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No Free Lunch Theorem — Problem Setting

[Following The Bayesian Search Game (2012)]
e Finite(!) space X
e Distribution P(f) over functions f: X — Y

¢ A non-revisiting algorithm A generates queries x; and observations y; = f(xy).
Formally, a probabilistic algorithm is defined by

P(xt | lEl:t-h?Jl:t-lSA)

and P(zq;A).
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No Free Lunch Theorem — Problem Setting

[Following The Bayesian Search Game (2012)]

Finite(!) space X
Distribution P(f) over functions f: X — Y

A non-revisiting algorithm A generates queries x; and observations y; = f(xy).
Formally, a probabilistic algorithm is defined by

P(xt | lEl:t-h?Jl:t-lSA)

and P(zq;A).

Therefore, A interacting with random function f generates the joint process:

T
P(f,z1r,y1:m5A) = P(f) P(yr |21, f) Pl A) [[ P L2, £) Py | 210, Y1005 A)
=2
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No Free Lunch Theorem

e Theorem:
K
3h:Y 5 R st VK € N* {ay, 2k} C Xt Pfay, o for) = [[ 2(fe) (1)
k=1
T
— Va,Vr: P(yrr; A) = Hh(yi) (independent of A) (2)
i=1
e In words:

P(f) factorizes <« all A generate the same random observations

[Proof later]
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No Free Lunch Theorem — Comments

e Interpreting the LHS:
— P(furs o fore) = 1o, h(f=,) factorizes i.i.d.
— There is no mutual information between any f(x1), f(x2),x1 # x2, I(f(z1), f(z2)) =0
— Observing f(z1) reveals no information whatsoever on what f(x2) might be

— Any (non-repeating!) algorithm is equally blind and uninformed about what future observations
might be, not matter how it collected past information (z1:1.1, y1:¢1)
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No Free Lunch Theorem — Comments

Interpreting the LHS:
— P(furs o fore) = 1o, h(f=,) factorizes i.i.d.
— There is no mutual information between any f(x1), f(z2),z1 # x2, I(f(z1), f(z2)) =0
— Observing f(z1) reveals no information whatsoever on what f(x2) might be

— Any (non-repeating!) algorithm is equally blind and uninformed about what future observations
might be, not matter how it collected past information (z1:1.1, y1:¢1)

Often we have a performance metric (see later); but “all observations P(y; | ...; A) are indep.
of A” is stronger and implies equal expected performance with whatever metric

o Traditional statement: “Averaged over all problem instances, any algorithm performs equally.
(E.g. equal to random.)”

“there is no one algorithm that works best for every problem”
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No Free Lunch Theorem — Comments

e The classical citation is Wolpert & Macready (1997), but is less general than the
above and proof overly complicated and less clear in my view.
— “Averaging over all problems” — expectation w.r.t. P(f)
— “set of functions closed under permutation” — P(f) factorizes
— Our Theorem is strong < , not just = (Igel & Toussaint, 2004)
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NFL Proof

e We defined the process P(f, z1.7, y1.1; A) previously
¢ Basic definitions of probabilities to prove =-:

Py | x1:441, Y1:015 A) = Z {ZP(ytmt,f) P(f|z1e1,y1:0a) | P(ze| 212640, Y1013 A)

r€X

= > P(fo,=vt| P11, y1:1) Pl@e| 21, Y1 A)
x:€X

:Zhyt (¢ | 2101, Y1 A) = h(ye) -
r€X

Last line: A is non-revisiting, and P(f., =y | T1.41,y1:41) = P(fz, =vt) = h(yz).
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NFL Proof

e We defined the process P(f, z1.7, y1.1; A) previously
¢ Basic definitions of probabilities to prove =-:

Py | z1:-1, Y1013 A Z {EP ye | e, f) P(f | 211, Y1) | P(ze | 21200, Y1013 A)
r€X
= Z P(fz, =yt x1:61, Y1:01) P(xt | 21280, Y1:015 A)
x:€X
Zhyt (@t | @11, Y115 A) = h(ye) -
r€X

Last line: A is non-revisiting, and P(f., =y | T1.41,y1:41) = P(fz, =vt) = h(yz).

e Prove < by explicitly constructing algorithms that generate different outputs when
P(f) is non-factored. [Details in The Bayesian Search Game, 2012]
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No Free Lunch for Optimization

e Consider the problem min,cx f(x) for finite X
e Also here, an algorithm A is defined by P(xy | z1.4-1, y1:0-1;A)
¢ A typical performance metric could be regret

T
RT)=) wu—y"
t=1
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No Free Lunch for Optimization

Consider the problem min,cx f(x) for finite X

Also here, an algorithm A is defined by P(xy | z1.4.1,y1:01;A)

A typical performance metric could be regret

T
RT)=) wu—y"
t=1

But if for a non-repeating(!) A, P(y;) is indep. of A, so is the expected regret
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No Free Lunch for Machine Learning

e Given data D = {(z;,v;)}",, find a predictor f : X — y that minimizes expected
loss E{E(f(a:*), f(:c*))} for a future query z*, where f(x*) is the ground truth

e A learning algorithm A is a predictive distribution P(y | z*, D; A)
(i.e., a mapping from D to a prediction P(y|z*) for a new query z*)

e Assume X is finite and z* ¢ D (non-repeating!)

e Butif P(f) factorizes so that P(f(z*)=y) = h(y) is fully independent from D (zero
mutual information), then no algorithm can learn anything or predict better than the
prior.
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Bayes’ Theorem

P(D|X)
posterior - “a%irkr]ﬁgl(ijz;at%:]m

e Butif X isindep. from D, then there is nothing to learn or predict better than the
prior P(X)
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Conclusions from NFL?
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o NFL is an almost trivial theorem, what is non-trivial is what to make of it
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o NFL is an almost trivial theorem, what is non-trivial is what to make of it

e First pressing question:

— Does NFL also hold for continuous X? What would it mean that P(f) is factorized, or
I(f(z1), f(z2)) =0, for any z; # x> in continous X ?
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o NFL is an almost trivial theorem, what is non-trivial is what to make of it

e First pressing question:

— Does NFL also hold for continuous X? What would it mean that P(f) is factorized, or
I(f(z1), f(z2)) =0, for any z; # x> in continous X ?

e Thoughts on conclusions from NFL:
— Become aware, in your methods, what actually you are assuming - you must assume something

— Fight back if anybody ever states “we don’t (want to) make assumptions” (e.g. in a talk on RL that
claims it can solve any problem without assumptions)

— There is no Artificial General Intelligence if general would mean “making NO assumptions”. So,
the AGI community (say, Marcus Hutter) must make some assumptions — what are they exactly?

— What are assumptions we would “generally” accept to make in our physical universe? (In case
we care about Al specifically in our physical universe.)

— What are algorithms that literally start by making assumptions about P(f) and then derive an
optimal algorithm for that P(f)? (see Bayesian Search Game...)
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NFL in continuous domains

e The LHS describes P(f) with I(f(z1), f(xz2)) = 0 for any x; # x2

— How can we define probability distributions over functions (over continuous X) in the first place?
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NFL in continuous domains

e The LHS describes P(f) with I(f(z1), f(xz2)) = 0 for any x; # x2

— How can we define probability distributions over functions (over continuous X) in the first place?

e A typical way to define distributions over f : R" — R is as a Gaussian Process:

— For every finite set {z1, .., zar }, the function values f(z1), .., f(za) are Gaussian distributed with
mean and covariance

E{f(z:)} = p(xs) (often zero)
E{[f (i) = p(@a)][f (x;) — pl(z;)]} = k(zi, 2;)

where, u(x) is called mean function, and k(z, z’) is called covariance function

— w and k generalize the notion of mean vector .. and covariance matrix 3. from finite
z € {1,..,n} to continuous z € R™
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GP examples
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(from Rasmussen & Williams)
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GP examples: different covariance functions

covariance

1 2 0
input distance input, x

(from Rasmussen & Williams)

e These are examples from the ~-exponential covariance function

k(z,2') = exp{—|(z — 2")/1]"}
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NFL in continuous domains

e Back to NFL: the LHS requires I(f(x1), f(z2)) = 0, which would mean, for GPs,
zero covariance function k(x,z’') = 0 for any x # 2/
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NFL in continuous domains

e Back to NFL: the LHS requires I(f(x1), f(z2)) = 0, which would mean, for GPs,
zero covariance function k(x,z’') = 0 for any x # 2/

e At first sight this might seem ok, but

— Auger & Teytaud clarify that “zero-covariance GP” is not a proper Lebesgue measure over
function

— Conversely, they state that for any Lebesgue meassure the LHS does not hold (and claim that
Lebesgue meassures are the only sensible kind of P(f))

A. Auger and O. Teytaud: Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica, 2008
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NFL in continuous domains

e Back to NFL: the LHS requires I(f(x1), f(z2)) = 0, which would mean, for GPs,
zero covariance function k(x,z’') = 0 for any x # 2/

e At first sight this might seem ok, but

— Auger & Teytaud clarify that “zero-covariance GP” is not a proper Lebesgue measure over
function

— Conversely, they state that for any Lebesgue meassure the LHS does not hold (and claim that
Lebesgue meassures are the only sensible kind of P(f))

A. Auger and O. Teytaud: Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica, 2008

e Beyond my expertise as non-mathematician

e But the point of NFL remains the same: one would only have to replace “non-revisiting” by
“non-near-revisiting” or so.
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NFL in continuous domains — conclusions

e Whether NFL holds in continuous domains depends on what P(f) you consider
mathematically sound

e The core point remains that if I(f(x1), f(z2)) = 0 (for non-close x4, x3), no
non-(near)-revisiting algorithm can be smart

e Gaussian Processes are the simplest instance for assuming non-zero
I(f(z1), f(z2)) # 0, by assuming Gaussian dependencies between z # 2’
= GPs became a standard assumption to explicitly design algorithms exploiting
that assumption and evading NFL
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Become aware, in your methods, what actually you are assuming - you must
assume something

e What did our optimization algorithms assume so far?
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Assumptions in continuous optimization

e f is continously differentiable f € C!
— The limits exist! Clearly there are “correlations” when approaching infinitesimally!
— Sure we can predict to (infinitesimally close) points: The gradient gives an accurate 1st order
Taylor prediction (in the vicinity)
— We can predict to go downhill following the gradient.
— All this would not be possible with NFL assumptions.
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— Sure we can predict to (infinitesimally close) points: The gradient gives an accurate 1st order
Taylor prediction (in the vicinity)
— We can predict to go downhill following the gradient.
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e Lipschitz continuity of Vf(z) (assumption of SGD convergence)
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Assumptions in continuous optimization

e f is continously differentiable f € C!
— The limits exist! Clearly there are “correlations” when approaching infinitesimally!
— Sure we can predict to (infinitesimally close) points: The gradient gives an accurate 1st order
Taylor prediction (in the vicinity)
— We can predict to go downhill following the gradient.
— All this would not be possible with NFL assumptions.
e Lipschitz continuity of Vf(z) (assumption of SGD convergence)

e Strong convexity assumption (eigenvalues \ of the Hessian V2 f(z) bounded by
m < A< M) (exponential convergence of line search)
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Assumptions in continuous optimization

e f is continously differentiable f € C!
— The limits exist! Clearly there are “correlations” when approaching infinitesimally!
— Sure we can predict to (infinitesimally close) points: The gradient gives an accurate 1st order
Taylor prediction (in the vicinity)
— We can predict to go downhill following the gradient.
— All this would not be possible with NFL assumptions.

e Lipschitz continuity of Vf(z) (assumption of SGD convergence)

e Strong convexity assumption (eigenvalues \ of the Hessian V2 f(z) bounded by
m < A< M) (exponential convergence of line search)

e All assumptions are local, and were used to characterize local convergence
behavior
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Assumptions made in AGI

e Kolmogorov & Solomonoff complexity
(also not my expertise...)

Lattimore & Hutter: No free lunch versus Occam’s razor in supervised learning. In Algorithmic Probability and Friends. Bayesian
Prediction and Artificial Intelligence, 2013

Baum, Hutter, & Kitzelmann: Artificial general intelligence. In Proceedings of the Third Conference on Atrtificial General Intelligence,
2010

e Occam’s rasor: P(f) is higher for “simpler” functions f. Assuming all (relevant) f
are computable, simpler = of lower Kolmogorov/Solomonoff complexity.

e Obvious algorithm to exploit this universal prior: Sort all f by complexity, test each
in order — will be better than random.

e Can also define optimal algorithms (optimal AGI) under this universal complexity
prior
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What are assumptions we would “generally” accept to make in our physical
universe? (In case we care about Al specifically in our physical universe.)
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What are assumptions we would “generally” accept to make in our physical
universe? (In case we care about Al specifically in our physical universe.)

e Beyond full discussion here. Some thoughts:
— physics «» space xtime; things (fields/objects); local(!) interactions between things; invariances(!)
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What are assumptions we would “generally” accept to make in our physical
universe? (In case we care about Al specifically in our physical universe.)

e Beyond full discussion here. Some thoughts:
— physics «» space xtime; things (fields/objects); local(!) interactions between things; invariances(!)
— images « invariances; neighboring pixels correlated «+» convolutional features, hierarchies, CNN
— time series ++ Markovian, maybe smooth ++ HMMs, MDPs, control, etc, etc
— Robotics, Language, Text, humans, animals, etc etc
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What are algorithms that literally start by making assumptions about P(f) and then
derive an optimal algorithm for that P(f)?
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Optimal Optimization

e Optimization can be formalized as a sequential decision problem (MDP):
— Start with a prior bp = P(f)
— Choose a query z; based on b, (policy, acquisition function)
— Query z;, observe y, update data D, update belief b; < P(f | D), iterate

AR

[Bayesian Search Game]
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Optimal Optimization

e Optimization can be formalized as a sequential decision problem (MDP):
— Start with a prior bp = P(f)
— Choose a query z; based on b, (policy, acquisition function)
— Query z;, observe y, update data D, update belief b; < P(f | D), iterate

AR

[Bayesian Search Game]

e This defines a known decision process, for which we can define an optimal policy
— Can in principle be computed using Dynamic Programming — but intractable
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Bayesian Optimization in a nutshell

e We maintain a particular belief b, = P(f | D), namely a Gaussian Process
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Bayesian Optimization in a nutshell

e We maintain a particular belief b, = P(f | D), namely a Gaussian Process

e Don’t plan an optimal query policy, but use a 1-step heuristic:
¢ An acquisition function «(z, b;) characterizes how “interesting” it is to query x
next, and defines the policy

xy = argmax oz, by)
x

e Analogies:
— af(z,b,) is a descriminative function for the next decision
— a(z, b) is like a Q-function Q(b:, =) for the next decision (but not learned)
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to be continued with Bayesian Optimization...
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