is informative beyond total return (dense rewards)

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 10/18

Conclusions

e Can knowing about the MDP process simplify the optimization problem? Yes:
— Bellman optimality, gradients
— interleaved learning/optimization and data collection
— Esp. if “reward signal” is informative beyond total return (dense rewards)

e However, reasons to ignore structure of underlying MPD:
— Avoid implied problems, e.g. by function approximation, value estimation, policy iteration
— very noisy gradient estimates
— Robustness to mis-assumptions

e — black-box or derivative-free optimization

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 10/18

References

e Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, |. (2017). Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864.

e Such, F. P, Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J. (2017).
Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567.

e Stulp, F., & Sigaud, O. (2013). Robot skill learning: From reinforcement learning to
evolution strategies. Paladyn, Journal of Behavioral Robotics, 4(1), 49-61.

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 11/18

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAl

Abstract

‘We explore the use of Evolution Strategies (ES), a class of black box optimization
algorithms, as an alternative to popular MDP-based RL techniques such as Q-
learning and Policy Gradients. Experiments on MuJoCo and Atari show that ES
is a viable solution strategy that scales extremely well with the number of CPUs
available: By using a novel communication strategy based on common random
numbers, our ES implementation only needs to communicate scalars, making it
possible to scale to over a thousand parallel workers. This allows us to solve 3D
humanoid walking in 10 minutes and obtain competitive results on most Atari
games after one hour of training. In addition, we highlight several advantages of
ES as a black box optimization technique: it is invariant to action frequency and
delayed rewards, tolerant of extremely long horizons, and does not need temporal
discounting or value function approximation.

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 12/18

e The ES they employ:

Algorithm 1 Evolution Strategies

1: Input: Learning rate o, noise standard deviation o, initial policy parameters ¢,
cfort=0,1.2,... do

Sample ey, .. .6, ~ N(0, 1)

Compute returns F; = F(6 + ae;) fori=1,...,n

Set 03+1 — 0 + (1% Z?:l Fie;
end for

LW b2

— Is an instance of our “General Stochastic Search” scheme:
6 is the mean; A = n samples z; ~ N(#, o>I); evaluations f(z;)

— The update is more like a stochastic gradient step rather than selection
In expectation, Fie;=(Fp + VF oe;)e; = 0 + o VF.

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 13/18

e Ratio of ES timesteps to TRPO timesteps needed to reach various percentages of TRPO’s
learning progress at 5 million timesteps:

Environment 25% 50% 75% 100%
HalfCheetah 0.15 049 042 0.58
Hopper 053 3.64 6.05 6.94
InvertedDoublePendulum 046 0.48 0.49 1.23
InvertedPendulum 028 0.52 0.78 0.88
Swimmer 0.56 047 0.53 0.30
Walker2d 041 5.69 8.02 7.88

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 14/18

Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for
Training Deep Neural Networks for Reinforcement Learning

Felipe Petroski Such Vashisht Madhavan Edoardo Conti Joel Lehman Kenneth O. Stanley Jeff Clune

Uber Al Labs
{felipe.such, jeffclune}@uber.com

(Do you spend your time training nets, or simulating?)

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 15/18

DQN ES A3C RS GA GA

Frames 200M 1B 1B 1B 1B 6B
Time ~7-10d ~ 1h ~4d ~1lhor4h ~lhordh ~ 6hor24h
Forward Passes 450M 250M 250M 250M 250M 1.5B
Backward Passes 400M 0 250M 0 0 0
Operations 1.25B U 250M U 1BU 250M U 250M U 1.5B U
amidar 978 112 264 143 263 377
assault 4,280 1,674 5475 649 714 814
asterix 4,359 1,440 22,140 1,197 1,850 2,255
asteroids 1,365 1,562 4475 1,307 1,661 2,700
atlantis 279,987 1,267,410 911,091 26,371 76,273 129,167
enduro 729 95 -82 36 60 80
frostbite 797 370 191 1,164 4,536 6,220
gravitar 473 805 304 431 476 764
kangaroo 7.259 11,200 94 1,099 3,790 11,254
seaquest 5,861 1,390 2355 503 798 850
skiing -13,062 -15,443 -10911 -7.679 .6,502 f.5,541
venture 163 760 23 488 969 1,422
ZAXXON 5.363 6,380 24,622 2,538 6,180 7.864

Table 1. On Atari a simple genetic algorithm is competitive with Q-learning (DQN), policy gradients (A3C), and evolution strate-
gies (ES). Shown are game scores (higher is better). Comparing performance between algorithms is inherently challenging (see main
text), but we attempt to facilitate comparisons by showing estimates for the amount of computation (operations, the sum of forward and
backward neural network passes), data efficiency (the number of game frames from training episodes), and how long in wall-clock time
the algorithm takes to run. The ES, DQN, A3C, and GA (1B) perform best on 3, 3, 4, and 3 games. respectively. Surprisingly. random
search often finds policies superior to those of DQN, A3C, and ES (see text for discussion). Note the dramatic differences in the speeds
of the algorithm, which are much faster for the GA and ES, and data efficiency, which favors DQN. The scores for DQN are from Hessel
et al. (2017) while those for A3C and ES are from Salimans et al. (2017). For A3C, DQN, and ES, we cannot provide error bars because
they were not reported in the original literature: GA and random search error bars are visualized in (SI Fig. 3). The wall-clock times are
approximate because they depend on a variety of hard-to-control-for factors. We found the GA runs slightly faster than ES on average.
The 1 symbol indicates state of the art performance. GA 6B scores are bolded if best, but do not prevent bolding in other columns.

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 16/18

DQN ES A3C RSIB GAIB GAG6B
DQN 6 6 3 6 7
ES 7 7 3 6 8
A3C 7 6 6 6 7
RS 1B 10 10 7 13 13
GA 1B 7 7 7 0 13
GA 6B 6 5 6 0 0

Table 4. Head-to-head comparison between algorithms on the
13 Atari games. Each value represents how many games for
which the algorithm listed at the top of a column produces a
higher score than the algorithm listed to the left of that row (e.g.
GA 6B beats DQN on 7 games).

e Conclusion: It varies from problem to problem what is better.
And it is suprising that “naive” black-box ES can beat elaborate RL-methods

Learning and Intelligent Systems Lab, TU Berlin

Reinforcement Learning & Optimization — 17/18

Conclusions

e Overall, it is not so clear at all whether RL is actually better than
black-box/derivative-free optimization

e For small problems where we have little function approximation or noisy gradient
problems, yes; but for large scale problems?

e For discussion:
— If you have a problem with dense rewards and smooth dynamics...?

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 18/18

Conclusions

e Overall, it is not so clear at all whether RL is actually better than
black-box/derivative-free optimization

e For small problems where we have little function approximation or noisy gradient
problems, yes; but for large scale problems?

e For discussion:
— If you have a problem with dense rewards and smooth dynamics...?
— If you have a sparse reward problem, but with smooth/easy dynamics...?

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 18/18

Conclusions

e Overall, it is not so clear at all whether RL is actually better than
black-box/derivative-free optimization

e For small problems where we have little function approximation or noisy gradient
problems, yes; but for large scale problems?

e For discussion:
— If you have a problem with dense rewards and smooth dynamics...?
— If you have a sparse reward problem, but with smooth/easy dynamics...?
— If you have a sparse reward problem with hard dynamics...?

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 18/18

Conclusions

Overall, it is not so clear at all whether RL is actually better than
black-box/derivative-free optimization

For small problems where we have little function approximation or noisy gradient
problems, yes; but for large scale problems?

For discussion:
— If you have a problem with dense rewards and smooth dynamics...?
— If you have a sparse reward problem, but with smooth/easy dynamics...?
— If you have a sparse reward problem with hard dynamics...?

RL-methods rely on reward signals/gradients that can be “propagated” through time/steps
(credit assignment, Q-learning, Bellman)

e Black-box search is ignorant to this, sometimes to the better

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization — 18/18

