Optimization Algorithms Weekly Exercises 8

Marc Toussaint Learning & Intelligent Systems Lab, TU Berlin Marchstr. 23, 10587 Berlin, Germany

Winter 2024/25

1 Convergence of Stochastic Gradient Descent

For a cost function $f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$, $w \in \mathbb{R}^d$, we are interested to show that, when iterating $w_{k+1} \leftarrow w_k$ $\alpha_k \nabla f_i(w_k)$ for random i, the gradient ∇f goes to zero. The typical assumption we make is Lipschitz continuity of the gradient, namely there exists a Lipschitz constant L such that

$$
\|\nabla f(w) - \nabla f(\bar{w})\| \le L \|w - \bar{w}\|,
$$

where $||w|| =$ √ w^2 is the L_2 -norm.

Based on this assumption, show that

- a) For any $\delta \in \mathbb{R}^d$, the Hessian $\nabla^2 f(w)$ fulfills $\|\nabla^2 f(w)\delta\| \le L\|\delta\|$. (This can also be written as $\|\nabla^2 f(w)\|_2 \le L$, also means that the largest eigenvalue of $\nabla^2 f$ is $\leq L$, and we have an upper bound on curvature.)
- b) We have

$$
f(w) \le f(\bar{w}) + \nabla f(\bar{w})^{\top}(w - \bar{w}) + \frac{1}{2} L(w - \bar{w})^2
$$

c) We have

$$
\mathbb{E}\{f(w_{k+1})\} \le f(w_k) - \alpha_k \|\nabla f(w_k)\|^2 + \frac{1}{2} \alpha_k^2 L \mathbb{E}\{\|\nabla f_i(w_k)\|^2\}
$$

(We then often assume a given variance $\mathbb{E}\{\|\nabla f_i(w_k)\|^2\} = \sigma^2 + \|\nabla f(w_k)\|^2$ of the stochastic gradient and can continue convergence analysis as on the lecture slide.)

2 Bound Constraints

Consider the problem:

$$
\min_{x \in \mathbb{R}^2} \frac{1}{2} x^{\top} A x \text{ s.t. } x_2 \ge \frac{1}{2}, \text{ with } A = \begin{pmatrix} 200 & -160 \\ -160 & 200 \end{pmatrix}
$$

Here a plot of isolines, and at the top right in green, a few steps of a Newton method that properly handles bound constraints:

- a) Analytically compute the optimum for this problem. You may assume the constraint active. (For arbitrary positive definite A, the specific numbers are not important.)
- b) Assume we are at location $x = (0, 1)$. In which direction does the gradient $-\nabla f$ point? (First compute it analytically, then plug in the 160,200 numbers of A). And in which direction does the Newton step $-\nabla^2 f^{-1}\nabla f$ point? (This should be obvious, without much computation.)
- c) Assume we initialize our bound constrained Newton method (slide 13 of lecture 11) at $x = (0, 1)$, how many Newton iterations (where each iteration does line search in the determined direction δ), will it need until convergence. Illustrate roughly, where each step moves to.
- d) Let us define $r(x_1) = f(x_1, x_2 = \frac{1}{2})$, which is the cost function on the hyperplane only. Given any point x_1 on the hyperplane, what is the Newton step within the hyperplane w.r.t. x_1 ? Is this the same as the (clipped) Newton step for $f(x_1, x_2)$ when deleting the off-diagonal terms from A (as our method does)?