Optimization Algorithms Weekly Exercise 4

Marc Toussaint Learning & Intelligent Systems Lab, TU Berlin Marchstr. 23, 10587 Berlin, Germany

Winter 2024/25

1 Minimalistic Log Barrier

Consider the 1D function, $x \in \mathbb{R}$,

$$f_{\mu}(x) = -x - \mu \log(-x)$$

(Note: This is the log barrier function for the problem $\min_{x \in \mathbb{R}} -x$ s.t. $x \leq 0$.)

- a) Plot the function for varying $\mu = 1, 0.5, 0.1$.
- b) Analytically find the minimum $x^*(\mu) = \operatorname{argmin}_x f_{\mu}(x)$ as a function of μ .
- c) Prove that $\lim_{\mu \to 0} x^*(\mu) = 0$.

2 Dual Update in Augmented Lagrangian

The squared penalty approach to solving an equality constrained optimization problem minimizes in each inner loop:

$$\min_{x} f(x) + \mu \sum_{i=1}^{m} h_i(x)^2 .$$
(1)

The Augmented Lagrangian method adds a Lagrangian term and minimizes in each inner loop:

$$\min_{x} f(x) + \mu \sum_{i=1}^{m} h_i(x)^2 + \sum_{i=1}^{m} \lambda_i h_i(x) .$$
(2)

Assume that we first minimize (1) such that we end up at a minimum \bar{x} .

Now prove that, under the assumption that the gradients $\nabla f(x)$ and $\nabla h(x)$ are (locally) constant, setting $\lambda_i = 2\mu h_i(\bar{x})$ will ensure that the minimum of (2) fulfills the constraints h(x) = 0.

3 Gradient descent with matrices

(This exercise goes beyond the context of the lecture, but further trains you in dealing with derivatives and gradient descent when the decision variable is a matrix.)

One way to derive a gradient is through the Taylor approximation

$$f(w+h) \approx f(w) + \langle \delta, h \rangle$$

where δ is the gradient and $\langle \delta, h \rangle = \delta^T h$ the standard scalar product. Now assume that w is not a vector, but a matrix $W \in \mathbb{R}^{n \times m}$ and let $f(W) = ||WX - Y||_F^2$ with X, Y matrices of appropriate sizes and $|| \cdot ||_F$ the Frobenius norm. What is the D in

$$f(W+H) \approx f(W) + \langle D, H \rangle_F$$

and how does a gradient step look like? Tips: $\langle A, B \rangle_F = \operatorname{tr}(A^T B)$