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Machine Learning Essentials

• Supervised ML fθ : x 7→ y

• Unsupervised ML pθ(x) (and conditional pθ(x|z))
[Neglected here: Optimal embeddings, clustering]
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Supervised ML

• Given data D = {(xi, yi)}ni=1 and a parameterized fθ : x 7→ y, find θ

min
θ

n∑
i=1

ℓ(yi, fθ(xi))︸ ︷︷ ︸
(data) loss

+ R(θ)︸︷︷︸
regularization

done! That’s (supervised) ML
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Loss Functions

• Regularizations:
– L2 (Ridge): R(θ) = ||θ||22
– L1 (Lasso): R(θ) = ||θ||1

• Regression y ∈ Rm: Squared error: ℓ(y, ŷ) = (y − ŷ)2

[Robust variants: Huber loss, Forsyth]

• Classification y ∈ {0, ..,M} (where f : x 7→ f(x) ∈ RM discriminative values)

– Neg-Log-Likelihood: ℓ(y, f(x)) = − log p(y|x) with p(y|x) = efy(x)∑
y′ e

f
y′ (x)

– Hinge: ℓ(y, f(x)) =
∑

y′ ̸=y[1− (fy∗(x)− fy′(x))]+

– Cross-Entropy: ℓ(y, f(x)) = −
∑

z hy(z) log p(z|x) same as NLL for one-hot-encoding
hy(z) = [y = z]
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Parameterized Functions

• Linear fθ(x) = θ0 +
∑d

j=1 θjxj = x̄⊤θ

• Linear in features: fθ(x) = ϕ(x)⊤θ (or Hilbert space..)

– Linear: ϕ(x) = (1, x1, .., xd) ∈ R1+d

– Quadratic: ϕ(x) = (1, x1, .., xd, x
2
1, x1x2, x1x3, .., x

2
d) ∈ R1+d+

d(d+1)
2

– Cubic: ϕ(x) = (.., x3
1, x

2
1x2, x

2
1x3, .., x

3
d) ∈ R1+d+

d(d+1)
2

+
d(d+1)(d+2)

6

– Also: Radial-Basis Functions (RBF), piece-wise linear
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Parameterized Functions

• Neural Nets: Repeating non-linear and linear parts: (this is a 3-layer NN):

fθ(x) = W3

←
lin

ϕ

←
nlin

[
W2

←
lin

ϕ

←
nlin

[ W1

←
lin

x+ b1 ] + b2

]
+ b3

– Non-linear parts:

– rectified linear unit (ReLU): ϕ(x) = [x]+ = max{0, x}
– leaky ReLU: ϕ(x) = max{0.01x, x}
– sigmoid, logistic: ϕ(x) = 1/(1 + e−x)

– max-pooling, soft-max, layer-norm

– Linear parts:

– Fully connected (Wi is a full matrix)
– Convolutional
– Transformer-like (cross-attentions)
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• In essense
– You define the parameterized function fθ

– You define the loss ℓ and regularization R

– You provide the data set D

– An optimizer (analytic for linear models, stochastic gradient otherwise) finds good parameters θ

• And you cross-validate to check your hyper-parameter choices
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Unsupervised ML

• Given data D = {xi}ni=1, learn “something” about p(x)

• Important setting: parameterized autoencoder fθ : x 7→ z 7→ x′, find θ

min
θ

n∑
i=1

ℓ(xi, fθ(xi))︸ ︷︷ ︸
autoencoding loss

+ R(θ)︸︷︷︸
regularization

– You learn to reproduce x through a compact latent code z ∈ Rh (while x ∈ Rd is
high-dimensional)

– z has high entropy (typically Gaussian) distribution → you can generate x′ ∼ p(x) by sampling z
and decoding

– If f is linear, this is called Principle Component Analysis
– Better: Variational Autoencoder (VAC): Enforces p(z) to have proper distribution.
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Example: Digits
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• There are other ideas in unsupervised learning, but the autoencoding objective is a
major breakthrough

– You “understand” the structure of data if you can compress and de-compress it
– Autoencoders do this with powerful NN architectures
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Diffusion Denoising Models

• Given data D, you want to learn a “system” that generates samples x ∼ pθ(x)

where pθ(x) models D

• Autoencoders are one approach, Diffusion Denoising Models another:
– Train a stepwise stochastic process (Langevin dynamics) to generate samples x ∼ pθ(x)

– Has its origin in “energy-based models” and score matching
– The step-wite sample generation process is very powerful
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Conditional Generative Models

• Given data D = {(xi, ci)}ni=1 train a conditional distribution pθ(x|c)
– We’re actually back to Supervised ML c 7→ x (where c is the input)
– But if x is high-dimensional (and c low-dim.), the generative model aspect is important:
– The reconstruction objective enforces the system to find a good latent representation to generate

high-dim. x
– this is complemented by making conditional to c

fθ :
x 7→ z 7→ x′

7→

c

A loss ℓ(xi, fθ(xi, ci)) jointly trains autoencoding x 7→ z 7→ x′ and conditional generation
c 7→ z 7→ x′
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