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1 Gaussian Process Regression

In the lecture we mentioned Gaussian Processes (GP) as a basic approach to formulate a distribution P (f |D) over

continuous functions f : Rd → R, given data D. Slide 9 of the lecture summarizes the essential equations; the standard

reference for GPs is Rasmussen & Williams (2006) [pdf link]. In this exercise you learn about them by implementing

a minimalistic case:

You are given a D = {(xi, yi)}ni=1. In this exercise, we assume x ∈ R (1-dimensional) and we just have n = 2 data

points (x1 = 0, y1 = 0) and (x2 = 1, y2 = 1). Then compute the following:

a) Compute the kernel matrix K ∈ Rn×n with entries

Kij = k(xi, xj) , k(x, x′) = a exp(−1

2
||x− x′||2/ℓ2) .

We choose a = 1, ℓ = 1, and k(x, x′) is called squared exponential covariance function.

[This matrix desribes how correlated the observations at all data points xi are.]

b) Trivially also prepare the data vector Y = (y1, . . . , yn)
⊤∈ Rn.

c) Write a method, that for any new x ∈ R computes a vector κ(x) ∈ R2, a prediction µ(x) ∈ R, and a variance

σ2(x) ∈ R as follows

κ(x) ∈ Rn with entries κi(x) = k(x, xi) (1)

µ(x) = κ(x)⊤ (K + σ2
0I)

-1 Y (2)

σ2(x) = k(x, x)− κ(x)⊤ (K + σ2
0I)

-1 κ(x) , (3)

where I is the identity matrix and we choose observation noise σ0 = 0.1.

[The vector κ(x) describes how correlated a new observation at x should be with observations at all data points xi. The

prediction µ(x) and variance σ2(x) can be derived as the conditional marginal of a joint Gaussian distribution.]

d) Now sample x ∈ [−2, 2] on a fine grid, compute µ(x) and σ2(x) for each x, and use this to plot the functions

µ(x), µ(x) +
√

σ2(x), and µ(x)−
√
σ2(x) for the interval x ∈ [−2, 2].

How does this change for σ = 0? How does this change for ℓ = 0.1? How does this change with more observed points

(e.g., sample them from the prediction, then consider them observed data points)?

2 Global Optimization in high dimensions?

Assume you have a GP prior P (f) over functions [0, 1]n → R and search a global minimum in the bounded space

[0, 1]n ⊂ Rn. We have a squared exponential kernel with length scale (kernel width) ℓ = 0.1, i.e.,

k(x, x′) = exp(−||x− x′||2

2 · 0.12
).
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For simplicity, let us assume that all observations (whereever we query) turn out zero and we collect data D =

{(xi, yi)}Ti=1 with yi = 0.

Estimate the number T of points you need to query to achieve some certainty that no function value of the true f is

larger than 1. For instance, determine a T and a querying scheme that defines all xi, so that ∀x : P (f(x) > 1) ≤ 0.0227.

(The last number is the probability that a random number from the standard normal distribution z ∼ N(0, 1) is larger

than 2. See https://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg)

Note: The following paper summarizes results on the Euclidean distance with increasing space dimensionality:

Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001, January). On the surprising behavior of distance metrics in

high dimensional space. In International conference on database theory (pp. 420-434). Springer, Berlin, Heidelberg.

E.g., stated overly briefly, with n → ∞ the ratio of distances to a nearest and furthest random point converges to 1.
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