
Optimization Algorithms

Reinforcement Learning & Optimization

Marc Toussaint
Technical University of Berlin

Winter 2024/25

• Reinforcement Learning is an optimization problem – how far can we get with
standard optimization approaches rather than specialized RL methods?

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 2/18

Reinforcement Learning Basics

• The world: An MDP (S,A, P,R, P0, γ) with state space S, action space A, transition
probabilities P (st+1 | st, at), reward fct R(st, at), initial state distribution P0(s0), and
discounting factor γ ∈ [0, 1].

• The agent: A policy π(at|st).

• Together they define the path distribution (ξ = (s0:T+1, a0:T))
a0

s0

r0

a1

s1

r1

a2

s2

r2Pπ(ξ) = P (s0)

T∏
t=0

π(at|st) P (st+1|st, at)

and the expected total return

J(π) = Eξ∼Pπ

{∑∞
t=0 γ

tR(st, at)︸ ︷︷ ︸
R(ξ)

}
=

∫
ξ
Pπ(ξ) R(ξ) dξ

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 3/18

Reinforcement Learning Basics

• The world: An MDP (S,A, P,R, P0, γ) with state space S, action space A, transition
probabilities P (st+1 | st, at), reward fct R(st, at), initial state distribution P0(s0), and
discounting factor γ ∈ [0, 1].

• The agent: A policy π(at|st).

• Together they define the path distribution (ξ = (s0:T+1, a0:T))
a0

s0

r0

a1

s1

r1

a2

s2

r2Pπ(ξ) = P (s0)

T∏
t=0

π(at|st) P (st+1|st, at)

and the expected total return

J(π) = Eξ∼Pπ

{∑∞
t=0 γ

tR(st, at)︸ ︷︷ ︸
R(ξ)

}
=

∫
ξ
Pπ(ξ) R(ξ) dξ

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 3/18

Reinforcement Learning Basics

• The world: An MDP (S,A, P,R, P0, γ) with state space S, action space A, transition
probabilities P (st+1 | st, at), reward fct R(st, at), initial state distribution P0(s0), and
discounting factor γ ∈ [0, 1].

• The agent: A policy π(at|st).

• Together they define the path distribution (ξ = (s0:T+1, a0:T))
a0

s0

r0

a1

s1

r1

a2

s2

r2Pπ(ξ) = P (s0)

T∏
t=0

π(at|st) P (st+1|st, at)

and the expected total return

J(π) = Eξ∼Pπ

{∑∞
t=0 γ

tR(st, at)︸ ︷︷ ︸
R(ξ)

}
=

∫
ξ
Pπ(ξ) R(ξ) dξ

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 3/18

Reinforcement Learning Basics

• The world: An MDP (S,A, P,R, P0, γ) with state space S, action space A, transition
probabilities P (st+1 | st, at), reward fct R(st, at), initial state distribution P0(s0), and
discounting factor γ ∈ [0, 1].

• The agent: A policy π(at|st).

• Together they define the path distribution (ξ = (s0:T+1, a0:T))
a0

s0

r0

a1

s1

r1

a2

s2

r2Pπ(ξ) = P (s0)

T∏
t=0

π(at|st) P (st+1|st, at)

and the expected total return

J(π) = Eξ∼Pπ

{∑∞
t=0 γ

tR(st, at)︸ ︷︷ ︸
R(ξ)

}
=

∫
ξ
Pπ(ξ) R(ξ) dξ

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 3/18

Reinforcement Learning Basics

• We assume the policy πθ(a|s) is parameterized by some θ ∈ Rn

• The problem is

max
θ

J(θ) or max
θ

∫
ξ
Pθ(ξ) R(ξ) dξ

– J(θ) is just a function we want to optimize
– J(θ) is a “weighted sum” over all paths (cf. additive cost function & SGD)
– We can’t really compute/evaluate f(θ) exactly – we can only get a sample ξ ∼ Pθ and R(ξ) in

each iteration (cf. SGD case!)
– Different:

∑
i fi(x) ↔ fixed distribution over i;

∫
ξ
Pθ(ξ)R(ξ) ↔ non-stationary distribution over ξ

Can knowing about the MDP process simplify the optimization problem?

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 4/18

Reinforcement Learning Basics

• We assume the policy πθ(a|s) is parameterized by some θ ∈ Rn

• The problem is

max
θ

J(θ) or max
θ

∫
ξ
Pθ(ξ) R(ξ) dξ

– J(θ) is just a function we want to optimize
– J(θ) is a “weighted sum” over all paths (cf. additive cost function & SGD)
– We can’t really compute/evaluate f(θ) exactly – we can only get a sample ξ ∼ Pθ and R(ξ) in

each iteration (cf. SGD case!)
– Different:

∑
i fi(x) ↔ fixed distribution over i;

∫
ξ
Pθ(ξ)R(ξ) ↔ non-stationary distribution over ξ

Can knowing about the MDP process simplify the optimization problem?

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 4/18

Reinforcement Learning Basics

• We assume the policy πθ(a|s) is parameterized by some θ ∈ Rn

• The problem is

max
θ

J(θ) or max
θ

∫
ξ
Pθ(ξ) R(ξ) dξ

– J(θ) is just a function we want to optimize
– J(θ) is a “weighted sum” over all paths (cf. additive cost function & SGD)
– We can’t really compute/evaluate f(θ) exactly – we can only get a sample ξ ∼ Pθ and R(ξ) in

each iteration (cf. SGD case!)
– Different:

∑
i fi(x) ↔ fixed distribution over i;

∫
ξ
Pθ(ξ)R(ξ) ↔ non-stationary distribution over ξ

Can knowing about the MDP process simplify the optimization problem?

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 4/18

Can knowing about the MDP process simplify the optimization problem?

• Yes, in at least 2 ways:

• Bellman optimality – we understand sth. about the optimal policy beyond KKT

• Policy gradients – we can derive gradients

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 5/18

Bellman optimality condition

• In general optimization, optima x∗ are only characterized by KKT, or stationarity

• When maxθ J(θ), we know another condition of optimality: Bellman optimality
– The value function V ∗(x) over state space fulfills

V ∗(s) = max
a

[
R(s, a) + γEs′|s,a

{
V ∗(s′)

}]
– Knowing that function implies the optimal policy π∗

– But that also raises a problem! If πθ is parameteric! And/or V (s) is parameteric! We raise extra
function approximation problems. Read:
Lagoudakis & Parr: Least-squares policy iteration. JMLR 2003

• The Bellman optimality condition truely exploits the MDP structure, and gives
further conditions on the optimum beyond stationarity of J(θ).

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 6/18

Bellman optimality condition

• In general optimization, optima x∗ are only characterized by KKT, or stationarity

• When maxθ J(θ), we know another condition of optimality: Bellman optimality
– The value function V ∗(x) over state space fulfills

V ∗(s) = max
a

[
R(s, a) + γEs′|s,a

{
V ∗(s′)

}]
– Knowing that function implies the optimal policy π∗

– But that also raises a problem! If πθ is parameteric! And/or V (s) is parameteric! We raise extra
function approximation problems. Read:
Lagoudakis & Parr: Least-squares policy iteration. JMLR 2003

• The Bellman optimality condition truely exploits the MDP structure, and gives
further conditions on the optimum beyond stationarity of J(θ).

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 6/18

Bellman optimality condition

• In general optimization, optima x∗ are only characterized by KKT, or stationarity

• When maxθ J(θ), we know another condition of optimality: Bellman optimality
– The value function V ∗(x) over state space fulfills

V ∗(s) = max
a

[
R(s, a) + γEs′|s,a

{
V ∗(s′)

}]
– Knowing that function implies the optimal policy π∗

– But that also raises a problem! If πθ is parameteric! And/or V (s) is parameteric! We raise extra
function approximation problems. Read:
Lagoudakis & Parr: Least-squares policy iteration. JMLR 2003

• The Bellman optimality condition truely exploits the MDP structure, and gives
further conditions on the optimum beyond stationarity of J(θ).

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 6/18

Bellman optimality condition

• In general optimization, optima x∗ are only characterized by KKT, or stationarity

• When maxθ J(θ), we know another condition of optimality: Bellman optimality
– The value function V ∗(x) over state space fulfills

V ∗(s) = max
a

[
R(s, a) + γEs′|s,a

{
V ∗(s′)

}]
– Knowing that function implies the optimal policy π∗

– But that also raises a problem! If πθ is parameteric! And/or V (s) is parameteric! We raise extra
function approximation problems. Read:
Lagoudakis & Parr: Least-squares policy iteration. JMLR 2003

• The Bellman optimality condition truely exploits the MDP structure, and gives
further conditions on the optimum beyond stationarity of J(θ).

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 6/18

• Learning (=optimizing) while collecting more and more data
– Unusual from the optimization perspective ↔ instable “target” (objective, ξ-distribution)
– Leads to breadth of RL-methodologies (model-based/model-free RL, TD-, Q-learning, etc)

• But there are also trends to avoid this
– “Offline RL”, classical system identification, model-based RL
– separating data collection issue from optimization issue

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 7/18

• Learning (=optimizing) while collecting more and more data
– Unusual from the optimization perspective ↔ instable “target” (objective, ξ-distribution)
– Leads to breadth of RL-methodologies (model-based/model-free RL, TD-, Q-learning, etc)

• But there are also trends to avoid this
– “Offline RL”, classical system identification, model-based RL
– separating data collection issue from optimization issue

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 7/18

Stochastic Policy Gradient

• Recall

J(θ) =

∫
ξ
Pθ(ξ) R(ξ) dξ

• We have

∇θJ(θ) = ∇θ

∫
Pθ(ξ) R(ξ) dξ =

∫
Pθ(ξ)∇θ logPθ(ξ)R(ξ)dξ

= Eξ|θ{∇θ logPθ(ξ)R(ξ)} = Eξ|θ

{∑H
t=0 ∇θ log π(at|st)R(ξ)

}
= Eξ|θ

{∑H
t=0 ∇θ log π(at|st) γt

∑H
t′=t γ

t′−trt′︸ ︷︷ ︸
Q̂ξ,t

}

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 8/18

Deterministic Policy Gradient

• However, in practise, policies are often not stochastic. Esp. neural networks. We
have a = πθ(s) ∈ Rd, parameterized by θ. What is the correct gradient then?

• As introduced in reference [2]:

∇θJ(θ) = Es∼Pθ

{
∇θπθ(s) ∇aQ

πθ(s, a)
∣∣
a=πθ(s)

}
(NOTE: unusual convention about Jacobians... I’d write it ∂aQπθ(s, a)∂θπ(s))
Silver et al: Deterministic policy gradient algorithms. 2014

• So we in principle also have a gradient! But very noisy! Better: D4PG

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 9/18

Deterministic Policy Gradient

• However, in practise, policies are often not stochastic. Esp. neural networks. We
have a = πθ(s) ∈ Rd, parameterized by θ. What is the correct gradient then?

• As introduced in reference [2]:

∇θJ(θ) = Es∼Pθ

{
∇θπθ(s) ∇aQ

πθ(s, a)
∣∣
a=πθ(s)

}
(NOTE: unusual convention about Jacobians... I’d write it ∂aQπθ(s, a)∂θπ(s))
Silver et al: Deterministic policy gradient algorithms. 2014

• So we in principle also have a gradient! But very noisy! Better: D4PG

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 9/18

Conclusions

• Can knowing about the MDP process simplify the optimization problem? Yes:
– Bellman optimality, gradients
– interleaved learning/optimization and data collection
– Esp. if “reward signal” is informative beyond total return (dense rewards)

• However, reasons to ignore structure of underlying MPD:
– Avoid implied problems, e.g. by function approximation, value estimation, policy iteration
– very noisy gradient estimates
– Robustness to mis-assumptions

• → black-box or derivative-free optimization

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 10/18

Conclusions

• Can knowing about the MDP process simplify the optimization problem? Yes:
– Bellman optimality, gradients
– interleaved learning/optimization and data collection
– Esp. if “reward signal” is informative beyond total return (dense rewards)

• However, reasons to ignore structure of underlying MPD:
– Avoid implied problems, e.g. by function approximation, value estimation, policy iteration
– very noisy gradient estimates
– Robustness to mis-assumptions

• → black-box or derivative-free optimization

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 10/18

References

• Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864.

• Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J. (2017).
Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567.

• Stulp, F., & Sigaud, O. (2013). Robot skill learning: From reinforcement learning to
evolution strategies. Paladyn, Journal of Behavioral Robotics, 4(1), 49-61.

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 11/18

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 12/18

• The ES they employ:

– Is an instance of our “General Stochastic Search” scheme:
θ is the mean; λ = n samples xt ∼ N(θ, σ2I); evaluations f(xi)

– The update is more like a stochastic gradient step rather than selection
In expectation, Fiϵi=̇(Fθ +∇F⊤σϵi)ϵi ≈ 0 + σ∇F .

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 13/18

• Ratio of ES timesteps to TRPO timesteps needed to reach various percentages of TRPO’s
learning progress at 5 million timesteps:

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 14/18

(Do you spend your time training nets, or simulating?)

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 15/18

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 16/18

• Conclusion: It varies from problem to problem what is better.
And it is suprising that “naive” black-box ES can beat elaborate RL-methods

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 17/18

Conclusions

• Overall, it is not so clear at all whether RL is actually better than
black-box/derivative-free optimization

• For small problems where we have little function approximation or noisy gradient
problems, yes; but for large scale problems?

• For discussion:
– If you have a problem with dense rewards and smooth dynamics...?

– If you have a sparse reward problem, but with smooth/easy dynamics...?
– If you have a sparse reward problem with hard dynamics...?

• RL-methods rely on reward signals/gradients that can be “propagated” through time/steps
(credit assignment, Q-learning, Bellman)

• Black-box search is ignorant to this, sometimes to the better

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 18/18

Conclusions

• Overall, it is not so clear at all whether RL is actually better than
black-box/derivative-free optimization

• For small problems where we have little function approximation or noisy gradient
problems, yes; but for large scale problems?

• For discussion:
– If you have a problem with dense rewards and smooth dynamics...?
– If you have a sparse reward problem, but with smooth/easy dynamics...?

– If you have a sparse reward problem with hard dynamics...?

• RL-methods rely on reward signals/gradients that can be “propagated” through time/steps
(credit assignment, Q-learning, Bellman)

• Black-box search is ignorant to this, sometimes to the better

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 18/18

Conclusions

• Overall, it is not so clear at all whether RL is actually better than
black-box/derivative-free optimization

• For small problems where we have little function approximation or noisy gradient
problems, yes; but for large scale problems?

• For discussion:
– If you have a problem with dense rewards and smooth dynamics...?
– If you have a sparse reward problem, but with smooth/easy dynamics...?
– If you have a sparse reward problem with hard dynamics...?

• RL-methods rely on reward signals/gradients that can be “propagated” through time/steps
(credit assignment, Q-learning, Bellman)

• Black-box search is ignorant to this, sometimes to the better

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 18/18

Conclusions

• Overall, it is not so clear at all whether RL is actually better than
black-box/derivative-free optimization

• For small problems where we have little function approximation or noisy gradient
problems, yes; but for large scale problems?

• For discussion:
– If you have a problem with dense rewards and smooth dynamics...?
– If you have a sparse reward problem, but with smooth/easy dynamics...?
– If you have a sparse reward problem with hard dynamics...?

• RL-methods rely on reward signals/gradients that can be “propagated” through time/steps
(credit assignment, Q-learning, Bellman)

• Black-box search is ignorant to this, sometimes to the better
Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning & Optimization – 18/18

