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Robotics Essentials Outline

• A robot is an articulated multi-body system: kinematics & dynamics

• Standard Control: IK, path finding & traj. opt, PD & MPC
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Robot as Articulated Multibody System

• A robot is a multibody system. Each body
– has a pose xi ∈ SE(3)
– has inertia (mi, Ii) with mass mi ∈ R and inertia tensor Ii ∈ R3×3 sym.pos.def.
– has a shape si (formally: any representation that defines a pairwise signed-distance d(si, sj))

[Useful: “multibody system” on Wikipedia]
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Robot as Articulated Multibody System

• Tree structure:
– Every body is linked to a parent body or the world
– We have relative transformations Qi ∈ SE(3) from parent (or world)

[If not tree-structured, we only represent a tree and use additional constraints to describe loops → more involved, but doable]

• Articulated Degrees of Freedom (dofs):
– Some of the relative transformations Qi may have articulated

(=motorized) dofs q so that Qi(q)

[Different types of joints (hinge, prismatic, universal, ball) have different # dofs and
different mapping from dofs q 7→ Qi(q)]

– We stack all dofs of all relative transformations into a single
joint vector q ∈ Rn
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x ∈ SE(3)m: all body poses, q ∈ Rn: joint vector

– Forward kinematics: q 7→ x, q̇ 7→ ẋ, q̈ 7→ ẍ

– Forward dynamics: u 7→ q̈, inverse dynamics: q̈ 7→ u (u ∈ Rn: joint torques)
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Forward Kinematics q 7→ x

• Given q, what is the pose of any body i?

q 7→



x1
x2
...

xm


= ϕ(q) ∈ SE(3)m

– Algorithm: First determine all rel. trans. Qi(q), then forward chain them
– Often one cares only about position/orientation of one particular body xi: the “endeffector”

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 6/23



Forward Velocities & Jacobian q̇ 7→ ẋ

• Given q̇, what is the linear and angular velocity (vi, wi) of any body i?

q̇ 7→



v1, w1

v2, w2
...

vm, wm


= J(q) q̇ ∈ Rm×6

– with Jacobian J(q) = ∂qϕ(q) ∈ Rm×6×n.
[Since, ϕ is SE(3)-valued, the Jacobian actually has output in its tangent space se(3) ≡ R6. In practise, code typically
provides separate positional Jacobian Jpos ∈ Rm×3×n and angular Jacobian Jang ∈ Rm×3×n.]

– Since we know how to compute ϕ(q), we can think of J(q) as the “autodiff” of it
– However, positional/angular Jacobians are really very easy to provide without expensive autodiff

[In practise, one only needs to figure out the Jpos, Jang for a rotational and translational joint – all others follow from this.]
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• Given q̇, what is the linear and angular velocity (vi, wi) of any body i?

q̇ 7→



v1, w1

v2, w2
...

vm, wm


= J(q) q̇ ∈ Rm×6

– with Jacobian J(q) = ∂qϕ(q) ∈ Rm×6×n.
[Since, ϕ is SE(3)-valued, the Jacobian actually has output in its tangent space se(3) ≡ R6. In practise, code typically
provides separate positional Jacobian Jpos ∈ Rm×3×n and angular Jacobian Jang ∈ Rm×3×n.]

– Since we know how to compute ϕ(q), we can think of J(q) as the “autodiff” of it
– However, positional/angular Jacobians are really very easy to provide without expensive autodiff

[In practise, one only needs to figure out the Jpos, Jang for a rotational and translational joint – all others follow from this.]

Learning and Intelligent Systems Lab, TU Berlin Robotics Essentials – 7/23



Forward Accelerations q̈ 7→ ẍ

• Given q̈, what is the linear and angular acceleration (v̇i, ẇi) of any body i?

ẍ = J̇(q) q̇ + J(q) q̈ ≈ J(q) q̈

– One typically approximates J̇ = 0
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The word “kinematics”
[in parts from Wikipedia]

– Mathematical description of possible motions of a (constrainted/multibody) system/mechanism
without considering the forces

– “geometry of [possible] motions”
– Formally: Describe the space (manifold) of possible system poses and all possible paths in that

space
– Read generalized coordinates on wikipedia: Understanding motion in terms of coordinates and

(non-)holonomic constraints:
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Inverse dynamics q̈ 7→ u

• Given q̈, what joint torques u do we need to generate this q̈ (accounting for gravity)?

• Coupled Newton-Euler equations: For each body:

from Featherstone’14

Fi =

fi
τi

 =

 miv̇i
Iiẇi + wi × Iiwi



F back
i = Fi − F ext

i +
∑

j=child(i)

F back
j , ui = h⊤iF

back
i

[where F ext
i are external (e.g. gravity) forces; and F back

i is the force “send back through the joint to the parent of i”; hi is the joint
axis (picking up the torque)]

[Can also be written as linear equation system between q̈, F , F back, and u (with sparse matrices only) – and solved/inverted in
O(m).]
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solved! We can accelerate the thing as we like

the rest is planning: How should I accelerate to reach some future goals?
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Standard Template: Waypoint + Reference Motion + Controller

• Standard problem setting: Control motors, so that at t = T seconds the endeffector
xi is at desired position y∗ ∈ R3, i.e., ϕ(qt=T ) = y∗

• Problem decomposition:
– Find a final robot pose qT that fulfills constraint ϕ(qt=T ) = y∗ – inverse kinematics
– Find a nice reference motion from current robot pose q0 to qT – path finding, trajectory

optimization, or trivial interpolation/PD
– Find a control policy π : xt 7→ ut that reactively sends motor commands to follow the reference

motion – inverse dynamics, PD control, Riccati

[You could think of this as three different time scales: rough future waypoint(s)/goal(s), continuous motion to next waypoint,
short-term controls.]

[There are other ways to approach this: You could remove step (1) and shift that issue into (2), or remove (1 2) and shift all issues
into (3) - morphing this into other approaches. E.g. directly defining a desired force/acceleration behavior in “task space”
(=operational space control).]

[continuous replanning/re-estimation can also make (1) and (2) reactive.]
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Inverse Kinematics

• Find q to fulfill ϕ(q) = y∗ for differentiable fwd kinematics ϕ.

min
q∈Rn

||q − q0||2 s.t. ϕ(q) = y∗

or min
q∈Rn

||q − q0||2 + µ||ϕ(q)− y∗||2 for large µ

• Solution for linearized ϕ:

q∗ = q0 + J⊤(JJ⊤+ 1
µI)

-1(y∗ − ϕ(q0))

Python Package: https://marctoussaint.github.io/robotic/
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Path Finding & Trajectory Optimization

• Given current q0 and future q∗, find a collision free path
– Wolfgang Hönig’s & Andreas Orthey’s lecture
– RRTs, PRMs, under constraints (kinodynamic)

• Trajectory opimization
– Time continuous formulation:

min
q(t)

∫ T

0
c(q(t), q̇(t), q̈(t)) dt s.t. q(0) = q0, q(T ) = q∗, q̇(0) = q̇(T ) = 0 , ∀t∈[0,T ] : ϕ̄(q(t), q̇(t), q̈(t)) ≤ 0 .

– Time-discretized, assuming k-order Markov coupling terms (KOMO):
A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM, Gaussian Process smoothing,
optimal control, and probabilistic inference: Marc Toussaint. Springer 2017
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Control around a Reference

• Use Inverse Dynamics directly
– We have q̈∗(t) → map it to controls u directly
– But what if you’re off the reference a bit? How to steer back?

• Use PD law to accelerate back to reference:
– Define a PD law q̈desired = q̈∗(t) + kp(q

∗(t)− q) + kd(q̇
∗(t)− q̇) with desired PD behavior back to

reference
– Then use Inv dynamics q̈desired 7→ u

– (Also ok, but needs severe tuning: directly define a PD controller
ü = Mq̈∗(t) +Kp(q

∗(t)− q) +Kd(q̇
∗(t)− q̇).)

• Use Riccati to get an Optimal Linear Regulator around reference
– Define optimal control problem, e.g., minπ:q,q̇ 7→u

∫ T

0
c(q(t), q̇(t), u(t)) dt+ ϕ(x(T ))

– We can linearize dynamics around reference → has an analytic solution (Algebraic Riccati eq.)
– Resulting controller is a “linear regulator”, i.e., a PD law where matrices Kp,Kd depend on t and

are chosen optimally.
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Model-Predictive Control (MPC)

• When getting far away from the reference, linearization of Riccati might break, and
PD is too simple

• Continuously replan (∼ 10-1000Hz): re-solve the optimal control problem
– Optimal Control problem can also include task constraints directly, not only following a reference
– As a compromise: typically limit horizon

This is a default way of “thinking control” in robotics
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Summary

• A robot is an articulated multi-body system
– Fwd kinematics: q 7→ x, q̇ 7→ ẋ, q̈ 7→ ẍ

– Fwd dynamics: u 7→ q̈, inv dynamics: q̈ 7→ u

• Standard Control Template:
– IK (or constraint solving) to estimate future goal/waypoints
– Path Finding & Trajectory Optimization to estimate Reference Motion
– PD, Linear Regulator, or MPC to control (around the reference)
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How far can we get with this approach?

• What did we assume to know?
– Structure of multi-body system, all shapes, inertias
– All goals/objectives modelled (=programmed) as differentiable costs/constraints
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Challenge 1: Interacting with the environment

• If we only care about the robot itself (all goals/objectives/models concern the robot
directly) – the above it totally fine

• Things get challenging when we care about interacting with the environment
– Models/goals/objectives of interaction (contact, grasp) are more complicated
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Challenge 1: Interacting with the environment

• Example: Locomotion
– Interaction: Making contact with the ground to generate ground forces
– Robot root is not attached to world, but free floating (complicates dynamics a bit)
– Dynamics heavily influenced by ground forces, which are contact complementary hard on-off

switching of forces at contact → hybrid/discrete structure, makes dynamics and solvers much
much more complicated (hybrid control)

... more complicated than “vanilla robot”, but still doable
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Challenge 1: Interacting with the environment

• Example: Manipulation
– Objects in the environment (part of the “multibody system”) have their own DOFs, but are NOT

“articulated” with motors: if not grasped or touched, they cannot move → their Jacobian ∂qxi = 0

– Hard on-off switching of manipulability; hybrid dynamics & problem
– Dynamics of object motions can be much more complicated than (also free-floating) robot

dynamics: friction, stiction, slip, non-point contacts
– Waypoint constraints ϕ(xt) much more complicated (correct grasping of complex shape, pushing,

throwing)
– If objects are deformable, their form becomes DOF (e.g. neural latent code) – becomes much

much more complicated in above approach

• In essence, things become much more complicated, but one still can write down
essential physics equations of object interaction, and use these equations in above
approach
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Challenge 2: State Estimation

• All of the above requires to estimate states
– q0 (includes pose of a mobile robot)
– xi (poses of objects in environment)
– shapes and inertias in the environment, dynamics parameters (e.g. friction)

[Basic state estimation can often also be formulated as optimization problem (e.g. graph-SLAM) – similar to motion optimization:
Find estimates (also of past motion) that is most consistent with sensor readings; minimze error between real readings and
model-predicted readings. (Or as probabilistic inference.)]
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Relation to Robot Learning

• On the formal/theory side, they share foundations:
– Optimal Control formulation ↔ Markov Decision Processes & Reinforcement Learning
– More generally: optimality formulations → learning/black-box opt. approaches

• Components can be replaced or shortcut by learning:
– Dynamic modelling ↔ system identification
– Optimal Control (e.g., MPC, Riccati) can be shortcut by learning V - or Q-function
– Need of inverse dynamics can be shortcut by learning Q-function instead of V -function
– Constraint solving (also IK) can be shortcut by directly learning a policy or sampler that fulfills

constraint
– Shortcut state estimation: Avoid all state-based models, learn direct sensor-based models

(policies, value functions, planners, dynamics, etc)
– End-to-end: Shortcut the whole approach by learning images 7→ torques
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