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1 Minimalistic Log Barrier

Consider the 1D function, x € R,
fu(@) = —z — plog(—x)
(Note: This is the log barrier function for the problem mingeg —z s.t. z <0.)
a) Plot the function for varying p = 1,0.5,0.1.

b) Analytically find the mimimum «*(u) = argmin, f,(z) as a function of p.

c¢) Prove that lim,_,qz*(1) = 0.

2 Dual Update in Augmented Lagrangian

The squared penalty approach to solving an equality constrained optimization problem minimizes in each inner loop:
m
min f(z) +p Y hi()” . (1)
i=1
The Augmented Lagrangian method adds a Lagrangian term and minimizes in each inner loop:
m m
mmin flz)+p Z hi(z)? + Z Aihi(x) . (2)
i=1 i=1

Assume that we first minimize (1) such that we end up at a minimum Z.

Now prove that, under the assumption that the gradients Vf(x) and Vh(z) are (locally) constant, setting A\; = 2uh;(Z)
will ensure that the minimum of (2) fulfills the constraints h(x) = 0.

3 Gradient descent with matrices

(This exercise goes beyond the context of the lecture, but further trains you in dealing with derivatives and gradient
descent when the decision variable is a matrix.)

One way to derive a gradient is through the Taylor approximation
flw+h) = f(w)+ (6, h)

where § is the gradient and (6, h) = 67 h the standard scalar product. Now assume that w is not a vector, but a matrix
W e R™™ and let f(W) = |[WX —Y||% with X,Y matrices of appropriate sizes and ||| » the Frobenius norm. What
is the D in

fW+H)= f(W)+(D,H)r

and how does a gradient step look like?
Tips: (A, B)r = tr(AT B)



	Minimalistic Log Barrier
	Dual Update in Augmented Lagrangian
	Gradient descent with matrices

