Optimization Algorithms Weekly Exercises 8

Marc Toussaint Learning & Intelligent Systems Lab, TU Berlin Marchstr. 23, 10587 Berlin, Germany

Winter 2024/25

1 Convergence of Stochastic Gradient Descent

For a cost function $f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$, $w \in \mathbb{R}^d$, we are interested to show that, when iterating $w_{k+1} \leftarrow w_k - \alpha_k \nabla f_i(w_k)$ for random *i*, the gradient ∇f goes to zero. The typical assumption we make is Lipschitz continuity of the gradient, namely there exists a Lipschitz constant *L* such that

$$\|\nabla f(w) - \nabla f(\bar{w})\| \le L \|w - \bar{w}\|,$$

where $||w|| = \sqrt{w^2}$ is the L_2 -norm.

Based on this assumption, show that

- a) For any $\delta \in \mathbb{R}^d$, the Hessian $\nabla^2 f(w)$ fulfills $\|\nabla^2 f(w)\delta\| \leq L\|\delta\|$. (This can also be written as $\|\nabla^2 f(w)\|_2 \leq L$, also means that the largest eigenvalue of $\nabla^2 f$ is $\leq L$, and we have an upper bound on curvature.)
- b) We have

$$f(w) \le f(\bar{w}) + \nabla f(\bar{w})^{\mathsf{T}}(w - \bar{w}) + \frac{1}{2} L(w - \bar{w})^2$$

c) We have

$$\mathbb{E}\{f(w_{k+1})\} \le f(w_k) - \alpha_k \|\nabla f(w_k)\|^2 + \frac{1}{2} \alpha_k^2 L \mathbb{E}\{\|\nabla f_i(w_k)\|^2\}$$

(We then often assume a given variance $\mathbb{E}\left\{\|\nabla f_i(w_k)\|^2\right\} = \sigma^2 + \|\nabla f(w_k)\|^2$ of the stochastic gradient and can continue convergence analysis as on the lecture slide.)

2 Bound Constraints

Consider the problem:

$$\min_{x \in \mathbb{R}^2} \frac{1}{2} x^{\mathsf{T}} A x \text{ s.t. } x_2 \ge \frac{1}{2} , \text{ with } A = \begin{pmatrix} 200 & -160 \\ -160 & 200 \end{pmatrix}$$

Here a plot of isolines, and at the top right in green, a few steps of a Newton method that properly handles bound constraints:

- a) Analytically compute the optimum for this problem. You may assume the constraint active. (For arbitrary positive definite A, the specific numbers are not important.)
- b) Assume we are at location x = (0, 1). In which direction does the gradient $-\nabla f$ point? (First compute it analytically, then plug in the 160,200 numbers of A). And in which direction does the Newton step $-\nabla^2 f^{-1} \nabla f$ point? (This should be obvious, without much computation.)
- c) Assume we initialize our bound constrained Newton method (slide 13 of lecture 11) at x = (0, 1), how many Newton iterations (where each iteration does line search in the determined direction δ), will it need until convergence. Illustrate roughly, where each step moves to.
- d) Let us define $r(x_1) = f(x_1, x_2 = \frac{1}{2})$, which is the cost function on the hyperplane only. Given any point x_1 on the hyperplane, what is the Newton step within the hyperplane w.r.t. x_1 ? Is this the same as the (clipped) Newton step for $f(x_1, x_2)$ when deleting the off-diagonal terms from A (as our method does)?