

Optimization Algorithms

Bayesian Optimization

Marc Toussaint Technical University of Berlin Winter 2024/25

References

- *Information-theoretic regret bounds for gaussian process optimization in the bandit setting* Srinivas, Krause, Kakade & Seeger, Information Theory, 2012.
- *A taxonomy of global optimization methods based on response surfaces* Jones, Journal of Global Optimization, 2001.
- *Explicit local models: Towards optimal optimization algorithms*, Poland, Technical Report No. IDSIA-09-04, 2004.

Global Optimization

• Let $x \in \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$, find

 $\min_{x} f(x)$

- Blackbox optimization: find a global optimium by sampling values $y_t = f(x_t)$
	- $-$ No access to $\nabla \! f$ or $\nabla^2 f$
	- $-$ Observations may be noisy $y \sim \mathcal{N}(y \,|\, f(x_t), \sigma^2)$

Global Optimization

• Let $x \in \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$, find

 $\min_{x} f(x)$

- Blackbox optimization: find a global optimium by sampling values $y_t = f(x_t)$
	- $-$ No access to $\nabla \! f$ or $\nabla^2 f$
	- $-$ Observations may be noisy $y \sim \mathcal{N}(y \,|\, f(x_t), \sigma^2)$
- Global Optimization = infinite Bandits, with infinite decision space, $x \in \mathbb{R}^n$
	- Bandit problems are archetype for sequential decision making under uncertainty
	- Upper Confidence Bound (UCB) decisions have provably bounded regret!
	- Resolves exploration/exploitation "dilemma"
	- Bayesian Optimization (GP-UCB) transfers bandits to continuous decisions $x \in \mathbb{R}^n$

Random Restarts (run downhill multiple times)

• first the most basic approach...

Bayesian Optimization – 4/25

Random Restarts (run downhill multiple times)

- first the most basic approach...
- We assume to have a start distribution $q(x)$, and restart greedy search:

1: **repeat**

```
2: Sample x \sim q(x)
```
- 3: $x \leftarrow$ GreedySearch (x) Or StochasticSearch (x)
- 4: **If** $f(x) < f(x^*)$ then $x^* \leftarrow x$

5: **until** run out of budget

• When gradients are available, replace greedy search by BFGS or Newton

Random Restarts (run downhill multiple times)

- first the most basic approach...
- We assume to have a start distribution $q(x)$, and restart greedy search:

1: **repeat**

```
2: Sample x \sim q(x)
```
- 3: $x \leftarrow$ GreedySearch (x) Or StochasticSearch (x)
- 4: **If** $f(x) < f(x^*)$ then $x^* \leftarrow x$

5: **until** run out of budget

- When gradients are available, replace greedy search by BFGS or Newton
- Can we not *learn* more from all the evaluated points and found local optima?

Optimizing and Learning

- Blackbox optimization is often related to learning:
	- When we have local a gradient or Hessian, we can take that local information and run downhil no need to keep track of the history or learn (exception: BFGS, momentum)
	- In the Blackbox case we have no local information directly accessible \rightarrow one needs to account of the history in some way or another to have an idea where to continue search
- "Accounting for the history" often means learning or maintaining data:
	- $-$ Learning a local or global model of f itself, learning which steps have been successful recently (gradient estimation), or which step directions, or other heuristics
	- Maintaining data: populations, evolutionary algorithms, EDAs, etc.

• Where we left when discussing No Free Lunch:

What are algorithms that literally start by making assumptions about P(f) *and then derive an optimization algorithm for that* P(f)*?*

• In Bayesian Optimization we maintain a particular belief $b_t = P(f | D)$, namely a *Gaussian Process*, and choose the next query based on that.

Gaussian Processes

• In my ML lectures, I introduce Gaussian Processes as Bayesian Kernel Ridge Regression But here, the function space view of GPs relates more directly to NLF (see also Welling: "Kernel Ridge Regression" Lecture Notes; Rasmussen & Williams sections 2.1 & 6.2; Bishop sections 3.3.3 & 6)

Gaussian Process definition

• The function space view: We have a prior $P(f)$ and data, then

$$
P(f|\text{Data}) = \frac{P(\text{Data}|f) \ P(f)}{P(\text{Data})}
$$

- Gaussian Processes define a probability distribution over functions:
	- A function is an infinite dimensional thing how could we define a Gaussian distribution over functions?
	- For every finite set $\{x_1, ..., x_M\}$, the function values $f(x_1), ..., f(x_M)$ are Gaussian distributed with mean and covariance

 $\mathbb{E}{f(x_i)} = \mu(x_i)$ (often zero) $\mathbb{E}\{[f(x_i) - \mu(x_i)][f(x_i) - \mu(x_i)]\} = k(x_i, x_i)$

where, $\mu(x)$ is called **mean function**, and $k(x, x')$ is called **covariance function**

- $-\mu$ and k generalize the notion of *mean vector* μ_x and *covariance matrix* $\Sigma_{xx'}$ from finite $x \in \{1,..,n\}$ to continuous $x \in \mathbb{R}^n$
- Second, Gaussian Processes define an observation probability

 $P(y|x, f) = \mathcal{N}(y|f(x), \sigma_0^2)$

Bayesian Optimization – 8/25

Gaussian Process posterior

 $\bullet\,$ Given a Gaussian Process prior $GP(f|\mu, k)$ over f and data $D = \{(x_i, y_i)\}_{i=1}^n,$ the posterior $P(f | D)$ has new posterior mean and variance:

$$
\mathbb{E}\left\{f(x) | D\right\} = \mu(x|D) = \kappa(x)^{\top}(K + \sigma_0^2 \mathbf{I})^{-1}y
$$

$$
\mathbb{E}\left\{ [f(x) - \hat{f}(x)]^2 | D\right\} = \sigma^2(x|D) = k(x, x) - \kappa(x)^{\top}(K + \sigma_0^2 \mathbf{I}_n)^{-1}\kappa(x)
$$

where $\kappa(x)=(k(x,x_1),\ldots,k(x,x_n))^{\top}\in\mathbb{R}^n$ contains covariances of x to all data points; $K=(k(x_i,x_j))_{i,j=1}^{n,n}$ contains covariances between all data points; and $y = (y_1, \ldots, y_n)^\top \in \mathbb{R}^n$ contains all data output values; the choice of kernel $k(\cdot, \cdot)$ and the observation sdv σ_0 are parameters

- Side notes:
	- Note: Don't forget that $\mathsf{Var}(y^*|x^*, D) = \sigma_0^2 + \mathsf{Var}(f(x^*)|D)$
	- Gaussian Processes = Bayesian Kernel Ridge Regression
	- GP classification = Bayesian Kernel Logistic Regression

GP examples

(from Rasmussen & Williams)

GP examples: different covariance functions

⁽from Rasmussen & Williams)

• These are examples from the γ -exponential covariance function

$$
k(x, x') = a \, \exp\{-|(x - x')/l|^{\gamma}\}
$$

with a the prior variance of function values Learning and Intelligent Systems Lab, TU Berlin

Bayesian Optimization – 11/25

GP examples: derivative observations

(from Rasmussen & Williams)

Bayesian Optimization – 12/25

Heuristics / Acquisition Functions

Bayesian Optimization Algorithm

```
Input: GP prior given as \mu(x) and k(x, x'), black-box function f(x)Output: x
```

```
1: initialize empty data D = \{\}
```

```
2: repeat
```
- 3: find optimal query $x \leftarrow \text{argmax}_x \alpha(x|D)$ (where α depends on $\mu(x|D), \sigma^2(x|D)$)
- 4: query $y \leftarrow f(x)$
- 5: add to data $D \leftarrow D \cup \{(x, y)\}$, update GP posterior $\mu(x|D), \sigma^2(x|D)$

```
6: until resources
```
- $\alpha(x; D)$ is called **acquisition function**
	- $-\alpha(x;D)$ characterizes how "interesting" it is to query x next, given D
	- $-\alpha(x;D)$ is a descriminative function for the next decision
	- $-\alpha(x;D)$ analogous to a Q-function $Q(D,x)$ for the next decision x in state D

Acquisition Functions

• Maximize Probability of Improvement (MPI)

$$
\alpha(x; D) = \int_{-\infty}^{y^*} \mathcal{N}(y | \mu_D(x), \sigma_D^2(x))
$$

• Maximize Expected Improvement (EI)

$$
\alpha(x;D) = \int_{-\infty}^{y^*} \mathcal{N}(y|\mu_D(x), \sigma_D^2(x)) (y^* - y)
$$

• Maximize UCB

 $Predictor(x)$ StandardError(x) f_{min} τ

Figure 14. Using kriging, we can estimate the probability that sampling at a give 'improve' our solution, in the sense of yielding a value that is equal or better than T

(from Jones, 2001)

 10

$$
\alpha(x; D) = \mu_D(x) + \beta_t \sigma_D^2(x)
$$

(Often, $\beta_t = 1$ is chosen. UCB theory allows for better choices. See Srinivas et al. citation.)

Bayesian Optimization – 15/25

Each step requires solving an optimization problem

- Note: each $\argmax_{x} \alpha(x)$ on the previous slide is an optimization problem!
- As $\mu(x|D), \sigma^2(x|D)$ are given analytically, we have gradients and Hessians. BUT: multi-modal problem!
- In practice:
	- Many restarts of gradient/2nd-order optimization runs
	- Restarts from a grid; from many random points

Each step requires solving an optimization problem

- Note: each $\argmax_{\alpha}(x)$ on the previous slide is an optimization problem!
- As $\mu(x|D), \sigma^2(x|D)$ are given analytically, we have gradients and Hessians. BUT: multi-modal problem!
- In practice:
	- Many restarts of gradient/2nd-order optimization runs
	- Restarts from a grid; from many random points
- We traded a *blackbox* global optimization problem by solving an *analytical* global optimization problem in each iteration:
	- Assumes evaluating the real $f(x)$ is very expensive
	- The inner problem is analytical, can exploit gradients/Hessian, can run without real-world queries

GP-UCB

From: *Information-theoretic regret bounds for gaussian process optimization in the bandit setting* Srinivas, Krause, Kakade & Seeger, Information Theory, 2012.

Fig. 2. (a) Example of temperature data collected by a network of 46 sensors at Intel Research Berkeley. (b) and (c) Two iterations of the GP-UCB algorithm. The dark curve indicates the current posterior mean, while the gray bands represent the upper and lower confidence bounds which contain the function with high probability. The "+" mark indicates points that have been sampled before, while the "0" mark shows the point chosen by the GP-UCB algorithm to sample next. It samples points that are either (b) uncertain or have (c) high posterior mean.

Learning and Intelligent Systems Lab, TU Berlin

Bayesian Optimization – 17/25

Fig. 6. Mean average regret: GP-UCB and various heuristics on (a) synthetic and (b, c) sensor network data.

Fig. 7. Mean minimum regret: GP-UCB and various heuristics on (a) synthetic, and (b, c) sensor network data.

Bayesian Optimization – 18/25

Pitfall of using GPs as belief

- A real issue, in my view, is the choice of kernel (i.e. prior $P(f)$)
	- 'small' kernel: almost exhaustive search
	- 'wide' kernel: miss local optima
	- adapting/choosing kernel online (with CV): might fail
	- $-$ real f might be non-stationary
	- non RBF kernels? Too strong prior, strange extrapolation
- Assuming that we have the right prior $P(f)$ is really a strong assumption

Further reading

- Classically, such methods are known as *Kriging*
- *Information-theoretic regret bounds for gaussian process optimization in the bandit setting* Srinivas, Krause, Kakade & Seeger, Information Theory, 2012.
- *Efficient global optimization of expensive black-box functions.* Jones, Schonlau, & Welch, Journal of Global Optimization, 1998.
- *A taxonomy of global optimization methods based on response surfaces* Jones, Journal of Global Optimization, 2001.
- *Explicit local models: Towards optimal optimization algorithms*, Poland, Technical Report No. IDSIA-09-04, 2004.

Further reading: Entropy Search

- P. Hennig & C. Schuler: *Entropy Search for Information-Efficient Global Optimization*, JMLR 13 (2012).
- **Predictive Entropy Search**
- Hernández-Lobato, Hoffman & Ghahraman: *Predictive Entropy Search for Efficient Global Optimization of Black-box Functions*, NIPS 2014.
- Also for constraints!
- Code: <https://github.com/HIPS/Spearmint/>

Note: beyond Gaussian Processes

- Use emsembles (e.g. bootstrap ensembles) of models and their discrepancy to decide on information gain, rather than variance!
	- Can be realized also with more complicated function models (NNs)
	- covariance function is implicit and more structured

Appendix

Other basic approaches...

Iterated Local Search

- Iterated Local Search (in discrete spaces) restarts in a **meta-neighborhood** N[∗] (x) of the last visited local minimum x
- Iterated Local Search (Variant 1):

```
Input: initial x, function f(x)1: repeat
2: x \leftarrow \text{argmin}_{y' \in \{\text{GreedySearch}(y) : y \in \mathbb{N}^*(x)\}} f(y')3: until x converges
```
- This evalutes a GreedySearch for all meta-neighbors $y \in \mathcal{N}^*(x)$ of the last local optimum x
- The inner GreedySearch uses another neighborhood function $N(x)$
- Variant 2: $x \leftarrow$ the "first" $y \in \mathcal{N}^*(x)$ such that $f(\text{GS}(y)) < f(x)$
- In continuous space: $N(x)$ and $N^*(x)$ are replaced by transition proposals $q(y|x)$ and $q^*(y|x)$

Iterated Local Search

- Application to Travelling Salesman Problem:
	- k -opt neighbourhood: solutions which differ by at most k edges

from Hoos & Stützle: *Tutorial: Stochastic Search Algorithms*

• GreedySearch uses 2-opt or 3-opt neighborhood Iterated Local Search uses 4-opt meta-neighborhood (double bridges)

Learning and Intelligent Systems Lab, TU Berlin

Bayesian Optimization – 25/25