

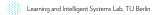
# **Robot Learning**

**Robotics Essentials** 

Marc Toussaint Technical University of Berlin Summer 2024

#### **Robotics Essentials Outline**

- A robot is an articulated multi-body system: kinematics & dynamics
- Standard Control: IK, path finding & traj. opt, PD & MPC



## **Robot as Articulated Multibody System**

- A robot is a multibody system. Each body
  - has a pose  $x_i \in SE(3)$
  - has inertia  $(m_i, I_i)$  with mass  $m_i \in \mathbb{R}$  and inertia tensor  $I_i \in \mathbb{R}^{3 \times 3}$  sym.pos.def.
  - has a shape  $s_i$  (formally: any representation that defines a pairwise signed-distance  $d(s_i, s_j)$ )

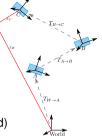
[Useful: "multibody system" on Wikipedia]



## **Robot as Articulated Multibody System**

- Tree structure:
  - Every body is linked to a parent body or the world
  - We have relative transformations  $Q_i \in SE(3)$  from parent (or world)

[If not tree-structured, we only represent a tree and use additional constraints to describe loops -> more involved, but doable]



## **Robot as Articulated Multibody System**

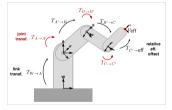
- Tree structure:
  - Every body is linked to a parent body or the world
  - We have relative transformations  $Q_i \in SE(3)$  from parent (or world)

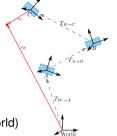
[If not tree-structured, we only represent a tree and use additional constraints to describe loops  $\rightarrow$  more involved, but doable]

- Articulated Degrees of Freedom (dofs):
  - Some of the relative transformations  $Q_i$  may have articulated (=motorized) **dofs** q so that  $Q_i(q)$

[Different types of joints (hinge, prismatic, universal, ball) have different # dofs and different mapping from dofs  $q\mapsto Q_i(q)]$ 

– We stack all dofs of all relative transformations into a single joint vector  $q \in \mathbb{R}^n$ 





 $x \in \mathsf{SE}(3)^m$ : all body poses,  $q \in \mathbb{R}^n$ : joint vector

- Forward kinematics:  $q \mapsto x$ ,  $\dot{q} \mapsto \dot{x}$ ,  $\ddot{q} \mapsto \ddot{x}$
- Forward dynamics:  $u \mapsto \ddot{q}$ , inverse dynamics:  $\ddot{q} \mapsto u$  ( $u \in \mathbb{R}^n$ : joint torques)



#### Forward Kinematics $q \mapsto x$

• Given q, what is the pose of any body i?

$$q \mapsto \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \phi(q) \quad \in \mathsf{SE}(3)^m$$

- Algorithm: First determine all rel. trans.  $Q_i(q)$ , then forward chain them
- Often one cares only about position/orientation of one particular body  $x_i$ : the "endeffector"



#### Forward Velocities & Jacobian $\dot{q} \mapsto \dot{x}$

• Given  $\dot{q}$ , what is the linear and angular velocity  $(v_i, w_i)$  of any body *i*?

$$\dot{q} \mapsto \begin{pmatrix} v_1, w_1 \\ v_2, w_2 \\ \vdots \\ v_m, w_m \end{pmatrix} = J(q) \ \dot{q} \quad \in \mathbb{R}^{m \times 6}$$

- with Jacobian  $J(q) = \partial_q \phi(q) \in \mathbb{R}^{m \times 6 \times n}$ .

[Since,  $\phi$  is SE(3)-valued, the Jacobian actually has output in its tangent space  $se(3) \equiv \mathbb{R}^6$ . In practise, code typically provides separate positional Jacobian  $J^{\text{pos}} \in \mathbb{R}^{m \times 3 \times n}$  and angular Jacobian  $J^{\text{ang}} \in \mathbb{R}^{m \times 3 \times n}$ .]



#### Forward Velocities & Jacobian $\dot{q} \mapsto \dot{x}$

• Given  $\dot{q}$ , what is the linear and angular velocity  $(v_i, w_i)$  of any body *i*?

$$\dot{q} \mapsto \begin{pmatrix} v_1, w_1 \\ v_2, w_2 \\ \vdots \\ v_m, w_m \end{pmatrix} = J(q) \ \dot{q} \quad \in \mathbb{R}^{m \times 6}$$

- with Jacobian  $J(q) = \partial_q \phi(q) \in \mathbb{R}^{m \times 6 \times n}$ .

[Since,  $\phi$  is SE(3)-valued, the Jacobian actually has output in its tangent space  $se(3) \equiv \mathbb{R}^6$ . In practise, code typically provides separate positional Jacobian  $J^{\text{pos}} \in \mathbb{R}^{m \times 3 \times n}$  and angular Jacobian  $J^{\text{ang}} \in \mathbb{R}^{m \times 3 \times n}$ .]

- Since we know how to compute  $\phi(q)$ , we can think of J(q) as the "autodiff" of it
- However, positional/angular Jacobians are really very easy to provide without expensive autodiff [In practise, one only needs to figure out the J<sup>pos</sup>, J<sup>ang</sup> for a rotational and translational joint – all others follow from this.]

#### Forward Accelerations $\ddot{q} \mapsto \ddot{x}$

• Given  $\ddot{q}$ , what is the linear and angular acceleration  $(\dot{v}_i, \dot{w}_i)$  of any body *i*?

$$\ddot{x} = \dot{J}(q) \ \dot{q} + J(q) \ \ddot{q} \approx J(q) \ \ddot{q}$$

- One typically approximates  $\dot{J} = 0$ 



## The word "kinematics"

[in parts from Wikipedia]

- Mathematical description of possible motions of a (constrainted/multibody) system/mechanism without considering the forces
- "geometry of [possible] motions"
- Formally: Describe the space (manifold) of possible system poses and all possible paths in that space
- Read generalized coordinates on wikipedia: Understanding motion in terms of coordinates and (non-)holonomic constraints:



#### Inverse dynamics $\ddot{q} \mapsto u$

• Given  $\ddot{q}$ , what joint torques u do we need to generate this  $\ddot{q}$  (accounting for gravity)?

#### **Inverse dynamics** $\ddot{q} \mapsto u$

- Given  $\ddot{q}$ , what joint torques u do we need to generate this  $\ddot{q}$  (accounting for gravity)?
- Coupled Newton-Euler equations: For each body:

$$\begin{split} F_i &= \begin{pmatrix} f_i \\ \tau_i \end{pmatrix} = \begin{pmatrix} m_i \dot{v}_i \\ I_i \dot{w}_i + w_i \times I_i w_i \end{pmatrix} \\ F_i^{\text{back}} &= F_i - F_i^{\text{ext}} + \sum_{j=\text{child(i)}} F_j^{\text{back}}, \quad u_i = h_i^{\top} F_i^{\text{back}} \end{split}$$
 from Featherstone'14

[where  $F_i^{\text{ext}}$  are external (e.g. gravity) forces; and  $F_i^{\text{back}}$  is the force "send back through the joint to the parent of *i*";  $h_i$  is the joint axis (picking up the torque)]

[Can also be written as linear equation system between  $\ddot{q}$ , F,  $F^{\text{back}}$ , and u (with sparse matrices only) – and solved/inverted in O(m).]

Learning and Intelligent Systems Lab, TU Berlin

#### solved! We can accelerate the thing as we like



#### solved! We can accelerate the thing as we like

the rest is planning: How should I accelerate to reach some future goals?



## Standard Template: Waypoint + Reference Motion + Controller



#### Standard Template: Waypoint + Reference Motion + Controller

• Standard problem setting: Control motors, so that at t = T seconds the endeffector

 $x_i$  is at desired position  $y^* \in \mathbb{R}^3$ , i.e.,  $\phi(q_{t=T}) = y^*$ 



#### Standard Template: Waypoint + Reference Motion + Controller

- Standard problem setting: Control motors, so that at t = T seconds the endeffector  $x_i$  is at desired position  $y^* \in \mathbb{R}^3$ , i.e.,  $\phi(q_{t=T}) = y^*$
- Problem decomposition:
  - Find a final robot pose  $q_T$  that fulfills constraint  $\phi(q_{t=T}) = y^*$  inverse kinematics
  - Find a nice *reference* motion from current robot pose  $q_0$  to  $q_T$  path finding, trajectory optimization, or trivial interpolation/PD
  - Find a control policy  $\pi : x_t \mapsto u_t$  that reactively sends motor commands to follow the reference motion **inverse dynamics**, PD control, Riccati

[You could think of this as three different time scales: rough future waypoint(s)/goal(s), continuous motion to next waypoint, short-term controls.]

[There are other ways to approach this: You could remove step (1) and shift that issue into (2), or remove (1 2) and shift all issues into (3) - morphing this into other approaches. E.g. directly defining a desired force/acceleration behavior in "task space" (=operational space control).]

[continuous replanning/re-estimation can also make (1) and (2) reactive.]

#### **Inverse Kinematics**

• Find q to fulfill  $\phi(q) = y^*$  for differentiable fwd kinematics  $\phi$ .

$$\min_{q \in \mathbb{R}^n} \|q - q_0\|^2 \text{ s.t. } \phi(q) = y^*$$
  
or 
$$\min_{q \in \mathbb{R}^n} \|q - q_0\|^2 + \mu \|\phi(q) - y^*\|^2 \text{ for large } \mu$$

• Solution for linearized  $\phi$ :

$$q^* = q_0 + J^{\top} (JJ^{\top} + \frac{1}{\mu}\mathbf{I})^{-1} (y^* - \phi(q_0))$$

Python Package: https://marctoussaint.github.io/robotic/



Robotics Essentials - 13/23

## Path Finding & Trajectory Optimization

- Given current  $q_0$  and future  $q^*$ , find a collision free **path** 
  - Wolfgang Hönig's & Andreas Orthey's lecture
  - RRTs, PRMs, under constraints (kinodynamic)



## Path Finding & Trajectory Optimization

- Given current  $q_0$  and future  $q^*$ , find a collision free **path** 
  - Wolfgang Hönig's & Andreas Orthey's lecture
  - RRTs, PRMs, under constraints (kinodynamic)
- Trajectory opimization
  - Time continuous formulation:

 $\min_{q(t)} \int_0^T c(q(t), \dot{q}(t), \ddot{q}(t)) \, dt \quad \text{s.t.} \quad q(0) = q_0, \; q(T) = q^*, \\ \dot{q}(0) = \dot{q}(T) = 0 \;, \\ \forall_{t \in [0,T]} : \bar{\phi}(q(t), \dot{q}(t), \ddot{q}(t)) \leq 0 \;.$ 

- Time-discretized, assuming k-order Markov coupling terms (KOMO):

A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM, Gaussian Process smoothing, optimal control, and probabilistic inference: *Marc Toussaint*. Springer 2017



## **Control around a Reference**

- Use Inverse Dynamics directly
  - We have  $\ddot{q}^*(t) \rightarrow$  map it to controls u directly
  - But what if you're off the reference a bit? How to steer back?



## **Control around a Reference**

- Use Inverse Dynamics directly
  - We have  $\ddot{q}^*(t) \rightarrow$  map it to controls u directly
  - But what if you're off the reference a bit? How to steer back?
- Use PD law to accelerate back to reference:
  - Define a PD law  $\ddot{q}^{\text{desired}} = \ddot{q}^*(t) + k_p(q^*(t) q) + k_d(\dot{q}^*(t) \dot{q})$  with desired PD behavior back to reference
  - Then use Inv dynamics  $\ddot{q}^{\text{desired}}\mapsto u$
  - (Also ok, but needs severe tuning: directly define a PD controller  $\ddot{u} = M\ddot{q}^*(t) + K_p(q^*(t) q) + K_d(\dot{q}^*(t) \dot{q}).)$

## **Control around a Reference**

- Use Inverse Dynamics directly
  - We have  $\ddot{q}^*(t) \rightarrow$  map it to controls u directly
  - But what if you're off the reference a bit? How to steer back?
- Use PD law to accelerate back to reference:
  - Define a PD law  $\ddot{q}^{\text{desired}} = \ddot{q}^*(t) + k_p(q^*(t) q) + k_d(\dot{q}^*(t) \dot{q})$  with desired PD behavior back to reference
  - Then use Inv dynamics  $\ddot{q}^{\mathrm{desired}}\mapsto u$
  - (Also ok, but needs severe tuning: directly define a PD controller  $\ddot{u} = M\ddot{q}^*(t) + K_p(q^*(t) q) + K_d(\dot{q}^*(t) \dot{q}).)$
- Use Riccati to get an Optimal Linear Regulator around reference
  - Define optimal control problem, e.g.,  $\min_{\pi:q,\dot{q}\mapsto u} \int_0^T c(q(t),\dot{q}(t),u(t)) dt + \phi(x(T))$
  - We can linearize dynamics around reference  $\rightarrow$  has an analytic solution (Algebraic Riccati eq.)
  - Resulting controller is a "linear regulator", i.e., a PD law where matrices K<sub>p</sub>, K<sub>d</sub> depend on t and are chosen optimally.

## **Model-Predictive Control (MPC)**

• When getting far away from the reference, linearization of Riccati might break, and PD is too simple

## Model-Predictive Control (MPC)

- When getting far away from the reference, linearization of Riccati might break, and PD is too simple
- Continuously replan ( $\sim$  10-1000Hz): re-solve the optimal control problem
  - Optimal Control problem can also include task constraints directly, not only following a reference
  - As a compromise: typically limit horizon

#### This is a default way of "thinking control" in robotics



#### Summary



Robotics Essentials - 17/23

## Summary

- A robot is an articulated multi-body system
  - Fwd kinematics:  $q \mapsto x, \ \dot{q} \mapsto \dot{x}, \ \ddot{q} \mapsto \ddot{x}$
  - Fwd dynamics:  $u \mapsto \ddot{q}$ , inv dynamics:  $\ddot{q} \mapsto u$



### Summary

- A robot is an articulated multi-body system
  - Fwd kinematics:  $q \mapsto x, \ \dot{q} \mapsto \dot{x}, \ \ddot{q} \mapsto \ddot{x}$
  - Fwd dynamics:  $u \mapsto \ddot{q}$ , inv dynamics:  $\ddot{q} \mapsto u$
- Standard Control Template:
  - IK (or constraint solving) to estimate future goal/waypoints
  - Path Finding & Trajectory Optimization to estimate Reference Motion
  - PD, Linear Regulator, or MPC to control (around the reference)

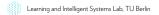


## How far can we get with this approach?



## How far can we get with this approach?

- What did we assume to know?
  - Structure of multi-body system, all shapes, inertias
  - All goals/objectives modelled (=programmed) as differentiable costs/constraints



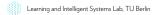
• If we only care about the **robot itself** (all goals/objectives/models concern the robot directly) – the above it totally fine



- If we only care about the **robot itself** (all goals/objectives/models concern the robot directly) the above it totally fine
- Things get challenging when we care about interacting with the environment
  - Models/goals/objectives of interaction (contact, grasp) are more complicated



- Example: Locomotion
  - Interaction: Making contact with the ground to generate ground forces
  - Robot root is not attached to world, but free floating (complicates dynamics a bit)
  - Dynamics heavily influenced by ground forces, which are *contact complementary* hard on-off switching of forces at contact → hybrid/discrete structure, makes dynamics and solvers much much more complicated (hybrid control)



- Example: Locomotion
  - Interaction: Making contact with the ground to generate ground forces
  - Robot root is not attached to world, but free floating (complicates dynamics a bit)
  - Dynamics heavily influenced by ground forces, which are *contact complementary* hard on-off switching of forces at contact → hybrid/discrete structure, makes dynamics and solvers much much more complicated (hybrid control)

... more complicated than "vanilla robot", but still doable

- Example: Manipulation
  - Objects in the environment (part of the "multibody system") have their own DOFs, but are NOT "articulated" with motors: if not grasped or touched, they cannot move  $\rightarrow$  their Jacobian  $\partial_q x_i = 0$
  - Hard on-off switching of manipulability; hybrid dynamics & problem
  - Dynamics of object motions can be much more complicated than (also free-floating) robot dynamics: friction, stiction, slip, non-point contacts
  - Waypoint constraints  $\phi(x_t)$  much more complicated (correct grasping of complex shape, pushing, throwing)
  - If objects are deformable, their form becomes DOF (e.g. neural latent code) becomes much much more complicated in above approach

- Example: Manipulation
  - Objects in the environment (part of the "multibody system") have their own DOFs, but are NOT "articulated" with motors: if not grasped or touched, they cannot move  $\rightarrow$  their Jacobian  $\partial_q x_i = 0$
  - Hard on-off switching of manipulability; hybrid dynamics & problem
  - Dynamics of object motions can be much more complicated than (also free-floating) robot dynamics: friction, stiction, slip, non-point contacts
  - Waypoint constraints  $\phi(x_t)$  much more complicated (correct grasping of complex shape, pushing, throwing)
  - If objects are deformable, their form becomes DOF (e.g. neural latent code) becomes much much more complicated in above approach
- In essence, things become much more complicated, but one still *can* write down essential physics equations of object interaction, and use these equations in above approach

Learning and Intelligent Systems Lab, TU Berlin

## **Challenge 2: State Estimation**

- All of the above requires to estimate states
  - $q_0$  (includes pose of a mobile robot)
  - $-x_i$  (poses of objects in environment)
  - shapes and inertias in the environment, dynamics parameters (e.g. friction)

[Basic state estimation can often also be formulated as optimization problem (e.g. graph-SLAM) – similar to motion optimization: Find estimates (also of past motion) that is *most consistent* with sensor readings; minimze error between real readings and model-predicted readings. (Or as probabilistic inference.)]



## **Relation to Robot Learning**

- On the formal/theory side, they share foundations:
  - Optimal Control formulation ↔ Markov Decision Processes & Reinforcement Learning
  - More generally: optimality formulations  $\rightarrow$  learning/black-box opt. approaches

## **Relation to Robot Learning**

- On the formal/theory side, they share foundations:
  - Optimal Control formulation ↔ Markov Decision Processes & Reinforcement Learning
  - More generally: optimality formulations  $\rightarrow$  learning/black-box opt. approaches
- Components can be *replaced* or *shortcut* by learning:
  - Dynamic modelling  $\leftrightarrow$  system identification
  - Optimal Control (e.g., MPC, Riccati) can be shortcut by learning V- or Q-function
  - Need of inverse dynamics can be shortcut by learning Q-function instead of V-function
  - Constraint solving (also IK) can be shortcut by directly learning a policy or sampler that fulfills constraint



## **Relation to Robot Learning**

- On the formal/theory side, they share foundations:
  - Optimal Control formulation ↔ Markov Decision Processes & Reinforcement Learning
  - More generally: optimality formulations  $\rightarrow$  learning/black-box opt. approaches
- Components can be *replaced* or *shortcut* by learning:
  - Dynamic modelling  $\leftrightarrow$  system identification
  - Optimal Control (e.g., MPC, Riccati) can be shortcut by learning V- or Q-function
  - Need of inverse dynamics can be shortcut by learning Q-function instead of V-function
  - Constraint solving (also IK) can be shortcut by directly learning a policy or sampler that fulfills constraint
  - Shortcut state estimation: Avoid all state-based models, learn direct sensor-based models (policies, value functions, planners, dynamics, etc)
  - End-to-end: Shortcut the whole approach by learning images  $\mapsto$  torques