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Global Optimization

• Let x ∈ Rn, f : Rn → R, find

min
x

f(x)

• Blackbox optimization: find a global optimium by sampling values yt = f(xt)

– No access to ∇f or ∇2f

– Observations may be noisy y ∼ N(y | f(xt), σ
2)

• Global Optimization = infinite Bandits, with infinite decision space, x ∈ Rn

– Bandit problems are archetype for sequential decision making under uncertainty
– Upper Confidence Bound (UCB) decisions have provably bounded regret!
– Resolves exploration/exploitation “dilemma”
– Bayesian Optimization (GP-UCB) transfers bandits to continuous decisions x ∈ Rn
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Random Restarts (run downhill multiple times)

• first the most basic approach...

• We assume to have a start distribution q(x), and restart greedy search:

1: repeat
2: Sample x ∼ q(x)

3: x← GreedySearch(x) or StochasticSearch(x)
4: If f(x) < f(x∗) then x∗ ← x

5: until run out of budget

• When gradients are available, replace greedy search by BFGS or Newton

• Can we not learn more from all the evaluated points and found local optima?
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Optimizing and Learning

• Blackbox optimization is often related to learning:
– When we have local a gradient or Hessian, we can take that local information and run downhil –

no need to keep track of the history or learn (exception: BFGS, momentum)
– In the Blackbox case we have no local information directly accessible → one needs to account of

the history in some way or another to have an idea where to continue search

• “Accounting for the history” often means learning or maintaining data:
– Learning a local or global model of f itself, learning which steps have been successful recently

(gradient estimation), or which step directions, or other heuristics
– Maintaining data: populations, evolutionary algorithms, EDAs, etc.

Learning and Intelligent Systems Lab, TU Berlin Bayesian Optimization – 5/25



• Where we left when discussing No Free Lunch:

What are algorithms that literally start by making assumptions about P (f) and then
derive an optimization algorithm for that P (f)?

• In Bayesian Optimization we maintain a particular belief bt = P (f |D), namely a
Gaussian Process, and choose the next query based on that.
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Gaussian Processes

• In my ML lectures, I introduce Gaussian Processes as Bayesian Kernel Ridge Regression
But here, the function space view of GPs relates more directly to NLF
(see also Welling: “Kernel Ridge Regression” Lecture Notes; Rasmussen & Williams sections 2.1 & 6.2; Bishop
sections 3.3.3 & 6)
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Gaussian Process definition
• The function space view: We have a prior P (f) and data, then

P (f |Data) =
P (Data|f) P (f)

P (Data)
• Gaussian Processes define a probability distribution over functions:

– A function is an infinite dimensional thing – how could we define a Gaussian distribution over
functions?

– For every finite set {x1, .., xM}, the function values f(x1), .., f(xM ) are Gaussian distributed with
mean and covariance

E{f(xi)} = µ(xi) (often zero)
E{[f(xi)− µ(xi)][f(xj)− µ(xj)]} = k(xi, xj)

where, µ(x) is called mean function, and k(x, x′) is called covariance function
– µ and k generalize the notion of mean vector µx and covariance matrix Σxx′ from finite

x ∈ {1, .., n} to continuous x ∈ Rn

• Second, Gaussian Processes define an observation probability

P (y|x, f) = N(y|f(x), σ2
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Gaussian Process posterior

• Given a Gaussian Process prior GP (f |µ, k) over f and data D = {(xi, yi)}ni=1, the posterior
P (f |D) has new posterior mean and variance:

E{f(x) |D} = µ(x|D) = κ(x)⊤(K + σ2
0I)

-1y

E
{
[f(x)− f̂(x)]2 |D

}
= σ2(x|D) = k(x, x)− κ(x)⊤(K + σ2

0In)
-1κ(x)

where κ(x) = (k(x, x1), . . . , k(x, xn))⊤∈ Rn contains covariances of x to all data points; K = (k(xi, xj))
n,n
i,j=1

contains covariances between all data points; and y = (y1, . . . , yn)⊤∈ Rn contains all data output values; the
choice of kernel k(·, ·) and the observation sdv σ0 are parameters

• Side notes:
– Note: Don’t forget that Var(y∗|x∗, D) = σ2

0 + Var(f(x∗)|D)

– Gaussian Processes = Bayesian Kernel Ridge Regression
– GP classification = Bayesian Kernel Logistic Regression
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GP examples

(from Rasmussen & Williams)
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GP examples: different covariance functions

(from Rasmussen & Williams)

• These are examples from the γ-exponential covariance function

k(x, x′) = a exp{−|(x− x′)/l|γ}

with a the prior variance of function values
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GP examples: derivative observations

(from Rasmussen & Williams)
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Heuristics / Acquisition Functions
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Bayesian Optimization Algorithm

Input: GP prior given as µ(x) and k(x, x′), black-box function f(x)

Output: x

1: initialize empty data D = {}
2: repeat
3: find optimal query x← argmaxx α(x|D) (where α depends on µ(x|D), σ2(x|D))
4: query y ← f(x)

5: add to data D ← D ∪ {(x, y)}, update GP posterior µ(x|D), σ2(x|D)

6: until resources

• α(x;D) is called acquisition function
– α(x;D) characterizes how “interesting” it is to query x next, given D

– α(x;D) is a descriminative function for the next decision
– α(x;D) analogous to a Q-function Q(D,x) for the next decision x in state D
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Acquisition Functions

• Maximize Probability of Improvement (MPI)

α(x;D) =

∫ y∗

−∞
N(y|µD(x), σ

2
D(x))

• Maximize Expected Improvement (EI)

α(x;D) =

∫ y∗

−∞
N(y|µD(x), σ

2
D(x)) (y

∗ − y)

• Maximize UCB

α(x;D) = µD(x) + βtσ
2
D(x)

(from Jones, 2001)

(Often, βt = 1 is chosen. UCB theory allows for better choices. See Srinivas et al. citation.)
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Each step requires solving an optimization problem

• Note: each argmaxx α(x) on the previous slide is an optimization problem!

• As µ(x|D), σ2(x|D) are given analytically, we have gradients and Hessians. BUT:
multi-modal problem!

• In practice:
– Many restarts of gradient/2nd-order optimization runs
– Restarts from a grid; from many random points

• We traded a blackbox global optimization problem by solving an analytical global
optimization problem in each iteration:

– Assumes evaluating the real f(x) is very expensive
– The inner problem is analytical, can exploit gradients/Hessian, can run without real-world queries
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GP-UCB
From: Information-theoretic regret bounds for gaussian process optimization in the bandit setting Srinivas, Krause,
Kakade & Seeger, Information Theory, 2012.
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Pitfall of using GPs as belief

• A real issue, in my view, is the choice of kernel (i.e. prior P (f))
– ’small’ kernel: almost exhaustive search
– ’wide’ kernel: miss local optima
– adapting/choosing kernel online (with CV): might fail
– real f might be non-stationary
– non RBF kernels? Too strong prior, strange extrapolation

• Assuming that we have the right prior P (f) is really a strong assumption
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Further reading

• Classically, such methods are known as Kriging

• Information-theoretic regret bounds for gaussian process optimization in the bandit
setting Srinivas, Krause, Kakade & Seeger, Information Theory, 2012.

• Efficient global optimization of expensive black-box functions. Jones, Schonlau, &
Welch, Journal of Global Optimization, 1998.

• A taxonomy of global optimization methods based on response surfaces Jones,
Journal of Global Optimization, 2001.

• Explicit local models: Towards optimal optimization algorithms, Poland, Technical
Report No. IDSIA-09-04, 2004.
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Further reading: Entropy Search

• P. Hennig & C. Schuler: Entropy Search for Information-Efficient Global
Optimization, JMLR 13 (2012).

• Predictive Entropy Search

• Hernández-Lobato, Hoffman & Ghahraman: Predictive Entropy Search for Efficient
Global Optimization of Black-box Functions, NIPS 2014.

• Also for constraints!

• Code: https://github.com/HIPS/Spearmint/
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Note: beyond Gaussian Processes

• Use emsembles (e.g. bootstrap ensembles) of models and their discrepancy to
decide on information gain, rather than variance!

– Can be realized also with more complicated function models (NNs)
– covariance function is implicit and more structured
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Appendix

Other basic approaches...
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Iterated Local Search

• Iterated Local Search (in discrete spaces) restarts in a meta-neighborhood N∗(x) of the
last visited local minimum x

• Iterated Local Search (Variant 1):

Input: initial x, function f(x)

1: repeat
2: x← argminy′∈{GreedySearch(y) : y∈N∗(x)} f(y

′)

3: until x converges

– This evalutes a GreedySearch for all meta-neighbors y ∈ N∗(x) of the last local optimum x

– The inner GreedySearch uses another neighborhood function N(x)

• Variant 2: x← the “first” y ∈ N∗(x) such that f(GS(y)) < f(x)

• In continuous space: N(x) and N∗(x) are replaced by transition proposals q(y|x) and
q∗(y|x)
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Iterated Local Search

• Application to Travelling Salesman Problem:
k-opt neighbourhood: solutions which differ by at most k edges

from Hoos & Stützle: Tutorial: Stochastic Search Algorithms

• GreedySearch uses 2-opt or 3-opt neighborhood
Iterated Local Search uses 4-opt meta-neighborhood (double bridges)
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