

Robot Learning

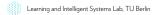
Machine Learning Essentials

Marc Toussaint Technical University of Berlin Summer 2024

Machine Learning Essentials

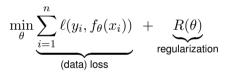
- Supervised ML $f_{\theta}: x \mapsto y$
- Unsupervised ML $p_{\theta}(x)$ (and conditional $p_{\theta}(x|z)$)

[Neglected here: Optimal embeddings, clustering]



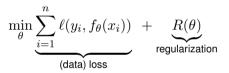
Supervised ML

• Given data $D = \{(x_i, y_i)\}_{i=1}^n$ and a parameterized $f_{\theta} : x \mapsto y$, find θ

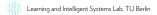


Supervised ML

• Given data $D = \{(x_i, y_i)\}_{i=1}^n$ and a parameterized $f_{\theta} : x \mapsto y$, find θ



done! That's (supervised) ML



Machine Learning Essentials -3/12

Loss Functions

- Regularizations:
 - L_2 (Ridge): $R(\theta) = \|\theta\|_2^2$
 - L_1 (Lasso): $R(\theta) = \|\theta\|_1$

Loss Functions

- Regularizations:
 - L_2 (Ridge): $R(\theta) = \|\theta\|_2^2$
 - L_1 (Lasso): $R(\theta) = \|\theta\|_1$
- Regression $y \in \mathbb{R}^m$: Squared error: $\ell(y, \hat{y}) = (y \hat{y})^2$ [Robust variants: Huber loss, Forsyth]

Loss Functions

- Regularizations:
 - L_2 (Ridge): $R(\theta) = \|\theta\|_2^2$
 - L_1 (Lasso): $R(\theta) = \|\theta\|_1$
- Regression $y \in \mathbb{R}^m$: Squared error: $\ell(y, \hat{y}) = (y \hat{y})^2$ [Robust variants: Huber loss, Forsyth]
- Classification $y \in \{0, .., M\}$ (where $f : x \mapsto f(x) \in \mathbb{R}^M$ discriminative values)
 - Neg-Log-Likelihood: $\ell(y, f(x)) = -\log p(y|x)$ with $p(y|x) = \frac{e^{f_y(x)}}{\sum_{x} e^{f_y'(x)}}$
 - Hinge: $\ell(y,f(x)) = \sum_{y' \neq y} [1 (f_{y^*}(x) f_{y'}(x))]_+$
 - Cross-Entropy: $\ell(y, f(x)) = -\sum_{z} h_y(z) \log p(z|x)$ same as NLL for one-hot-encoding $h_y(z) = [y = z]$

Learning and Intelligent Systems Lab, TU Berlin

Machine Learning Essentials -4/12

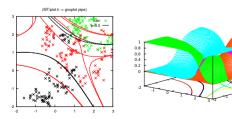
Parameterized Functions

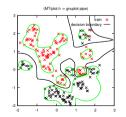
• Linear
$$f_{\theta}(x) = \theta_0 + \sum_{j=1}^d \theta_j x_j = \bar{x}^{\top} \theta$$

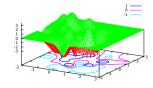
Parameterized Functions

• Linear
$$f_{\theta}(x) = \theta_0 + \sum_{j=1}^d \theta_j x_j = \bar{x}^{\top} \theta$$

- Linear in features: $f_{\theta}(x) = \phi(x)^{\top} \theta$ (or Hilbert space..)
 - Linear: $\phi(x) = (1, x_1, .., x_d) \in \mathbb{R}^{1+d}$
 - Quadratic: $\phi(x) = (1, x_1, ..., x_d, x_1^2, x_1x_2, x_1x_3, ..., x_d^2) \in \mathbb{R}^{1+d+\frac{d(d+1)}{2}}$
 - $\text{ Cubic: } \phi(x) = (.., x_1^3, x_1^2 x_2, x_1^2 x_3, .., x_d^3) \in \mathbb{R}^{1+d+\frac{d(d+1)}{2}+\frac{d(d+1)(d+2)}{6}}$
 - Also: Radial-Basis Functions (RBF), piece-wise linear







Machine Learning Essentials - 5/12

Learning and Intelligent Systems Lab, TU Berlin

Parameterized Functions

• Neural Nets: Repeating non-linear and linear parts: (this is a 3-layer NN):

$$f_{\theta}(x) = W_3 \phi \Big[W_2 \phi [W_1 x + b_1] + b_2 \Big] + b_3$$
$$\stackrel{\uparrow}{\exists_{\overline{i}}} \stackrel{\uparrow}{=} \stackrel{\uparrow}{\exists_{\overline{i}}} \stackrel{\uparrow}{=} \stackrel{\uparrow}{=} \stackrel{\uparrow}{=} \stackrel{\uparrow}{=}$$

- Non-linear parts:
 - rectified linear unit (ReLU): $\phi(x) = [x]_+ = \max\{0, x\}$
 - leaky ReLU: $\phi(x) = \max\{0.01x, x\}$
 - sigmoid, logistic: $\phi(x) = 1/(1+e^{-x})$
 - max-pooling, soft-max, layer-norm
- Linear parts:
 - Fully connected (W_i is a full matrix)
 - Convolutional
 - Transformer-like (cross-attentions)

- In essense
 - You define the parameterized function f_{θ}
 - You define the loss ℓ and regularization R
 - You provide the data set D
 - An optimizer (analytic for linear models, stochastic gradient otherwise) finds good parameters θ

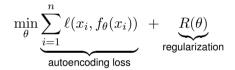
- In essense
 - You define the parameterized function f_{θ}
 - You define the loss ℓ and regularization R
 - You provide the data set D
 - An optimizer (analytic for linear models, stochastic gradient otherwise) finds good parameters θ
- · And you cross-validate to check your hyper-parameter choices

Unsupervised ML

• Given data $D = \{x_i\}_{i=1}^n$, learn "something" about p(x)

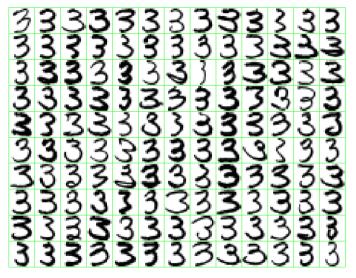
Unsupervised ML

- Given data $D = \{x_i\}_{i=1}^n$, learn "something" about p(x)
- Important setting: parameterized **autoencoder** $f_{\theta} : x \mapsto z \mapsto x'$, find θ



- You learn to reproduce x through a compact **latent code** $z \in \mathbb{R}^h$ (while $x \in \mathbb{R}^d$ is high-dimensional)
- z has high entropy (typically Gaussian) distribution \rightarrow you can generate $x' \sim p(x)$ by sampling z and decoding
- If f is linear, this is called **Principle Component Analysis**
- Better: Variational Autoencoder (VAC): Enforces p(z) to have proper distribution.

Example: Digits



- There are other ideas in unsupervised learning, but the autoencoding objective is a major breakthrough
 - You "understand" the structure of data if you can compress and de-compress it
 - Autoencoders do this with powerful NN architectures

Diffusion Denoising Models

• Given data D, you want to learn a "system" that **generates** samples $x \sim p_{\theta}(x)$ where $p_{\theta}(x)$ models D

Diffusion Denoising Models

- Given data D, you want to learn a "system" that **generates** samples $x \sim p_{\theta}(x)$ where $p_{\theta}(x)$ models D
- Autoencoders are one approach, Diffusion Denoising Models another:
 - Train a stepwise stochastic process (Langevin dynamics) to generate samples $x \sim p_{\theta}(x)$
 - Has its origin in "energy-based models" and score matching
 - The step-wite sample generation process is very powerful

Conditional Generative Models

- Given data $D = \{(x_i, c_i)\}_{i=1}^n$ train a *conditional* distribution $p_{\theta}(x|c)$
 - We're actually back to Supervised ML $c \mapsto x$ (where c is the input)
 - But if *x* is high-dimensional (and *c* low-dim.), the generative model aspect is important:
 - The reconstruction objective enforces the system to find a good latent representation to generate high-dim. \boldsymbol{x}
 - this is complemented by making conditional to c

$$f_{\theta}: \begin{array}{c} x \mapsto z \mapsto x \\ \uparrow \\ c \end{array}$$

A loss $\ell(x_i, f_{\theta}(x_i, c_i))$ jointly trains autoencoding $x \mapsto z \mapsto x'$ and conditional generation $c \mapsto z \mapsto x'$

Learning and Intelligent Systems Lab, TU Berlin

Machine Learning Essentials – 12/12