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Machine Learning Essentials

e Supervised ML fy:x—y

e Unsupervised ML py(xz) (and conditional pg(z|z))
[Neglected here: Optimal embeddings, clustering]
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Supervised ML

e Givendata D = {(z;,v;)}_, and a parameterized fy : x — vy, find 6

n
min » l(y;, fo(x:)) + R(0)
6 4 ~——
=1 regularization
(data) loss
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Supervised ML

e Givendata D = {(z;,v;)}_, and a parameterized fy : x — vy, find 6

n
min » " l(y;, fo(x:)) + R(0)
6 4 ~——
=1 regularization
(data) loss

done! That’s (supervised) ML
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Loss Functions
e Regularizations:

— Lo (Ridge): R(0) = |0]3
— L (Lasso): R(9) = |0]x
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Loss Functions
e Regularizations:

— Lo (Ridge): R(0) = |0]3
— L (Lasso): R(9) = |0]x

e Regression y € R™: Squared error: £(y,9) = (y — 9)?

[Robust variants: Huber loss, Forsyth]
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Loss Functions

e Regularizations:
— L (Ridge): R(0) = [9]3
— L (Lasso): R(9) = |0]x

e Regression y € R™: Squared error: £(y,9) = (y — 9)?

[Robust variants: Huber loss, Forsyth]

e Classification y € {0,.., M} (where f : x — f(z) € RM discriminative values)

— Neg-Log-Likelihood: £(y, f(z)) = — log p(y|x) with p(y|z) = Zfiﬁ)”

— Hinge: £(y, f(z)) = 22,2, [1 = (fy= () — fur(@))]+
- Cross Entropy: £(y, f(z)) = — 3 _ hy(2)logp(z|x) same as NLL for one-hot-encoding
hy(2) = [y = 2]
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Parameterized Functions

o Linear fo(z) = 0p + >0_, 02, = 20
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Parameterized Functions

o Linear fo(z) = 0p + >0_, 02, = 20

e Linear in features: fy(z) = ¢(z)'0  (or Hilbert space..)

— Linear: ¢(x) = (1,1, ..,xq4) € R

— Quadratic: ¢(z) = (1, z1, X, T2, T T2, T1T3, ..7503) RH‘H%
— Cubic: ¢(z) = (.., 23, 2ize, 2323, .., 25) € RITH HG AL
— Also: Radial-Basis Functions (RBF), piece-wise linear

(MTiploth -> gruplot pipe) (MTiploth -> gruplot pipe)

Train x

&
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Parameterized Functions

e Neural Nets: Repeating non-linear and linear parts: (this is a 3-layer NN):

folw) = Ws 6| Wa o[ Wi+ b1 ] +bs | +by
111

5

ul—
unu—>

ul

— Non-linear parts:
— rectified linear unit (ReLU): ¢(z) = [z]+ = max{0, z}
— leaky ReLU: ¢(z) = max{0.01z, =}
— sigmoid, logistic: ¢(z) = 1/(1 +e™7)
— max-pooling, soft-max, layer-norm
— Linear parts:
— Fully connected (W; is a full matrix)
— Convolutional
— Transformer-like (cross-attentions)
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e In essense
— You define the parameterized function f
— You define the loss ¢ and regularization R
— You provide the data set D

— An optimizer (analytic for linear models, stochastic gradient otherwise) finds good parameters 6
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e In essense
— You define the parameterized function f
— You define the loss ¢ and regularization R
— You provide the data set D

— An optimizer (analytic for linear models, stochastic gradient otherwise) finds good parameters 6

e And you cross-validate to check your hyper-parameter choices
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Unsupervised ML

e Givendata D = {z;} ,, learn “something” about p(x)
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Unsupervised ML

e Givendata D = {z;} ,, learn “something” about p(x)

e Important setting: parameterized autoencoder fj : z +— z — 2/, find 6

n
min Y (ws, fo(z:)) +  R(6)
0 4 —~—
=1 regularization
autoencoding loss

You learn to reproduce z through a compact latent code =z € R" (while z € R is
high-dimensional)

2z has high entropy (typically Gaussian) distribution — you can generate =’ ~ p(x) by sampling =
and decoding

If f is linear, this is called Principle Component Analysis
Better: Variational Autoencoder (VAC): Enforces p(z) to have proper distribution.
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Example: Digits
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e There are other ideas in unsupervised learning, but the autoencoding objective is a
major breakthrough

— You “understand” the structure of data if you can compress and de-compress it
— Autoencoders do this with powerful NN architectures
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Diffusion Denoising Models

e Given data D, you want to learn a “system” that generates samples x ~ py(x)
where py(x) models D
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Diffusion Denoising Models

e Given data D, you want to learn a “system” that generates samples x ~ py(x)
where py(x) models D

e Autoencoders are one approach, Diffusion Denoising Models another:
— Train a stepwise stochastic process (Langevin dynamics) to generate samples x ~ py(z)
— Has its origin in “energy-based models” and score matching
— The step-wite sample generation process is very powerful

Learning and Intelligent Systems Lab, TU Berlin Machine Learning Essentials — 11/12



Conditional Generative Models

e Given data D = {(x;,¢;)}}, train a conditional distribution py(z|c)
— We're actually back to Supervised ML ¢ — = (where c is the input)
— But if z is high-dimensional (and ¢ low-dim.), the generative model aspect is important:

— The reconstruction objective enforces the system to find a good latent representation to generate
high-dim. x
— this is complemented by making conditional to ¢

=z 2

fo: T

Cc

Aloss ¢(x;, fo(zi, ¢;)) jointly trains autoencoding x — z — 2’ and conditional generation
cr— 2z a’

Learning and Intelligent Systems Lab, TU Berlin Machine Learning Essentials — 12/12



