
Optimization Algorithms

Weekly Exercise 1

Marc Toussaint

Learning & Intelligent Systems Lab, TU Berlin

Marchstr. 23, 10587 Berlin, Germany

Winter 2024/25

1 Toy Problems and Plotting

Consider the following functions over x ∈ Rn:

fsq(x) = x⊤Cx , (1)

fhole(x) =
x⊤Cx

a2 + x⊤Cx
, (2)

fexp(x) = − exp
(
− 1

2
x⊤Cx

)
. (3)

For C = I (identity matrix) the first would be fairly simple to optimize. The C matrix changes the conditioning (ratio

of largest and smalles Hessian eigenvalues) of these functions and makes them more interesting. We assume that C is

a diagonal matrix with entries Cii = c
i−1
n−1 .

a) What are the gradients ∇f(x) of these three functions?

b) What are the Hessians ∇2f(x) of these three functions?

c) Implement these functions in python and plot the above functions for c = 10 and a = .1 over x = [−1, 1]2. Tip:

First evaluate the function over a np.meshgrid, then matplotlib and plot_surface are useful.

Outlook: We will soon have the first coding assignments, where you have to implement both, the problems (functions

and their gradients), and the solvers. If you want to try already, implement the above functions to also return

the gradient. Then try vanilla gradient descent starting at x0 = (1, 1), outputting basic information (#iteration,

current-cost) in each iteration, and storing the trace x0,.. in a matrix for plotting.

a) The following assumes that C is symmetric (not necessarily diagonal)

As column vectors:

∇fsq(x) = 2Cx (4)

∇fhole(x) =
2

a2 + xTCx
Cx− 2

xTCx

(a2 + xTCx)2
Cx =

2a2

(a2 + xTCx)2
Cx (5)

∇fexp(x) = exp
(
− 1

2
x⊤Cx

)
(Cx) (6)

b)

∇2fsq(x) = 2C (7)

∇2fhole(x) =
2a2

(a2 + xTCx)2
C − 8a2

(a2 + xTCx)3
CxxTC (8)

∇2fexp(x) = − exp
(
− 1

2
x⊤Cx

)
Cx(xTC) + exp

(
− 1

2
x⊤Cx

)
C (9)

Plotting solution at the end.

1

Optimization Algorithms
Weekly Exercise 1, Marc Toussaint—Winter 2024/25 2

2 Convergence proof

The following aims to guide you through a proof of the convergence theorem. This course is not focussing on theory – so this

is an exception. But the steps below are also a good exercise to train basic maths that is relevant throughout the course.

We are given a function f : Rn → R with fMin = minx f(x). Assume that the eigenvalues of its Hessian ∇2f are lower bounded

by m > 0 and upper bounded by M > m, with m,M ∈ R. Recall that the 2nd-order Taylor approximation of f(y) around x is

f(y) ≈ f(x) +∇f(x)⊤(y − x) +
1

2
(y − x)⊤∇2f(x)(y − x)

a) Analogous to the 2nd Taylor, provide an upper and lower bound of f(y), using the upper and lower curvatures M and m,

respectively. This tells us that the function f(y) is “squeezed” between a lower bound paraboloid with minimal curvature,

and an upper bound paraboloid with maximal curvature, which “touch” each other at location x with value f(x) and

gradient ∇f(x).

b) Find the minima of both, the upper and lower bound paraboloids. Then prove that for any x ∈ Rn it holds

f(x)− 1

2m
|∇f(x)|2 ≤ fMin ≤ f(x)− 1

2M
|∇f(x)|2 .

as well as

|∇f(x)|2 ≥ 2m(f(x)− fMin) .

c) Consider backtracking line search with Wolfe parameter ϱls ≤ 1
2
, and step decrease factor ϱ−α . Assume that α ≤ 1

M
.

Prove that the step x + αδ fulfills the Wolfe condition (is sufficiently decreasing the function) and therefore line search

terminates.

d) Also argue that, if α is initially large but then repeatedly decreased with α ← ϱ−αα, line search terminates for some α

within
ϱ−α
M
≤ α ≤ 1

M
.

e) Conclude the prove by showing that line search stops at a point y for which

f(y) ≤ f(x)− ϱlsϱ
−
α

M
|∇f(x)|2 .

and

f(y)− fMin ≤
[
1− 2mϱlsϱ

−
α

M

]
(f(x)− fMin) .

a) From Taylor’s theorem (with the mean-value forms of the remainder), we have

f(y) = f(x) +∇f(x)⊤(y − x) +
1

2
(y − x)⊤∇2f(z)(y − x), (10)

with z = tx+ (1− t)y for some t ∈ [0, 1].

—

Note: The expression above is related to the 2nd-order Taylor approximation of f(y) around x.

f(y) ≈ f(x) +∇f(x)⊤(y − x) +
1

2
(y − x)⊤∇2f(x)(y − x), (11)

In (11), we can repace the ≈ with = when ||y − x|| → 0. On the other hand, (10) holds with equality for some t.

—

Let ∇2f(z) = QΛQ⊤ be the Eigendecomposition of the Hessian matrix with Λ = diag(λ1, · · · , λn), M ≥ λ1 > · · · > λn ≥
m > 0. Because Q is an orthogonal matrix, we can represent any v ∈ Rn as v = Qw. This leads to

v⊤∇2f(z)v = w⊤Q⊤QΛQ⊤Qw = wTΛw =
∑
i

λiw
2
i (12)

∴ m|v|2 ≤ v⊤∇2f(z)v ≤M |v|2. (13)

Substituting this into (10) gives us an upper and lower bound of f(y):

f(x) +∇f(x)⊤(y − x) +
m

2
||y − x||2 ≤ f(y) ≤ f(x) +∇f(x)⊤(y − x) +

M

2
||y − x||2. (14)

b) The minimum of the lower bound, flb(y) = f(x) +∇f(x)⊤(y − x) + m
2
(y − x)2, can be obtained analytically as:

∂flb(y)

∂y
= ∇f(x)⊤+m(y − x)⊤= 0 (15)

∴ y∗
lb = x+

∇f(x)
m

, f∗
lb = f(x)− 1

2m
|∇f(x)|2. (16)

Optimization Algorithms
Weekly Exercise 1, Marc Toussaint—Winter 2024/25 3

Similarly for the upper bound, fub(y) = f(x) +∇f(x)⊤(y − x) + M
2
||y − x||2, we have

y∗
ub = x+

∇f(x)
m

, f∗
ub = f(x)− 1

2M
|∇f(x)|2. (17)

This leads to

f(x)− 1

2m
|∇f(x)|2 ≤ fMin ≤ f(x)− 1

2M
|∇f(x)|2 (18)

and

|∇f(x)|2 ≥ 2m(f(x)− fMin) . (19)

c) Substitute y = x− α∇f(x) into fub and use α ≤ 1
M
:

f(y) ≤ f(x)− α|∇f(x)|2 + Mα2

2
|∇f(x)|2 (20)

≤ f(x)− α

2
|∇f(x)|2 (21)

≤ f(x)− ϱlsα|∇f(x)|2 (22)

(Here the step δ = −∇f .) We just proved α ≤ 1
M
⇒ (Wolfe condition holds) ⇒ (line search stops)

d) Since α decays exponentially with the factor ϱ−α until it becomes smaller than 1
α
(as we proved in c)), the line search will

terminate with the parameter
ϱ−α
M

< α ≤ 1
M
.

e) Applying
ϱ−α
M

< α to (22) gives

f(y) < f(x)− ϱlsϱ
−
α

M
|∇f(x)|2 (23)

Finally, we can prove the exponential convergence of backtracking line search:

f(y)− fMin < f(x)− fMin −
ϱlsϱ

−
α

M
|∇f(x)|2 (24)

< f(x)− fMin −
2mϱlsϱ

−
α

M
(f(x)− fMin) (25)

<
[
1− 2mϱlsϱ

−
α

M

]
(f(x)− fMin) (26)

Notes: This proof works for convex functions. During the proof, we have used that m and M are positive. In the

non-convex case, gradient descent convergences only to a local optimum or saddle point.

#!/usr/bin/python3

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

simple quadratic function

def myfunc(x):

y = np.array(x)

fx = y.T @ y

return fx

def plotFunc(f, bounds_lo, bounds_up, trace_xy = None, trace_z = None):

x = np.linspace(bounds_lo[0], bounds_up[0], 30)

y = np.linspace(bounds_lo[1], bounds_up[1], 30)

xMesh, yMesh = np.meshgrid(x, y, indexing=’ij’)

zMesh = np.zeros_like(xMesh)

for i in range(x.shape[0]):

for j in range(y.shape[0]):

zMesh[i,j] = f([xMesh[i,j], yMesh[i,j]])

Optimization Algorithms
Weekly Exercise 1, Marc Toussaint—Winter 2024/25 4

fig = plt.figure(figsize=(12,6))

ax1 = fig.add_subplot(121, projection="3d")

surf = ax1.plot_surface(xMesh, yMesh, zMesh, cmap=cm.coolwarm)

if trace_xy is not None: ax1.plot(trace_xy[:,0], trace_xy[:,1], trace_z, ’ko-’)

fig.colorbar(surf)

ax1.set_xlabel(’x’)

ax1.set_ylabel(’y’)

ax1.set_zlabel(’f’)

ax2 = fig.add_subplot(122)

surf2 = plt.contourf(xMesh, yMesh, zMesh, cmap=cm.coolwarm)

if trace_xy is not None: ax2.plot(trace_xy[:,0], trace_xy[:,1], ’ko-’)

fig.colorbar(surf2)

ax2.set_xlabel(’x’)

ax2.set_ylabel(’y’)

plt.show()

plotFunc(myfunc, [-2,-2], [2,2], np.array([[1,1],[.2,.2]]), [8,8])

	Toy Problems and Plotting
	Convergence proof

