
Robot Learning

Robotics Essentials

Marc Toussaint
Technical University of Berlin

Summer 2024

Robotics Essentials Outline

• A robot is an articulated multi-body system: kinematics & dynamics

• Standard Control: IK, path finding & traj. opt, PD & MPC

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 2/23

Robot as Articulated Multibody System

• A robot is a multibody system. Each body
– has a pose xi ∈ SE(3)
– has inertia (mi, Ii) with mass mi ∈ R and inertia tensor Ii ∈ R3×3 sym.pos.def.
– has a shape si (formally: any representation that defines a pairwise signed-distance d(si, sj))

[Useful: “multibody system” on Wikipedia]

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 3/23

Robot as Articulated Multibody System

• Tree structure:
– Every body is linked to a parent body or the world
– We have relative transformations Qi ∈ SE(3) from parent (or world)

[If not tree-structured, we only represent a tree and use additional constraints to describe loops → more involved, but doable]

• Articulated Degrees of Freedom (dofs):
– Some of the relative transformations Qi may have articulated

(=motorized) dofs q so that Qi(q)

[Different types of joints (hinge, prismatic, universal, ball) have different # dofs and
different mapping from dofs q 7→ Qi(q)]

– We stack all dofs of all relative transformations into a single
joint vector q ∈ Rn

W

A

A'

B'

C

C'

B eff

link

transf.

joint

transf.
relative

eff.

offset

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 4/23

Robot as Articulated Multibody System

• Tree structure:
– Every body is linked to a parent body or the world
– We have relative transformations Qi ∈ SE(3) from parent (or world)

[If not tree-structured, we only represent a tree and use additional constraints to describe loops → more involved, but doable]

• Articulated Degrees of Freedom (dofs):
– Some of the relative transformations Qi may have articulated

(=motorized) dofs q so that Qi(q)

[Different types of joints (hinge, prismatic, universal, ball) have different # dofs and
different mapping from dofs q 7→ Qi(q)]

– We stack all dofs of all relative transformations into a single
joint vector q ∈ Rn

W

A

A'

B'

C

C'

B eff

link

transf.

joint

transf.
relative

eff.

offset

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 4/23

x ∈ SE(3)m: all body poses, q ∈ Rn: joint vector

– Forward kinematics: q 7→ x, q̇ 7→ ẋ, q̈ 7→ ẍ

– Forward dynamics: u 7→ q̈, inverse dynamics: q̈ 7→ u (u ∈ Rn: joint torques)

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 5/23

Forward Kinematics q 7→ x

• Given q, what is the pose of any body i?

q 7→



x1
x2
...

xm


= ϕ(q) ∈ SE(3)m

– Algorithm: First determine all rel. trans. Qi(q), then forward chain them
– Often one cares only about position/orientation of one particular body xi: the “endeffector”

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 6/23

Forward Velocities & Jacobian q̇ 7→ ẋ

• Given q̇, what is the linear and angular velocity (vi, wi) of any body i?

q̇ 7→



v1, w1

v2, w2
...

vm, wm


= J(q) q̇ ∈ Rm×6

– with Jacobian J(q) = ∂qϕ(q) ∈ Rm×6×n.
[Since, ϕ is SE(3)-valued, the Jacobian actually has output in its tangent space se(3) ≡ R6. In practise, code typically
provides separate positional Jacobian Jpos ∈ Rm×3×n and angular Jacobian Jang ∈ Rm×3×n.]

– Since we know how to compute ϕ(q), we can think of J(q) as the “autodiff” of it
– However, positional/angular Jacobians are really very easy to provide without expensive autodiff

[In practise, one only needs to figure out the Jpos, Jang for a rotational and translational joint – all others follow from this.]

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 7/23

Forward Velocities & Jacobian q̇ 7→ ẋ

• Given q̇, what is the linear and angular velocity (vi, wi) of any body i?

q̇ 7→



v1, w1

v2, w2
...

vm, wm


= J(q) q̇ ∈ Rm×6

– with Jacobian J(q) = ∂qϕ(q) ∈ Rm×6×n.
[Since, ϕ is SE(3)-valued, the Jacobian actually has output in its tangent space se(3) ≡ R6. In practise, code typically
provides separate positional Jacobian Jpos ∈ Rm×3×n and angular Jacobian Jang ∈ Rm×3×n.]

– Since we know how to compute ϕ(q), we can think of J(q) as the “autodiff” of it
– However, positional/angular Jacobians are really very easy to provide without expensive autodiff

[In practise, one only needs to figure out the Jpos, Jang for a rotational and translational joint – all others follow from this.]

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 7/23

Forward Accelerations q̈ 7→ ẍ

• Given q̈, what is the linear and angular acceleration (v̇i, ẇi) of any body i?

ẍ = J̇(q) q̇ + J(q) q̈ ≈ J(q) q̈

– One typically approximates J̇ = 0

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 8/23

The word “kinematics”
[in parts from Wikipedia]

– Mathematical description of possible motions of a (constrainted/multibody) system/mechanism
without considering the forces

– “geometry of [possible] motions”
– Formally: Describe the space (manifold) of possible system poses and all possible paths in that

space
– Read generalized coordinates on wikipedia: Understanding motion in terms of coordinates and

(non-)holonomic constraints:

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 9/23

Inverse dynamics q̈ 7→ u

• Given q̈, what joint torques u do we need to generate this q̈ (accounting for gravity)?

• Coupled Newton-Euler equations: For each body:

from Featherstone’14

Fi =

fi
τi

 =

 miv̇i
Iiẇi + wi × Iiwi



F back
i = Fi − F ext

i +
∑

j=child(i)

F back
j , ui = h⊤iF

back
i

[where F ext
i are external (e.g. gravity) forces; and F back

i is the force “send back through the joint to the parent of i”; hi is the joint
axis (picking up the torque)]

[Can also be written as linear equation system between q̈, F , F back, and u (with sparse matrices only) – and solved/inverted in
O(m).]

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 10/23

Inverse dynamics q̈ 7→ u

• Given q̈, what joint torques u do we need to generate this q̈ (accounting for gravity)?

• Coupled Newton-Euler equations: For each body:

from Featherstone’14

Fi =

fi
τi

 =

 miv̇i
Iiẇi + wi × Iiwi



F back
i = Fi − F ext

i +
∑

j=child(i)

F back
j , ui = h⊤iF

back
i

[where F ext
i are external (e.g. gravity) forces; and F back

i is the force “send back through the joint to the parent of i”; hi is the joint
axis (picking up the torque)]

[Can also be written as linear equation system between q̈, F , F back, and u (with sparse matrices only) – and solved/inverted in
O(m).]

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 10/23

solved! We can accelerate the thing as we like

the rest is planning: How should I accelerate to reach some future goals?

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 11/23

solved! We can accelerate the thing as we like

the rest is planning: How should I accelerate to reach some future goals?

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 11/23

Standard Template: Waypoint + Reference Motion + Controller

• Standard problem setting: Control motors, so that at t = T seconds the endeffector
xi is at desired position y∗ ∈ R3, i.e., ϕ(qt=T) = y∗

• Problem decomposition:
– Find a final robot pose qT that fulfills constraint ϕ(qt=T) = y∗ – inverse kinematics
– Find a nice reference motion from current robot pose q0 to qT – path finding, trajectory

optimization, or trivial interpolation/PD
– Find a control policy π : xt 7→ ut that reactively sends motor commands to follow the reference

motion – inverse dynamics, PD control, Riccati

[You could think of this as three different time scales: rough future waypoint(s)/goal(s), continuous motion to next waypoint,
short-term controls.]

[There are other ways to approach this: You could remove step (1) and shift that issue into (2), or remove (1 2) and shift all issues
into (3) - morphing this into other approaches. E.g. directly defining a desired force/acceleration behavior in “task space”
(=operational space control).]

[continuous replanning/re-estimation can also make (1) and (2) reactive.]

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 12/23

Standard Template: Waypoint + Reference Motion + Controller

• Standard problem setting: Control motors, so that at t = T seconds the endeffector
xi is at desired position y∗ ∈ R3, i.e., ϕ(qt=T) = y∗

• Problem decomposition:
– Find a final robot pose qT that fulfills constraint ϕ(qt=T) = y∗ – inverse kinematics
– Find a nice reference motion from current robot pose q0 to qT – path finding, trajectory

optimization, or trivial interpolation/PD
– Find a control policy π : xt 7→ ut that reactively sends motor commands to follow the reference

motion – inverse dynamics, PD control, Riccati

[You could think of this as three different time scales: rough future waypoint(s)/goal(s), continuous motion to next waypoint,
short-term controls.]

[There are other ways to approach this: You could remove step (1) and shift that issue into (2), or remove (1 2) and shift all issues
into (3) - morphing this into other approaches. E.g. directly defining a desired force/acceleration behavior in “task space”
(=operational space control).]

[continuous replanning/re-estimation can also make (1) and (2) reactive.]

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 12/23

Standard Template: Waypoint + Reference Motion + Controller

• Standard problem setting: Control motors, so that at t = T seconds the endeffector
xi is at desired position y∗ ∈ R3, i.e., ϕ(qt=T) = y∗

• Problem decomposition:
– Find a final robot pose qT that fulfills constraint ϕ(qt=T) = y∗ – inverse kinematics
– Find a nice reference motion from current robot pose q0 to qT – path finding, trajectory

optimization, or trivial interpolation/PD
– Find a control policy π : xt 7→ ut that reactively sends motor commands to follow the reference

motion – inverse dynamics, PD control, Riccati

[You could think of this as three different time scales: rough future waypoint(s)/goal(s), continuous motion to next waypoint,
short-term controls.]

[There are other ways to approach this: You could remove step (1) and shift that issue into (2), or remove (1 2) and shift all issues
into (3) - morphing this into other approaches. E.g. directly defining a desired force/acceleration behavior in “task space”
(=operational space control).]

[continuous replanning/re-estimation can also make (1) and (2) reactive.]

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 12/23

Inverse Kinematics

• Find q to fulfill ϕ(q) = y∗ for differentiable fwd kinematics ϕ.

min
q∈Rn

||q − q0||2 s.t. ϕ(q) = y∗

or min
q∈Rn

||q − q0||2 + µ||ϕ(q)− y∗||2 for large µ

• Solution for linearized ϕ:

q∗ = q0 + J⊤(JJ⊤+ 1
µI)

-1(y∗ − ϕ(q0))

Python Package: https://marctoussaint.github.io/robotic/

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 13/23

https://marctoussaint.github.io/robotic/

Path Finding & Trajectory Optimization

• Given current q0 and future q∗, find a collision free path
– Wolfgang Hönig’s & Andreas Orthey’s lecture
– RRTs, PRMs, under constraints (kinodynamic)

• Trajectory opimization
– Time continuous formulation:

min
q(t)

∫ T

0
c(q(t), q̇(t), q̈(t)) dt s.t. q(0) = q0, q(T) = q∗, q̇(0) = q̇(T) = 0 , ∀t∈[0,T] : ϕ̄(q(t), q̇(t), q̈(t)) ≤ 0 .

– Time-discretized, assuming k-order Markov coupling terms (KOMO):
A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM, Gaussian Process smoothing,
optimal control, and probabilistic inference: Marc Toussaint. Springer 2017

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 14/23

Path Finding & Trajectory Optimization

• Given current q0 and future q∗, find a collision free path
– Wolfgang Hönig’s & Andreas Orthey’s lecture
– RRTs, PRMs, under constraints (kinodynamic)

• Trajectory opimization
– Time continuous formulation:

min
q(t)

∫ T

0
c(q(t), q̇(t), q̈(t)) dt s.t. q(0) = q0, q(T) = q∗, q̇(0) = q̇(T) = 0 , ∀t∈[0,T] : ϕ̄(q(t), q̇(t), q̈(t)) ≤ 0 .

– Time-discretized, assuming k-order Markov coupling terms (KOMO):
A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM, Gaussian Process smoothing,
optimal control, and probabilistic inference: Marc Toussaint. Springer 2017

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 14/23

Control around a Reference

• Use Inverse Dynamics directly
– We have q̈∗(t) → map it to controls u directly
– But what if you’re off the reference a bit? How to steer back?

• Use PD law to accelerate back to reference:
– Define a PD law q̈desired = q̈∗(t) + kp(q

∗(t)− q) + kd(q̇
∗(t)− q̇) with desired PD behavior back to

reference
– Then use Inv dynamics q̈desired 7→ u

– (Also ok, but needs severe tuning: directly define a PD controller
ü = Mq̈∗(t) +Kp(q

∗(t)− q) +Kd(q̇
∗(t)− q̇).)

• Use Riccati to get an Optimal Linear Regulator around reference
– Define optimal control problem, e.g., minπ:q,q̇ 7→u

∫ T

0
c(q(t), q̇(t), u(t)) dt+ ϕ(x(T))

– We can linearize dynamics around reference → has an analytic solution (Algebraic Riccati eq.)
– Resulting controller is a “linear regulator”, i.e., a PD law where matrices Kp,Kd depend on t and

are chosen optimally.

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 15/23

Control around a Reference

• Use Inverse Dynamics directly
– We have q̈∗(t) → map it to controls u directly
– But what if you’re off the reference a bit? How to steer back?

• Use PD law to accelerate back to reference:
– Define a PD law q̈desired = q̈∗(t) + kp(q

∗(t)− q) + kd(q̇
∗(t)− q̇) with desired PD behavior back to

reference
– Then use Inv dynamics q̈desired 7→ u

– (Also ok, but needs severe tuning: directly define a PD controller
ü = Mq̈∗(t) +Kp(q

∗(t)− q) +Kd(q̇
∗(t)− q̇).)

• Use Riccati to get an Optimal Linear Regulator around reference
– Define optimal control problem, e.g., minπ:q,q̇ 7→u

∫ T

0
c(q(t), q̇(t), u(t)) dt+ ϕ(x(T))

– We can linearize dynamics around reference → has an analytic solution (Algebraic Riccati eq.)
– Resulting controller is a “linear regulator”, i.e., a PD law where matrices Kp,Kd depend on t and

are chosen optimally.

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 15/23

Control around a Reference

• Use Inverse Dynamics directly
– We have q̈∗(t) → map it to controls u directly
– But what if you’re off the reference a bit? How to steer back?

• Use PD law to accelerate back to reference:
– Define a PD law q̈desired = q̈∗(t) + kp(q

∗(t)− q) + kd(q̇
∗(t)− q̇) with desired PD behavior back to

reference
– Then use Inv dynamics q̈desired 7→ u

– (Also ok, but needs severe tuning: directly define a PD controller
ü = Mq̈∗(t) +Kp(q

∗(t)− q) +Kd(q̇
∗(t)− q̇).)

• Use Riccati to get an Optimal Linear Regulator around reference
– Define optimal control problem, e.g., minπ:q,q̇ 7→u

∫ T

0
c(q(t), q̇(t), u(t)) dt+ ϕ(x(T))

– We can linearize dynamics around reference → has an analytic solution (Algebraic Riccati eq.)
– Resulting controller is a “linear regulator”, i.e., a PD law where matrices Kp,Kd depend on t and

are chosen optimally.

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 15/23

Model-Predictive Control (MPC)

• When getting far away from the reference, linearization of Riccati might break, and
PD is too simple

• Continuously replan (∼ 10-1000Hz): re-solve the optimal control problem
– Optimal Control problem can also include task constraints directly, not only following a reference
– As a compromise: typically limit horizon

This is a default way of “thinking control” in robotics

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 16/23

Model-Predictive Control (MPC)

• When getting far away from the reference, linearization of Riccati might break, and
PD is too simple

• Continuously replan (∼ 10-1000Hz): re-solve the optimal control problem
– Optimal Control problem can also include task constraints directly, not only following a reference
– As a compromise: typically limit horizon

This is a default way of “thinking control” in robotics

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 16/23

Summary

• A robot is an articulated multi-body system
– Fwd kinematics: q 7→ x, q̇ 7→ ẋ, q̈ 7→ ẍ

– Fwd dynamics: u 7→ q̈, inv dynamics: q̈ 7→ u

• Standard Control Template:
– IK (or constraint solving) to estimate future goal/waypoints
– Path Finding & Trajectory Optimization to estimate Reference Motion
– PD, Linear Regulator, or MPC to control (around the reference)

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 17/23

Summary

• A robot is an articulated multi-body system
– Fwd kinematics: q 7→ x, q̇ 7→ ẋ, q̈ 7→ ẍ

– Fwd dynamics: u 7→ q̈, inv dynamics: q̈ 7→ u

• Standard Control Template:
– IK (or constraint solving) to estimate future goal/waypoints
– Path Finding & Trajectory Optimization to estimate Reference Motion
– PD, Linear Regulator, or MPC to control (around the reference)

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 17/23

Summary

• A robot is an articulated multi-body system
– Fwd kinematics: q 7→ x, q̇ 7→ ẋ, q̈ 7→ ẍ

– Fwd dynamics: u 7→ q̈, inv dynamics: q̈ 7→ u

• Standard Control Template:
– IK (or constraint solving) to estimate future goal/waypoints
– Path Finding & Trajectory Optimization to estimate Reference Motion
– PD, Linear Regulator, or MPC to control (around the reference)

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 17/23

How far can we get with this approach?

• What did we assume to know?
– Structure of multi-body system, all shapes, inertias
– All goals/objectives modelled (=programmed) as differentiable costs/constraints

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 18/23

How far can we get with this approach?

• What did we assume to know?
– Structure of multi-body system, all shapes, inertias
– All goals/objectives modelled (=programmed) as differentiable costs/constraints

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 18/23

Challenge 1: Interacting with the environment

• If we only care about the robot itself (all goals/objectives/models concern the robot
directly) – the above it totally fine

• Things get challenging when we care about interacting with the environment
– Models/goals/objectives of interaction (contact, grasp) are more complicated

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 19/23

Challenge 1: Interacting with the environment

• If we only care about the robot itself (all goals/objectives/models concern the robot
directly) – the above it totally fine

• Things get challenging when we care about interacting with the environment
– Models/goals/objectives of interaction (contact, grasp) are more complicated

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 19/23

Challenge 1: Interacting with the environment

• Example: Locomotion
– Interaction: Making contact with the ground to generate ground forces
– Robot root is not attached to world, but free floating (complicates dynamics a bit)
– Dynamics heavily influenced by ground forces, which are contact complementary hard on-off

switching of forces at contact → hybrid/discrete structure, makes dynamics and solvers much
much more complicated (hybrid control)

... more complicated than “vanilla robot”, but still doable

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 20/23

Challenge 1: Interacting with the environment

• Example: Locomotion
– Interaction: Making contact with the ground to generate ground forces
– Robot root is not attached to world, but free floating (complicates dynamics a bit)
– Dynamics heavily influenced by ground forces, which are contact complementary hard on-off

switching of forces at contact → hybrid/discrete structure, makes dynamics and solvers much
much more complicated (hybrid control)

... more complicated than “vanilla robot”, but still doable

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 20/23

Challenge 1: Interacting with the environment

• Example: Manipulation
– Objects in the environment (part of the “multibody system”) have their own DOFs, but are NOT

“articulated” with motors: if not grasped or touched, they cannot move → their Jacobian ∂qxi = 0

– Hard on-off switching of manipulability; hybrid dynamics & problem
– Dynamics of object motions can be much more complicated than (also free-floating) robot

dynamics: friction, stiction, slip, non-point contacts
– Waypoint constraints ϕ(xt) much more complicated (correct grasping of complex shape, pushing,

throwing)
– If objects are deformable, their form becomes DOF (e.g. neural latent code) – becomes much

much more complicated in above approach

• In essence, things become much more complicated, but one still can write down
essential physics equations of object interaction, and use these equations in above
approach

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 21/23

Challenge 1: Interacting with the environment

• Example: Manipulation
– Objects in the environment (part of the “multibody system”) have their own DOFs, but are NOT

“articulated” with motors: if not grasped or touched, they cannot move → their Jacobian ∂qxi = 0

– Hard on-off switching of manipulability; hybrid dynamics & problem
– Dynamics of object motions can be much more complicated than (also free-floating) robot

dynamics: friction, stiction, slip, non-point contacts
– Waypoint constraints ϕ(xt) much more complicated (correct grasping of complex shape, pushing,

throwing)
– If objects are deformable, their form becomes DOF (e.g. neural latent code) – becomes much

much more complicated in above approach

• In essence, things become much more complicated, but one still can write down
essential physics equations of object interaction, and use these equations in above
approach

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 21/23

Challenge 2: State Estimation

• All of the above requires to estimate states
– q0 (includes pose of a mobile robot)
– xi (poses of objects in environment)
– shapes and inertias in the environment, dynamics parameters (e.g. friction)

[Basic state estimation can often also be formulated as optimization problem (e.g. graph-SLAM) – similar to motion optimization:
Find estimates (also of past motion) that is most consistent with sensor readings; minimze error between real readings and
model-predicted readings. (Or as probabilistic inference.)]

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 22/23

Relation to Robot Learning

• On the formal/theory side, they share foundations:
– Optimal Control formulation ↔ Markov Decision Processes & Reinforcement Learning
– More generally: optimality formulations → learning/black-box opt. approaches

• Components can be replaced or shortcut by learning:
– Dynamic modelling ↔ system identification
– Optimal Control (e.g., MPC, Riccati) can be shortcut by learning V - or Q-function
– Need of inverse dynamics can be shortcut by learning Q-function instead of V -function
– Constraint solving (also IK) can be shortcut by directly learning a policy or sampler that fulfills

constraint
– Shortcut state estimation: Avoid all state-based models, learn direct sensor-based models

(policies, value functions, planners, dynamics, etc)
– End-to-end: Shortcut the whole approach by learning images 7→ torques

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 23/23

Relation to Robot Learning

• On the formal/theory side, they share foundations:
– Optimal Control formulation ↔ Markov Decision Processes & Reinforcement Learning
– More generally: optimality formulations → learning/black-box opt. approaches

• Components can be replaced or shortcut by learning:
– Dynamic modelling ↔ system identification
– Optimal Control (e.g., MPC, Riccati) can be shortcut by learning V - or Q-function
– Need of inverse dynamics can be shortcut by learning Q-function instead of V -function
– Constraint solving (also IK) can be shortcut by directly learning a policy or sampler that fulfills

constraint

– Shortcut state estimation: Avoid all state-based models, learn direct sensor-based models
(policies, value functions, planners, dynamics, etc)

– End-to-end: Shortcut the whole approach by learning images 7→ torques

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 23/23

Relation to Robot Learning

• On the formal/theory side, they share foundations:
– Optimal Control formulation ↔ Markov Decision Processes & Reinforcement Learning
– More generally: optimality formulations → learning/black-box opt. approaches

• Components can be replaced or shortcut by learning:
– Dynamic modelling ↔ system identification
– Optimal Control (e.g., MPC, Riccati) can be shortcut by learning V - or Q-function
– Need of inverse dynamics can be shortcut by learning Q-function instead of V -function
– Constraint solving (also IK) can be shortcut by directly learning a policy or sampler that fulfills

constraint
– Shortcut state estimation: Avoid all state-based models, learn direct sensor-based models

(policies, value functions, planners, dynamics, etc)
– End-to-end: Shortcut the whole approach by learning images 7→ torques

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 23/23

