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No Free Lunch Theorem – Problem Setting

[Following The Bayesian Search Game (2012)]

• Finite(!) space X

• Distribution P (f) over functions f : X → Y

• A non-revisiting algorithm A generates queries xt and observations yt = f(xt).
Formally, a probabilistic algorithm is defined by

P (xt |x1:t-1, y1:t-1;A)

and P (x1;A).

• Therefore, A interacting with random function f generates the joint process:

P (f, x1:T , y1:T ;A) = P (f) P (y1 |x1, f) P (x1;A)

T∏
t=2

P (yt |xt, f) P (xt |x1:t-1, y1:t-1;A)
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No Free Lunch Theorem

• Theorem:

∃h : Y → R s.t. ∀K ∈ N+, {x1, .., xK} ⊂ X : P (fx1
, .., fxK

) =

K∏
k=1

h(fxk
) (1)

⇐⇒ ∀A, ∀T : P (y1:T ;A) =

T∏
i=1

h(yi) (independent of A) (2)

• In words:
P (f) factorizes ⇔ all A generate the same random observations

[Proof later]
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No Free Lunch Theorem – Comments

• Interpreting the LHS:
– P (fx1 , .., fxK ) =

∏K
k=1 h(fxk ) factorizes i.i.d.

– There is no mutual information between any f(x1), f(x2), x1 ̸= x2, I(f(x1), f(x2)) = 0

– Observing f(x1) reveals no information whatsoever on what f(x2) might be
– Any (non-repeating!) algorithm is equally blind and uninformed about what future observations

might be, not matter how it collected past information (x1:t-1, y1:t-1)

• Often we have a performance metric (see later); but “all observations P (yt | ...;A) are indep.
of A” is stronger and implies equal expected performance with whatever metric

• Traditional statement: “Averaged over all problem instances, any algorithm performs equally.
(E.g. equal to random.)”

• “there is no one algorithm that works best for every problem”
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No Free Lunch Theorem – Comments

• The classical citation is Wolpert & Macready (1997), but is less general than the
above and proof overly complicated and less clear in my view.

– “Averaging over all problems”→ expectation w.r.t. P (f)

– “set of functions closed under permutation”→ P (f) factorizes
– Our Theorem is strong ⇔ , not just⇒ (Igel & Toussaint, 2004)
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NFL Proof

• We defined the process P (f, x1:T , y1:T ;A) previously

• Basic definitions of probabilities to prove ⇒:

P (yt |x1:t-1, y1:t-1;A) =
∑
xt∈X

[∑
f

P (yt |xt, f) P (f |x1:t-1, y1:t-1)
]
P (xt |x1:t-1, y1:t-1;A)

=
∑
xt∈X

P (fxt
=yt |x1:t-1, y1:t-1) P (xt |x1:t-1, y1:t-1;A)

=
∑
xt∈X

h(yt) P (xt |x1:t-1, y1:t-1;A) = h(yt) .

Last line: A is non-revisiting, and P (fxt
=yt |x1:t-1, y1:t-1) = P (fxt

=yt) = h(yt).

• Prove ⇐ by explicitly constructing algorithms that generate different outputs when
P (f) is non-factored. [Details in The Bayesian Search Game, 2012]
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No Free Lunch for Optimization

• Consider the problem minx∈X f(x) for finite X

• Also here, an algorithm A is defined by P (xk |x1:t-1, y1:t-1;A)

• A typical performance metric could be regret

R(T ) =

T∑
t=1

yt − y∗

• But if for a non-repeating(!) A, P (yt) is indep. of A, so is the expected regret
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No Free Lunch for Machine Learning

• Given data D = {(xi, yi)}ni=1, find a predictor f̂ : X → y that minimizes expected
loss E

{
ℓ(f̂(x∗), f(x∗))

}
for a future query x∗, where f(x∗) is the ground truth

• A learning algorithm A is a predictive distribution P (y |x∗, D;A)

(i.e., a mapping from D to a prediction P (y |x∗) for a new query x∗)

• Assume X is finite and x∗ ̸∈ D (non-repeating!)

• But if P (f) factorizes so that P (f(x∗)=y) = h(y) is fully independent from D (zero
mutual information), then no algorithm can learn anything or predict better than the
prior.
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Bayes’ Theorem

P (X|D) =
P (D|X)

P (D)
P (X)

posterior = likelihood · prior
normalization

• But if X is indep. from D, then there is nothing to learn or predict better than the

prior P (X)
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Conclusions from NFL?
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• NFL is an almost trivial theorem, what is non-trivial is what to make of it

• First pressing question:
– Does NFL also hold for continuous X? What would it mean that P (f) is factorized, or

I(f(x1), f(x2)) = 0, for any x1 ̸= x2 in continous X?

• Thoughts on conclusions from NFL:
– Become aware, in your methods, what actually you are assuming - you must assume something
– Fight back if anybody ever states “we don’t (want to) make assumptions” (e.g. in a talk on RL that

claims it can solve any problem without assumptions)
– There is no Artificial General Intelligence if general would mean “making NO assumptions”. So,

the AGI community (say, Marcus Hutter) must make some assumptions – what are they exactly?
– What are assumptions we would “generally” accept to make in our physical universe? (In case

we care about AI specifically in our physical universe.)
– What are algorithms that literally start by making assumptions about P (f) and then derive an

optimal algorithm for that P (f)? (see Bayesian Search Game...)
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NFL in continuous domains

• The LHS describes P (f) with I(f(x1), f(x2)) = 0 for any x1 ̸= x2
– How can we define probability distributions over functions (over continuous X) in the first place?

• A typical way to define distributions over f : Rn → R is as a Gaussian Process:
– For every finite set {x1, .., xM}, the function values f(x1), .., f(xM ) are Gaussian distributed with

mean and covariance

E{f(xi)} = µ(xi) (often zero)
E{[f(xi)− µ(xi)][f(xj)− µ(xj)]} = k(xi, xj)

where, µ(x) is called mean function, and k(x, x′) is called covariance function
– µ and k generalize the notion of mean vector µx and covariance matrix Σxx′ from finite

x ∈ {1, .., n} to continuous x ∈ Rn
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GP examples

(from Rasmussen & Williams)
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GP examples: different covariance functions

(from Rasmussen & Williams)

• These are examples from the γ-exponential covariance function

k(x, x′) = exp{−|(x− x′)/l|γ}
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NFL in continuous domains

• Back to NFL: the LHS requires I(f(x1), f(x2)) = 0, which would mean, for GPs,
zero covariance function k(x, x′) = 0 for any x ̸= x′

• At first sight this might seem ok, but
– Auger & Teytaud clarify that “zero-covariance GP” is not a proper Lebesgue measure over

function
– Conversely, they state that for any Lebesgue meassure the LHS does not hold (and claim that

Lebesgue meassures are the only sensible kind of P (f))

A. Auger and O. Teytaud: Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica, 2008

• Beyond my expertise as non-mathematician

• But the point of NFL remains the same: one would only have to replace “non-revisiting” by
“non-near-revisiting” or so.
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NFL in continuous domains – conclusions

• Whether NFL holds in continuous domains depends on what P (f) you consider
mathematically sound

• The core point remains that if I(f(x1), f(x2)) = 0 (for non-close x1, x2), no
non-(near)-revisiting algorithm can be smart

• Gaussian Processes are the simplest instance for assuming non-zero
I(f(x1), f(x2)) ̸= 0, by assuming Gaussian dependencies between x ̸= x′

⇒ GPs became a standard assumption to explicitly design algorithms exploiting
that assumption and evading NFL

Learning and Intelligent Systems Lab, TU Berlin No Free Lunch – 17/25



Become aware, in your methods, what actually you are assuming - you must
assume something

• What did our optimization algorithms assume so far?
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Assumptions in continuous optimization

• f is continously differentiable f ∈ C1!
– The limits exist! Clearly there are “correlations” when approaching infinitesimally!
– Sure we can predict to (infinitesimally close) points: The gradient gives an accurate 1st order

Taylor prediction (in the vicinity)
– We can predict to go downhill following the gradient.
– All this would not be possible with NFL assumptions.

• Lipschitz continuity of ∇f(x) (assumption of SGD convergence)

• Strong convexity assumption (eigenvalues λ of the Hessian ∇2f(x) bounded by
m < λ < M ) (exponential convergence of line search)

• All assumptions are local, and were used to characterize local convergence
behavior
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Assumptions made in AGI

• Kolmogorov & Solomonoff complexity
(also not my expertise...)
Lattimore & Hutter: No free lunch versus Occam’s razor in supervised learning. In Algorithmic Probability and Friends. Bayesian
Prediction and Artificial Intelligence, 2013

Baum, Hutter, & Kitzelmann: Artificial general intelligence. In Proceedings of the Third Conference on Artificial General Intelligence,
2010

• Occam’s rasor: P (f) is higher for “simpler” functions f . Assuming all (relevant) f
are computable, simpler = of lower Kolmogorov/Solomonoff complexity.

• Obvious algorithm to exploit this universal prior: Sort all f by complexity, test each
in order – will be better than random.

• Can also define optimal algorithms (optimal AGI) under this universal complexity
prior
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What are assumptions we would “generally” accept to make in our physical
universe? (In case we care about AI specifically in our physical universe.)

• Beyond full discussion here. Some thoughts:
– physics↔ space×time; things (fields/objects); local(!) interactions between things; invariances(!)
– images↔ invariances; neighboring pixels correlated↔ convolutional features, hierarchies, CNN
– time series↔ Markovian, maybe smooth↔ HMMs, MDPs, control, etc, etc
– Robotics, Language, Text, humans, animals, etc etc
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What are algorithms that literally start by making assumptions about P (f) and then
derive an optimal algorithm for that P (f)?
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Optimal Optimization

• Optimization can be formalized as a sequential decision problem (MDP):
– Start with a prior b0 = P (f)

– Choose a query xt based on bt (policy, acquisition function)
– Query xt, observe yt, update data D, update belief bt ← P (f |D), iterate

x1 y1 x2 y2 xT

Rf

b0 b1 b2

[Bayesian Search Game]

• This defines a known decision process, for which we can define an optimal policy
– Can in principle be computed using Dynamic Programming – but intractable
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Bayesian Optimization in a nutshell

• We maintain a particular belief bt = P (f |D), namely a Gaussian Process

• Don’t plan an optimal query policy, but use a 1-step heuristic:

• An acquisition function α(x, bt) characterizes how “interesting” it is to query x

next, and defines the policy

xt = argmax
x

α(x, bt)

• Analogies:
– α(x, bt) is a descriminative function for the next decision
– α(x, bt) is like a Q-function Q(bt, x) for the next decision (but not learned)
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to be continued with Bayesian Optimization...
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