Optimization Algorithms Weekly Exercise 3

Marc Toussaint Learning & Intelligent Systems Lab, TU Berlin Marchstr. 23, 10587 Berlin, Germany

Winter 2024/25

1 Gauss-Newton basics

- a) Let $f(x) = \|\phi(x)\|^2$ be a sum-of-squares cost for the features $\phi : \mathbb{R}^n \to \mathbb{R}^d$. Derive the Gauss-Newton approximation $\nabla^2 f(x) \approx 2J(x)^\top J(x)$ from a linear approximation (first order Taylor) of features ϕ , with the Jacobian $J(x) = \frac{\partial}{\partial x} \phi(x)$.
- b) Show that for any vector $v \in \mathbb{R}^n$ the matrix vv^{\top} is symmetric and semi-positive-definite.¹ Based on this, argue that the Gauss-Newton approximation $J(x)^{\top}J(x)$ is also symmetric and semi-positive-definite.

2 Conjugate Gradient

The conjugate gradient methods initialized $\delta_0 = g = -\nabla f(x_0)$ and then iterates the following steps:

1: $\alpha \leftarrow \operatorname{argmin}_{\alpha} f(x + \alpha \delta)$	// exact line search
2: $x \leftarrow x + \alpha \delta$	
3: $g' \leftarrow g, \ g = -\nabla f(x)$	// store old and compute new gradient
4: $\beta \leftarrow \max\left\{\frac{g^{\top}(g-g')}{g^{\top}g'}, 0\right\}$	
5: $\delta \leftarrow g + \beta \delta$	// conjugate descent direction

Consider the quadratic cost function $f(x) = \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c$ with $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and c = 0 whose minimum is achieved at $x^* = (0, 0)$.

- a) Compute, by hand, two iterations of the conjugate gradient descent from $x_0 = (1, 1)$ and from $x_0 = (-1, 2)$, respectively.
- b) Show that the first and second descent directions are A-orthogonal, i.e., $\delta_0^{\mathsf{T}} A \delta_1 = 0$.

3 Solve by Sketch and check KKT

In this exercise, for each of the following problems do the following:

- Sketch the problem on paper and, without much maths, figure out where the optimum x^* is.
- State which contraints are active at x^* .
- Compute (by hand) the gradient ∇f and gradients ∇g_i , ∇h_j of active constraints at x^* .
- Identify dual parameters λ_i, κ_j so that the stationarity (1st KKT) condition holds at x^* .

a) A 1D problem:

$$\min_{x \in \mathbb{D}^1} x \text{ s.t. } \sin(x) = 0 , \quad x^2/4 - 1 \le 0$$

¹A matrix $A \in \mathbb{R}^{n \times n}$ is semi-positive-definite simply when for any $x \in \mathbb{R}^n$ it holds $x^{\top}Ax \ge 0$. Intuitively: A might be a metric as it "measures" the norm of any x as positive. Or: If A is a Hessian, the function is (locally) convex.

b) 2D problems: (Note that $1^{\mathsf{T}}x = \sum_i x_i$ is a simple linear cost.)

$$\min_{x \in \mathbb{R}^2} 1^{\mathsf{T}} x \text{ s.t. } |x|^2 - 1 \le 0$$

c)

$$\min_{x \in \mathbb{R}^2} \mathbf{1}^{\mathsf{T}} x \text{ s.t. } |x|^2 - 1 \le 0, \ -x_1 \le 0$$

d)
$$\min_{x \in \mathbb{R}^2} \mathbf{1}^{\mathsf{T}} x \text{ s.t. } x^2 - 1 \le 0, \ x_2^2 - x_1 \le 0$$