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1 Minimalistic Log Barrier

Consider the 1D function, x ∈ R,
fµ(x) = −x− µ log(−x)

(Note: This is the log barrier function for the problem minx∈R −x s.t. x ≤ 0.)

a) Plot the function for varying µ = 1, 0.5, 0.1.

b) Analytically find the mimimum x∗(µ) = argminx fµ(x) as a function of µ.

c) Prove that limµ→0 x
∗(µ) = 0.

2 Dual Update in Augmented Lagrangian

The squared penalty approach to solving an equality constrained optimization problem minimizes in each inner loop:

min
x

f(x) + µ

m∑
i=1

hi(x)
2 . (1)

The Augmented Lagrangian method adds a Lagrangian term and minimizes in each inner loop:

min
x

f(x) + µ

m∑
i=1

hi(x)
2 +

m∑
i=1

λihi(x) . (2)

Assume that we first minimize (1) such that we end up at a minimum x̄.

Now prove that, under the assumption that the gradients ∇f(x) and ∇h(x) are (locally) constant, setting λi = 2µhi(x̄)

will ensure that the minimum of (2) fulfills the constraints h(x) = 0.

3 Gradient descent with matrices

(This exercise goes beyond the context of the lecture, but further trains you in dealing with derivatives and gradient

descent when the decision variable is a matrix.)

One way to derive a gradient is through the Taylor approximation

f(w + h) ≈ f(w) + ⟨δ, h⟩

where δ is the gradient and ⟨δ, h⟩ = δTh the standard scalar product. Now assume that w is not a vector, but a matrix

W ∈ Rn×m and let f(W ) = ∥WX−Y ∥2F with X,Y matrices of appropriate sizes and ∥·∥F the Frobenius norm. What

is the D in

f(W +H) ≈ f(W ) + ⟨D,H⟩F

and how does a gradient step look like?

Tips: ⟨A,B⟩F = tr(ATB)
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