

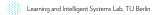
Robot Learning

Robotics Essentials

Marc Toussaint Technical University of Berlin Summer 2024

Robotics Essentials Outline

- A robot is an articulated multi-body system: kinematics & dynamics
- Standard Control: IK, path finding & traj. opt, PD & MPC



Robot as Articulated Multibody System

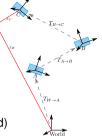
- A robot is a multibody system. Each body
 - has a pose $x_i \in SE(3)$
 - has inertia (m_i, I_i) with mass $m_i \in \mathbb{R}$ and inertia tensor $I_i \in \mathbb{R}^{3 \times 3}$ sym.pos.def.
 - has a shape s_i (formally: any representation that defines a pairwise signed-distance $d(s_i, s_j)$)

[Useful: "multibody system" on Wikipedia]

Robot as Articulated Multibody System

- Tree structure:
 - Every body is linked to a parent body or the world
 - We have relative transformations $Q_i \in SE(3)$ from parent (or world)

[If not tree-structured, we only represent a tree and use additional constraints to describe loops -> more involved, but doable]



Robot as Articulated Multibody System

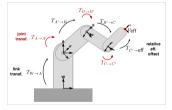
- Tree structure:
 - Every body is linked to a parent body or the world
 - We have relative transformations $Q_i \in SE(3)$ from parent (or world)

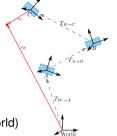
[If not tree-structured, we only represent a tree and use additional constraints to describe loops \rightarrow more involved, but doable]

- Articulated Degrees of Freedom (dofs):
 - Some of the relative transformations Q_i may have articulated (=motorized) **dofs** q so that $Q_i(q)$

[Different types of joints (hinge, prismatic, universal, ball) have different # dofs and different mapping from dofs $q\mapsto Q_i(q)]$

– We stack all dofs of all relative transformations into a single joint vector $q \in \mathbb{R}^n$





 $x \in \mathsf{SE}(3)^m$: all body poses, $q \in \mathbb{R}^n$: joint vector

- Forward kinematics: $q \mapsto x$, $\dot{q} \mapsto \dot{x}$, $\ddot{q} \mapsto \ddot{x}$
- Forward dynamics: $u \mapsto \ddot{q}$, inverse dynamics: $\ddot{q} \mapsto u$ ($u \in \mathbb{R}^n$: joint torques)

Forward Kinematics $q \mapsto x$

• Given q, what is the pose of any body i?

$$q \mapsto \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \phi(q) \quad \in \mathsf{SE}(3)^m$$

- Algorithm: First determine all rel. trans. $Q_i(q)$, then forward chain them
- Often one cares only about position/orientation of one particular body x_i : the "endeffector"

Forward Velocities & Jacobian $\dot{q} \mapsto \dot{x}$

• Given \dot{q} , what is the linear and angular velocity (v_i, w_i) of any body *i*?

$$\dot{q} \mapsto \begin{pmatrix} v_1, w_1 \\ v_2, w_2 \\ \vdots \\ v_m, w_m \end{pmatrix} = J(q) \ \dot{q} \quad \in \mathbb{R}^{m \times 6}$$

- with Jacobian $J(q) = \partial_q \phi(q) \in \mathbb{R}^{m \times 6 \times n}$.

[Since, ϕ is SE(3)-valued, the Jacobian actually has output in its tangent space $se(3) \equiv \mathbb{R}^6$. In practise, code typically provides separate positional Jacobian $J^{\text{pos}} \in \mathbb{R}^{m \times 3 \times n}$ and angular Jacobian $J^{\text{ang}} \in \mathbb{R}^{m \times 3 \times n}$.]

Forward Velocities & Jacobian $\dot{q} \mapsto \dot{x}$

• Given \dot{q} , what is the linear and angular velocity (v_i, w_i) of any body *i*?

$$\dot{q} \mapsto \begin{pmatrix} v_1, w_1 \\ v_2, w_2 \\ \vdots \\ v_m, w_m \end{pmatrix} = J(q) \ \dot{q} \quad \in \mathbb{R}^{m \times 6}$$

- with Jacobian $J(q) = \partial_q \phi(q) \in \mathbb{R}^{m \times 6 \times n}$.

[Since, ϕ is SE(3)-valued, the Jacobian actually has output in its tangent space $se(3) \equiv \mathbb{R}^6$. In practise, code typically provides separate positional Jacobian $J^{\text{pos}} \in \mathbb{R}^{m \times 3 \times n}$ and angular Jacobian $J^{\text{ang}} \in \mathbb{R}^{m \times 3 \times n}$.]

- Since we know how to compute $\phi(q)$, we can think of J(q) as the "autodiff" of it
- However, positional/angular Jacobians are really very easy to provide without expensive autodiff [In practise, one only needs to figure out the J^{pos}, J^{ang} for a rotational and translational joint – all others follow from this.]

Forward Accelerations $\ddot{q} \mapsto \ddot{x}$

• Given \ddot{q} , what is the linear and angular acceleration (\dot{v}_i, \dot{w}_i) of any body *i*?

$$\ddot{x} = \dot{J}(q) \ \dot{q} + J(q) \ \ddot{q} \approx J(q) \ \ddot{q}$$

- One typically approximates $\dot{J} = 0$

The word "kinematics"

[in parts from Wikipedia]

- Mathematical description of possible motions of a (constrainted/multibody) system/mechanism without considering the forces
- "geometry of [possible] motions"
- Formally: Describe the space (manifold) of possible system poses and all possible paths in that space
- Read generalized coordinates on wikipedia: Understanding motion in terms of coordinates and (non-)holonomic constraints:

Inverse dynamics $\ddot{q} \mapsto u$

• Given \ddot{q} , what joint torques u do we need to generate this \ddot{q} (accounting for gravity)?

Inverse dynamics $\ddot{q} \mapsto u$

- Given \ddot{q} , what joint torques u do we need to generate this \ddot{q} (accounting for gravity)?
- Coupled Newton-Euler equations: For each body:

$$\begin{split} F_i &= \begin{pmatrix} f_i \\ \tau_i \end{pmatrix} = \begin{pmatrix} m_i \dot{v}_i \\ I_i \dot{w}_i + w_i \times I_i w_i \end{pmatrix} \\ F_i^{\text{back}} &= F_i - F_i^{\text{ext}} + \sum_{j=\text{child(i)}} F_j^{\text{back}}, \quad u_i = h_i^{\top} F_i^{\text{back}} \end{split}$$
 from Featherstone'14

[where F_i^{ext} are external (e.g. gravity) forces; and F_i^{back} is the force "send back through the joint to the parent of *i*"; h_i is the joint axis (picking up the torque)]

[Can also be written as linear equation system between \ddot{q} , F, F^{back} , and u (with sparse matrices only) – and solved/inverted in O(m).]

Learning and Intelligent Systems Lab, TU Berlin

solved! We can accelerate the thing as we like

solved! We can accelerate the thing as we like

the rest is planning: How should I accelerate to reach some future goals?

Standard Template: Waypoint + Reference Motion + Controller

Standard Template: Waypoint + Reference Motion + Controller

• Standard problem setting: Control motors, so that at t = T seconds the endeffector

 x_i is at desired position $y^* \in \mathbb{R}^3$, i.e., $\phi(q_{t=T}) = y^*$

Standard Template: Waypoint + Reference Motion + Controller

- Standard problem setting: Control motors, so that at t = T seconds the endeffector x_i is at desired position $y^* \in \mathbb{R}^3$, i.e., $\phi(q_{t=T}) = y^*$
- Problem decomposition:
 - Find a final robot pose q_T that fulfills constraint $\phi(q_{t=T}) = y^*$ inverse kinematics
 - Find a nice *reference* motion from current robot pose q_0 to q_T path finding, trajectory optimization, or trivial interpolation/PD
 - Find a control policy $\pi : x_t \mapsto u_t$ that reactively sends motor commands to follow the reference motion **inverse dynamics**, PD control, Riccati

[You could think of this as three different time scales: rough future waypoint(s)/goal(s), continuous motion to next waypoint, short-term controls.]

[There are other ways to approach this: You could remove step (1) and shift that issue into (2), or remove (1 2) and shift all issues into (3) - morphing this into other approaches. E.g. directly defining a desired force/acceleration behavior in "task space" (=operational space control).]

[continuous replanning/re-estimation can also make (1) and (2) reactive.]

Inverse Kinematics

• Find q to fulfill $\phi(q) = y^*$ for differentiable fwd kinematics ϕ .

$$\min_{q \in \mathbb{R}^n} \|q - q_0\|^2 \text{ s.t. } \phi(q) = y^*$$

or
$$\min_{q \in \mathbb{R}^n} \|q - q_0\|^2 + \mu \|\phi(q) - y^*\|^2 \text{ for large } \mu$$

• Solution for linearized ϕ :

$$q^* = q_0 + J^{\top} (JJ^{\top} + \frac{1}{\mu}\mathbf{I})^{-1} (y^* - \phi(q_0))$$

Python Package: https://marctoussaint.github.io/robotic/

Robotics Essentials - 13/23

Path Finding & Trajectory Optimization

- Given current q_0 and future q^* , find a collision free **path**
 - Wolfgang Hönig's & Andreas Orthey's lecture
 - RRTs, PRMs, under constraints (kinodynamic)

Path Finding & Trajectory Optimization

- Given current q_0 and future q^* , find a collision free **path**
 - Wolfgang Hönig's & Andreas Orthey's lecture
 - RRTs, PRMs, under constraints (kinodynamic)
- Trajectory opimization
 - Time continuous formulation:

 $\min_{q(t)} \int_0^T c(q(t), \dot{q}(t), \ddot{q}(t)) \, dt \quad \text{s.t.} \quad q(0) = q_0, \; q(T) = q^*, \\ \dot{q}(0) = \dot{q}(T) = 0 \;, \\ \forall_{t \in [0,T]} : \bar{\phi}(q(t), \dot{q}(t), \ddot{q}(t)) \leq 0 \;.$

- Time-discretized, assuming k-order Markov coupling terms (KOMO):

A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM, Gaussian Process smoothing, optimal control, and probabilistic inference: *Marc Toussaint*. Springer 2017

Control around a Reference

- Use Inverse Dynamics directly
 - We have $\ddot{q}^*(t) \rightarrow$ map it to controls u directly
 - But what if you're off the reference a bit? How to steer back?

Control around a Reference

- Use Inverse Dynamics directly
 - We have $\ddot{q}^*(t) \rightarrow$ map it to controls u directly
 - But what if you're off the reference a bit? How to steer back?
- Use PD law to accelerate back to reference:
 - Define a PD law $\ddot{q}^{\text{desired}} = \ddot{q}^*(t) + k_p(q^*(t) q) + k_d(\dot{q}^*(t) \dot{q})$ with desired PD behavior back to reference
 - Then use Inv dynamics $\ddot{q}^{\text{desired}}\mapsto u$
 - (Also ok, but needs severe tuning: directly define a PD controller $\ddot{u} = M\ddot{q}^*(t) + K_p(q^*(t) q) + K_d(\dot{q}^*(t) \dot{q}).)$

Control around a Reference

- Use Inverse Dynamics directly
 - We have $\ddot{q}^*(t) \rightarrow$ map it to controls u directly
 - But what if you're off the reference a bit? How to steer back?
- Use PD law to accelerate back to reference:
 - Define a PD law $\ddot{q}^{\text{desired}} = \ddot{q}^*(t) + k_p(q^*(t) q) + k_d(\dot{q}^*(t) \dot{q})$ with desired PD behavior back to reference
 - Then use Inv dynamics $\ddot{q}^{\mathrm{desired}}\mapsto u$
 - (Also ok, but needs severe tuning: directly define a PD controller $\ddot{u} = M\ddot{q}^*(t) + K_p(q^*(t) q) + K_d(\dot{q}^*(t) \dot{q}).)$
- Use Riccati to get an Optimal Linear Regulator around reference
 - Define optimal control problem, e.g., $\min_{\pi:q,\dot{q}\mapsto u} \int_0^T c(q(t),\dot{q}(t),u(t)) dt + \phi(x(T))$
 - We can linearize dynamics around reference \rightarrow has an analytic solution (Algebraic Riccati eq.)
 - Resulting controller is a "linear regulator", i.e., a PD law where matrices K_p, K_d depend on t and are chosen optimally.

Model-Predictive Control (MPC)

• When getting far away from the reference, linearization of Riccati might break, and PD is too simple

Model-Predictive Control (MPC)

- When getting far away from the reference, linearization of Riccati might break, and PD is too simple
- Continuously replan (\sim 10-1000Hz): re-solve the optimal control problem
 - Optimal Control problem can also include task constraints directly, not only following a reference
 - As a compromise: typically limit horizon

This is a default way of "thinking control" in robotics

Summary

Robotics Essentials - 17/23

Summary

- A robot is an articulated multi-body system
 - Fwd kinematics: $q \mapsto x, \ \dot{q} \mapsto \dot{x}, \ \ddot{q} \mapsto \ddot{x}$
 - Fwd dynamics: $u \mapsto \ddot{q}$, inv dynamics: $\ddot{q} \mapsto u$

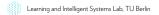
Summary

- A robot is an articulated multi-body system
 - Fwd kinematics: $q \mapsto x, \ \dot{q} \mapsto \dot{x}, \ \ddot{q} \mapsto \ddot{x}$
 - Fwd dynamics: $u \mapsto \ddot{q}$, inv dynamics: $\ddot{q} \mapsto u$
- Standard Control Template:
 - IK (or constraint solving) to estimate future goal/waypoints
 - Path Finding & Trajectory Optimization to estimate Reference Motion
 - PD, Linear Regulator, or MPC to control (around the reference)

How far can we get with this approach?

How far can we get with this approach?

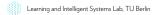
- What did we assume to know?
 - Structure of multi-body system, all shapes, inertias
 - All goals/objectives modelled (=programmed) as differentiable costs/constraints



• If we only care about the **robot itself** (all goals/objectives/models concern the robot directly) – the above it totally fine

- If we only care about the **robot itself** (all goals/objectives/models concern the robot directly) the above it totally fine
- Things get challenging when we care about interacting with the environment
 - Models/goals/objectives of interaction (contact, grasp) are more complicated

- Example: Locomotion
 - Interaction: Making contact with the ground to generate ground forces
 - Robot root is not attached to world, but free floating (complicates dynamics a bit)
 - Dynamics heavily influenced by ground forces, which are *contact complementary* hard on-off switching of forces at contact → hybrid/discrete structure, makes dynamics and solvers much much more complicated (hybrid control)



- Example: Locomotion
 - Interaction: Making contact with the ground to generate ground forces
 - Robot root is not attached to world, but free floating (complicates dynamics a bit)
 - Dynamics heavily influenced by ground forces, which are *contact complementary* hard on-off switching of forces at contact → hybrid/discrete structure, makes dynamics and solvers much much more complicated (hybrid control)

... more complicated than "vanilla robot", but still doable

- Example: Manipulation
 - Objects in the environment (part of the "multibody system") have their own DOFs, but are NOT "articulated" with motors: if not grasped or touched, they cannot move \rightarrow their Jacobian $\partial_q x_i = 0$
 - Hard on-off switching of manipulability; hybrid dynamics & problem
 - Dynamics of object motions can be much more complicated than (also free-floating) robot dynamics: friction, stiction, slip, non-point contacts
 - Waypoint constraints $\phi(x_t)$ much more complicated (correct grasping of complex shape, pushing, throwing)
 - If objects are deformable, their form becomes DOF (e.g. neural latent code) becomes much much more complicated in above approach

- Example: Manipulation
 - Objects in the environment (part of the "multibody system") have their own DOFs, but are NOT "articulated" with motors: if not grasped or touched, they cannot move \rightarrow their Jacobian $\partial_q x_i = 0$
 - Hard on-off switching of manipulability; hybrid dynamics & problem
 - Dynamics of object motions can be much more complicated than (also free-floating) robot dynamics: friction, stiction, slip, non-point contacts
 - Waypoint constraints $\phi(x_t)$ much more complicated (correct grasping of complex shape, pushing, throwing)
 - If objects are deformable, their form becomes DOF (e.g. neural latent code) becomes much much more complicated in above approach
- In essence, things become much more complicated, but one still *can* write down essential physics equations of object interaction, and use these equations in above approach

Learning and Intelligent Systems Lab, TU Berlin

Challenge 2: State Estimation

- All of the above requires to estimate states
 - q_0 (includes pose of a mobile robot)
 - $-x_i$ (poses of objects in environment)
 - shapes and inertias in the environment, dynamics parameters (e.g. friction)

[Basic state estimation can often also be formulated as optimization problem (e.g. graph-SLAM) – similar to motion optimization: Find estimates (also of past motion) that is *most consistent* with sensor readings; minimze error between real readings and model-predicted readings. (Or as probabilistic inference.)]



Relation to Robot Learning

- On the formal/theory side, they share foundations:
 - Optimal Control formulation ↔ Markov Decision Processes & Reinforcement Learning
 - More generally: optimality formulations \rightarrow learning/black-box opt. approaches

Relation to Robot Learning

- On the formal/theory side, they share foundations:
 - Optimal Control formulation ↔ Markov Decision Processes & Reinforcement Learning
 - More generally: optimality formulations \rightarrow learning/black-box opt. approaches
- Components can be *replaced* or *shortcut* by learning:
 - Dynamic modelling \leftrightarrow system identification
 - Optimal Control (e.g., MPC, Riccati) can be shortcut by learning V- or Q-function
 - Need of inverse dynamics can be shortcut by learning Q-function instead of V-function
 - Constraint solving (also IK) can be shortcut by directly learning a policy or sampler that fulfills constraint

Relation to Robot Learning

- On the formal/theory side, they share foundations:
 - Optimal Control formulation ↔ Markov Decision Processes & Reinforcement Learning
 - More generally: optimality formulations \rightarrow learning/black-box opt. approaches
- Components can be *replaced* or *shortcut* by learning:
 - Dynamic modelling \leftrightarrow system identification
 - Optimal Control (e.g., MPC, Riccati) can be shortcut by learning V- or Q-function
 - Need of inverse dynamics can be shortcut by learning Q-function instead of V-function
 - Constraint solving (also IK) can be shortcut by directly learning a policy or sampler that fulfills constraint
 - Shortcut state estimation: Avoid all state-based models, learn direct sensor-based models (policies, value functions, planners, dynamics, etc)
 - End-to-end: Shortcut the whole approach by learning images \mapsto torques