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Outline

e |. What is learned?
— Incl. which mapping exactly, model assumption, parameterization, loss function

e |l. How is the data generated?

o lIl. Multirotor Examples
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. What is learned?
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. What is learned?

instructions/lang./goal info g
physics parameters ©

state controls
Tt Ut
rewards 7 waypoints/subgoals ©
value V () tra'};Ic)tor x § e
Q-value Q(z, u) observations ) Y L ]
( action plan a1. x
constraint ¢(x) Yt
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Dynamics Learning — State-based view

e Learning the state-based dynamics:

xy = f(2e1, upr) or p(@e | Te1, 1)
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Dynamics Learning — State-based view

e Learning the state-based dynamics:

xy = f(2e1, upr) or p(@e | Te1, 1)

e Distinguish three cases:
— Parameter Estimation: f is assumed physics with unknown physics parameters ©
— Full Regression: f is learned as regression model
— Residual Dynamics: learn the difference to a nominal physics model

Learning and Intelligent Systems Lab, TU Berlin Dynamics Learning — 4/44



Dynamics Learning — Observation-based view

e 1z, is the system state

[Markov Property: We call a variable state if the future is conditionally independent on the past when conditioned on state;
I(future, past | state) = 0.]

e Sometimes the true state is not observed (or unknown), only observations y; are available
(y¢: sensor readings, or state estimates from sensors)
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Dynamics Learning — Observation-based view

e 1z, is the system state

[Markov Property: We call a variable state if the future is conditionally independent on the past when conditioned on state;
I(future, past | state) = 0.]

e Sometimes the true state is not observed (or unknown), only observations y; are available
(y¢: sensor readings, or state estimates from sensors)

e We need to use the history of observed y,, u; to predict next y;!

e Distinguish three cases:
— Autoregression: Learn a direct history-based model y: = f(yi— ¢, ut—m:t)
— Recurrent Model: Learn a recurrent model with latent state h, (e.g. LSTM)

— State-space Model: Jointly learn embedding/decoding z ~ y and latent dynamics x, u + z’ (is
also a recurrent model)
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e In summary, six cases we’ll discuss more concretely:
— state-based dynamics
— physical parameter estimation
— full regression
— residual dynamics
— observation-based dynamics
— autoregression (NARX)
— observation-based dynamics — recurrent model
— observation-based dynamics — state-space model

Learning and Intelligent Systems Lab, TU Berlin Dynamics Learning — 6/44



e Why learn the dynamics?
— Given learned dynamics, we can use planning (MPC) or RL against the learned model to generate controllers
— Examples in literature: Schaal’02, Deisenroth’15 (PILCO!), Finn’17, Driess’23, Schubert'23
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e Why learn the dynamics?
— Given learned dynamics, we can use planning (MPC) or RL against the learned model to generate controllers
— Examples in literature: Schaal’02, Deisenroth’15 (PILCO!), Finn’17, Driess’23, Schubert'23

¢ Quick terminology:
— Dynamics Learning <> System Identification (in control theory), Model Learning (in model-based RL)
— In control theory u are called inputs and the observations/measurements y; are called outputs
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State Dynamics — Parameter Estimation

e Assume that dynamics x; = fo (1, us1) has unknown physical parameters ©,

Learning and Intelligent Systems Lab, TU Berlin Dynamics Learning — 8/44
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State Dynamics — Parameter Estimation

e Assume that dynamics z; = feo(x.1,us1) has unknown physical parameters ©,e.g.:

Dynamic Identification of the Franka Emika Panda Robot
with Retrieval of Feasible Parameters
Using Penalty-based Optimization
Claudio Gaz!  Marco Cognetti?  Alexander Oliva®  Paolo Robuffo Giordano?  Alessandro De Lucal

g 4 T Mg aa) I ela.q)

o’\ =
3 40 :‘;ef inp “‘) Iibfranka A
B T e 4007
0 q FCI controller
dy a fS)
0 g
ds g5 Fig. 2. Signal flows from and to the controller. The user sends a command
0 g (0 the 1iberanks interface that communicates with the FCI controller. This
0 g input s then converted fo a commanded (0rque T o the robo that retms
d 0 the measured joint torque 7. a5 well as the joint positions g and velocities

. The FCI controller computes the numerical values for the_inertia matrix
M(q). as well for the gravity vector g(q). the Jacobian J(g). and the
Coriolis term (g, q). These daia are sent back (o the user through the

interface. A more detailed description of the FCI can be found
- hprankaemik.gitub.oldocsindex. -

Fig. | Denavi
Emika Panda. T
convention. In the fig
dy = 0.107 m, ag = 0.0

frames and table of parameter

frames follow the modified

333 m, d 316 m,
0.0

a5 = —0.0825 m, a7 =

for the Franka
avit- Hartenberg
0381 m,

of the parameters. The procedure

Claudio Gaz, Marco Cognetti, Alexander Oliva, Paolo Robuffo Giordano, and Alessandro De Luca, (2019). Dynamic identification of the franka emika panda robot with retrieval of
feasible parameters using penalty-based optimization.
IEEE Robotics and Automation Letters, 4(4):4147-4154
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State Dynamics — Parameter Estimation

e Given data D = {(z¢, 741, usi1)} Ly, find parameters

ménz | = fo i, ue)|?
¢

Learning and Intelligent Systems Lab, TU Berlin Dynamics Learning — 9/44



State Dynamics — Parameter Estimation

e Given data D = {(z¢, 741, usi1)} Ly, find parameters

ménz le: = fo(wra, ue)|?
¢

e Sometimes, it is possible to describe fg as linear in ©. See Gaz’'19!
— Then finding optimal © leads to a linear least squares problem.
— Otherwise: Black-box optimization (CMA-ES) or gradient-based (SGD, Gauss-Newton)
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State Dynamics — Full Regression

e Learn fy directly, using some ML regression, e.g. (old-fashioned LWR):

Scalable Techniques from Nonparametric Statistics
for Real Time Robot Learning

STEFAN SCHAAL
Computer Science and Neuroscience, HNB-103, University of Southern Califoria, Los Angeles, CA 90089-2520,
USA; Kawato Dynamic Brain Project (ERATO/IST), 2-2 Hikaridai, Seika-cho, Soraku-gun, 619-02 Kyoto, Japan

clme e cdu

sschasl@u

CHRISTOPHER G. ATKESON
College of Computing, Georgia Institute of Technology, 801 Atlantic Dr
ATR Human Information Processing Laboratories, 2-2 Hikaridai, Seika-c

e, Atlanta, GA 30332-0280, USA;
Soraku-gun, 619.02 Kyoto, Japan
ot dufac/Chris Atkeson

cgabec gatecheds:

SETHU VJAYAKUMAR
Computer Science and Neuroscience, HNB-103, University of Southern Califoria, Los Angeles, CA 90089-2520,
USA; Kawato Dynanic Brain Project (ERATO/JST), 2-2 Hikaridai, Seika-cho, Soraku-gun, 619-02 Kyoto, Japan

sethu@use.odu; wwwclme

— ) soratch
b) primed model

100

10
#Trial

Figure 3.

the robot for p o
icessful balancing of 60 scconds. We also tested long term performance of the learning system by running pole balancing for over an
hour—the pole was never drapped.

Stefan Schaal, Christopher G. Atkeson, and Sethu Vijayakumar, (2002). Scalable techniques from nonparametric statistics for real time robot learning.
Applied Intelligence, 17(1):49-60
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State Dynamics — Full Regression

e Givendata D = {(x¢, x¢.1, Us-1) Fi=1:m,=1.7;, fiNd parameters

m@inz |z — fo(zea, wa)|?
t

— same formulation as parameter estimation, really.
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State Dynamics — Full Regression

e Givendata D = {(x¢, x¢.1, Us-1) Fi=1:m,=1.7;, fiNd parameters

m@inz |z — fo(zea, wa)|?
t

— same formulation as parameter estimation, really.

e Use supervised ML to minimize regression error

Learning and Intelligent Systems Lab, TU Berlin
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State Dynamics — Full Regression (probabilistic)

e Givendata D = {(x¢, x¢.1, ut1) }i=1:m4=1:1;, find parameters

N7 o
min zt: og po (Tt | T41, up1)

where p;(x: | x+1,us1) iS @ probabilistic regression, e.g. Gaussian Process:

. \ » /’\’

| /
i 1 , +
{/\\ *
\& / \\ % .
7 A\ /X

-1 \u/ -1
-2 72&+
- -5

0 0 5
input, x input, x

output, f(x)
°
output, f(x

(a), prior (b). posterior

(from Rasmussen & Williams)
[Marc Deisenroth’s PICLO paper had huge impact: Using learned GP dynamics to derive optimal controls.]

Learning and Intelligent Systems Lab, TU Berlin
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State Dynamics — Residual Dynamics

e Given a nominal dynamics f»; (e.g., assumed physics), learn a residual model fy to
minimze

mlnz lze = [far(2ea, wia) + fo(@er, ue)])?
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State Dynamics — Residual Dynamics

e Given a nominal dynamics f»; (e.g., assumed physics), learn a residual model fy to
minimze

mlnz lze = [far(2ea, wia) + fo(@er, ue)])?

e Examples: Gaz’'19, Multirotor Examples
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Observation-based Dynamics — Autoregression (NARX)

208 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS —PART B: CYBERNETICS, VOL. 27, NO. 2, APRIL 1997

Computational Capabilities of
Recurrent NARX Neural Networks

Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, Senior Member, IEEE

Abstract—Recently, fully connected recurrent neural networks
have been proven to be computationally rich—at least as powerful
as Turing machines. This work focuses on another network which
is popular in control applications and has been found to be very
effective at learning a variety of problems. These networks are
based upon Nonlinear AutoRegressive models with eXogenous
Inputs (NARX models), and are therefore called NARX networks.
As opposed to other recurrent networks, NARX networks have a
limited feedback which comes only from the output neuron rather
than from hidden states. They are formalized by

fully connected networks can simulate pushdown automata
with two stacks, which are computationally equivalent to
Turing machines. The stacks are encoded in two of the nodes
of the network with the remaining nodes used to simulate the
finite state control. There is an initial period during which the
network reads the input, then the network performs the desired
computation, and finally the output of the network is decoded.

An important class of discrete-time nonlinear

the Nonlinear AutoRegressive with eXogenous Inputs (NARX)

() = Wit model [10]

) ult — 1), ult).y(t — n,). y(t—1))
Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, (1997). Computational capabilities of recurrent NARX neural networks.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(2):208-215
— NARX="Autoregression with controls” our notation: y: = fo(y¢-r:t-1, Ut-H:t-1)
— developed in time-series modelling, sequence modelling

Learning and Intelligent Systems Lab, TU Berlin
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Observation-based Dynamics — Autoregression (NARX)

208 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS —PART B: CYBERNETICS, VOL. 27, NO. 2, APRIL 1997

Computational Capabilities of
Recurrent NARX Neural Networks

Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, Senior Member, IEEE

Abstract—Recently, fully connected recurrent neural networks
have been proven to be computationally rich—at least as powerful
as Turing machines. Tl ork focuses on another network which
is popular in control applications and has been found to be very
effective at learning a variety of problems. These networks are
based upon Nonlinear AutoRegressive models with eXogenous
Inputs (NARX models), and are therefore called NARX networks.
As opposed to other recurrent networks, NARX networks have a
limited feedback which comes only from the output neuron rather
than from hidden states. They are formalized by

fully connected networks can simulate pushdown automata
with two stacks, which are computationally equivalent to
Turing machines. The stacks are encoded in two of the nodes
of the network with the remaining nodes used to simulate the
finite state control. There is an initial period during which the
network reads the input, then the network performs the desired
computation, and finally the output of the network is decoded.

An important class of discrete-time nonlinear systems is
the Nonlinear AutoRegressive with eXogenous Inputs (NARX)

o) = Wt —ma)ou(t = 1) ult).y(t = my).u(t = 1) model [10]

Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, (1997). Computational capabilities of recurrent NARX neural networks.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(2):208-215

— NARX="Autoregression with controls” our notation: y: = fo(y¢-r:t-1, Ut-H:t-1)
— developed in time-series modelling, sequence modelling

e How long does the history H have to be?

Learning and Intelligent Systems Lab, TU Berlin Dynamics Learning — 14
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Observation-based Dynamics — Autoregression (NARX)

208 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS —PART B: CYBERNETICS, VOL. 27, NO. 2, APRIL 1997

Computational Capabilities of
Recurrent NARX Neural Networks

Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, Senior Member, IEEE

Abstract—Recently, fully connected recurrent neural networks
have been proven to be computationally rich—at least as powerful
as Turing machines. Tl ork focuses on another network which
is popular in control applications and has been found to be very
effective at learning a variety of problems. These networks are
based upon Nonlinear AutoRegressive models with eXogenous
Inputs (NARX models), and are therefore called NARX networks.
As opposed to other recurrent networks, NARX networks have a
limited feedback which comes only from the output neuron rather
than from hidden states. They are formalized by

fully connected networks can simulate pushdown automata
with two stacks, which are computationally equivalent to
Turing machines. The stacks are encoded in two of the nodes
of the network with the remaining nodes used to simulate the
finite state control. There is an initial period during which the
network reads the input, then the network performs the desired
computation, and finally the output of the network is decoded.

n important class of discrete-time nonlinear systems is
the Nonlinear AutoRegressive with eXogenous Inputs (NARX)

o) = Wt —ma)ou(t = 1) ult).y(t = my).u(t = 1) model [10]

Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles, (1997). Computational capabilities of recurrent NARX neural networks.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(2):208-215

— NARX="Autoregression with controls” our notation: y: = fo(y¢-r:t-1, Ut-H:t-1)
— developed in time-series modelling, sequence modelling

e How long does the history H have to be?
e What’s the modern version of autoregression?

Learning and Intelligent Systems Lab, TU Berlin Dynamics Learning — 14
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Observation-based Dynamics — Autoregression (Transformers)

0 DeepMind 2023926

A Generalist Dynamics Model for Control

Ingmar Schubert !, Jingwei Zhang?, Jake Bruce?, Sarah Bechtle?, Emilio Parisotto?, Martin Riedmiller?, Jost
Tobias Springenberg?, Arunkumar Byravan?, Leonard Hasenclever? and Nicolas Heess?
1TU Berlin, 2DeepMind, “Work done at DeepMind

D) r, (D) a,(2D) 0, (3D) r, (1D)

Figure 2 | Illustration of the tokenization for n = 3 and m = 2. Starting from o4, performing action a;
will result in the next observation o, and the reward r,. The constant separator tokens t5 and t; are
inserted to indicate the start of a new environment step.

Ingmar Schubert, Jingwei Zhang, Jake Bruce, Sarah Bechtle, Emilio Parisotto, Martin Riedmiller, Jost Tobias Springenberg, Arunkumar Byravan, Leonard Hasenclever, and Nicolas

Heess, (2023). A generalist dynamics model for control

Learning and Intelligent Systems Lab, TU Berlin
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Observation-based Dynamics — Recurrent Model

¢ Rather than giving the model a history as input, it should /earn to memorize relevant
information, i.e., learn a latent representation for relevant information — recurrent NN
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Observation-based Dynamics — Recurrent Model

e Rather than giving the model a history as input, it should /learn to memorize relevant
information, i.e., learn a latent representation for relevant information — recurrent NN
e Train a latent representation h, to consume history information and predict y;

T
(:[I] =) | S | Z - .

f !

@ ®@ & @

(Wikipedia; change in notation: z ~~ (y, u), 0 ~ y)

e The most common NN architecture is LSTM (better: Gated Recurrent Units):

2. Long Short-Term Memory (LSTM) networt K

=i (Hochreiter, Schmidthuber, 1997y, L

Learning and Intelligent Systems Lab, TU Berlin



Observation-based Dynamics — State-Space Model

e Also a recurrent model, but explicitly assumes latent state =, € R?

Probabilistic Recurrent State-Space Models

Andreas Doerr'2 Christian Daniel ! Martin Schiegg' Duy Nguyen-Tuong' Stefan Schaal>* Marc Toussaint *

Sebastian Trimpe >

@ S
@ @ -

Figure 1. Graphical model of the PR-SSM. Gray nodes are ob-
served variables in contrast to latent variables in white nodes.
Thick lines indicate variables, which are jointly Gaussian under a
GP prior.

Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc Toussaint, and Trimpe Sebastian, (2018). Probabilistic recurrent state-space models.
In International conference on machine learning, pages 1280-1289

Learning and Intelligent Systems Lab, TU Berlin
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Observation-based Dynamics — State-Space Model

e Jointly train an embedding/decoding ¢ :  — y and latent dynamics f : x,u — z':

T

z,ur o
gl 9l
y y

e Only ui.7, y1.7 are observed! Train model to maximize data likelihood,

log p(y1.7 | u1.7) > Evidence Lower Bound (ELBO)

— This method trains both, g and f, and implicitly infers a notion of state z;
— Technically, use SGD to maximize ELBO

Learning and Intelligent Systems Lab, TU Berlin Dynamics Learning — 18/44



e More Literature for the six cases provided at the end of these slides...
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Il. How is the data generated?
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Il. How is the data generated?

e Importance of data generation is (mostly) under-acknowledged in papers!

e Ideas to generate good data may be more important than ML method details
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Il. How is the data generated?

e Importance of data generation is (mostly) under-acknowledged in papers!
e Ideas to generate good data may be more important than ML method details

e What is good data?
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Good Data — in Linear Regression

o Reconsider regression with linear model fy(z) = z'0, loss

L(0) = (yi — folx:))> + A6|
and solution
0" = (X'X + D) Xy .

e What is good data?

Learning and Intelligent Systems Lab, TU Berlin
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Good Data — in Linear Regression

o Reconsider regression with linear model fy(z) = z'0, loss

L(0) = (yi — folx:))® + AOJ?
and solution
0" = (X'X + D) Xy .
e What is good data?
e What is the estimator variance Var{6*}?
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Good Data — in Linear Regression

o Reconsider regression with linear model fy(z) = z'0, loss
L(0) = (yi — folx:))® + AOJ?
and solution
0" = (X'X + D) Xy .
e What is good data?

e What is the estimator variance Var{6*}?
— Assume data with variance Var{y} = ¢°I,

Learning and Intelligent Systems Lab, TU Berlin
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Good Data — in Linear Regression

o Reconsider regression with linear model fy(z) = z'0, loss
L(0) = (yi — folx:))® + AOJ?
and solution
0" = (X'X + D) Xy .
e What is good data?

e What is the estimator variance Var{6*}?
— Assume data with variance Var{y} = ¢°I,
— Then Var{#*} = (X' X + XI)'o?

Learning and Intelligent Systems Lab, TU Berlin
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Good Data — in Linear Regression

o Reconsider regression with linear model fy(z) = z'0, loss
L(0) = (yi — folx:))® + AOJ?
and solution
0" = (X'X + D) Xy .
e What is good data?

e What is the estimator variance Var{6*}?
— Assume data with variance Var{y} = ¢°I,
— Then Var{#*} = (X' X + XI)'o?
— Smaller variance via larger X (but then larger bias), or larger det(X'X)!
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Good Data — in Linear Regression

o Reconsider regression with linear model fy(z) = z'0, loss

L(O) =Y (v — fo(x:))* + AlOJ?
i
and solution
0" = (XX + A1) Xy

e What is good data?
e What is the estimator variance Var{6*}?

— Assume data with variance Var{y} = o*1

— Then Var{#*} = (X' X + XI)'o?

— Smaller variance via larger X (but then larger bias), or larger det(X'X)!

e Good data means reducing variance (=randomness) of estimated model!

— large det(X"X) <+ cover input space!
[Large estimator variance <+ “Overfitting”: Reducing variance prevents overfitting. Hastie has great section on shrinkage

ularization)]
Learning and Inte\hgentSystemsLb% q Dynamics Learning — 21 /44



Good Data — in Linear System Identification

Signals and Systems

Lecture 11: System ldentification

Dr. Guillaume Ducard

Fall 2018

based on materials from: Prof. Dr. Raffaello D'Andrea

Institute for Dynamic Systems and Control
ETH Zurich, Switzerland

https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Signals-and-Systems/
Lectures/Fall2018/Lecturell_sigsys.pdf
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Good Data — in Linear System Identification

e Cover the input space — cover frequency space
— Linear dynamics can be Laplace transformed into frequency domain:
Y(s) = H(s) U(s)
— U(s) are controls; Y observations; H(s) is called transfer function (complex)
— H(s) can be probed by sending a single control frequence (U(s) = d,4/)

o

¢ In essence: stimulate the system with control frequencies u(t) = cos(kt/m) for k = 0,1, ..
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Good Data — in Linear System Identification

e Cover the input space — cover frequency space
— Linear dynamics can be Laplace transformed into frequency domain:
Y(s) = H(s) U(s)
— U(s) are controls; Y observations; H(s) is called transfer function (complex)
— H(s) can be probed by sendlng a single control frequence (U(s) = §,4/)

H(Q)
O H(Q)for N =201

e In essence: stimulate the system with control frequencies u(t) = cos(kt/7) for k = 0,1,
e Franka Systemld paper [Gaz’19]: Sinusoidal reference motions (Eq. 31):
dides(t) = Aisin (2% t) , 1€{l,.,n}
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Good Data — in general

e Think about good state space coverage! (in all variants of Robot Learning)
— Frequency coverage in control systems
Exploration in RL beyond e-greedy

Long-term structured variation (at least pink noise, Ornstein-Uhlenbeck) instead of Brownian
motion

Explicit exploration: Novelty seeking, information seeking, exploration bonus, Bayesian RL

Learning and Intelligent Systems Lab, TU Berlin Dynamics Learning — 24 /44



lll. Background: Multirotors
e State x = (p,q,v,w)"

Control ug = (Q1,...,Q,)"

Forces f =, ct,Qzq, = Fug,

Torques T = ), (cs,Pa, X 2o, + ¢r,20,) i = Mug

Dynamics

p=v, mv = mg + R(q)Fuq + f,,
: 0 :
q==-qo Jw=—w X Jw+ Muq + 74,
2 w
[Propellers create forces and torques, rest is Newton-Euler]

[f., 7o can model drag, wind, aerodynamic interactions etc.]

Learning and Intelligent Systems Lab, TU Berlin
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o
[Mahony, ~2012]
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Multirotors: What is learned?

o Parameters that are hard to measure: inertia J, motor params (cy,, c.,, delay)

e Residuals f,, 7,
[potentially as a function of the state (e.g., drag) or environment (e.g., downwash)]
[potentially non-Markovian, i.e., a function of a history of states]

e Full dynamics model not so much — Why?
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Multirotors: What is learned?

o Parameters that are hard to measure: inertia J, motor params (cy,, c.,, delay)

e Residuals f,, 7,
[potentially as a function of the state (e.g., drag) or environment (e.g., downwash)]
[potentially non-Markovian, i.e., a function of a history of states]

e Full dynamics model not so much — Why?
[Impossible to gather data from all states safely]
[Rotational symmetries are surprisingly difficult to learn]
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Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

e Inertia: Swing body in different positions and record motion; solve an optimization
problem
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Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments
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Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

e Drag: Use wind tunnel + curve fitting with “guessed” models

Julian Férster, (2015). System identification of the crazyflie 2.0 nano quadrocopter

Learning and Intelligent Systems Lab, TU Berlin
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Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

e |s this learning?
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Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

e |s this learning?

[Yes, since curve fitting is extensively used]

e Advantages and Disadvantages?
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Multirotors: How is it “learned”? (Classic)

Estimate parameters with dedicated experiments

e |s this learning?

[Yes, since curve fitting is extensively used]

e Advantages and Disadvantages?
[Pros: Physics intuition (explainability); can improve “important” parameters if needed; no need to have a flying system]
[Cons: Labor and equipment intensive; does not capture unmodeled terms; does not capture the robot as a system]
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Multirotors: How is it learned? (Parameter Estimation)

e Assumption: we have a system that can already fly; Can we do better?

[Strong assumption, since controllers need models, too]

e Direct (analytical) optimization
Jonas Eschmann, Dario Albani, and Giuseppe Loianno, (2024). Data-driven system identification of quadrotors subject to motor delays

[Will skip the discussion here]
¢ Probabilistic formulation (Gaussian noise)

Michael Burri, Janosch Nikolic, Helen Oleynikova, Markus W. Achtelik, and Roland Siegwart, (2016). Maximum likelihood parameter identification for MAVs.
In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 4297—-4303
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Multirotors: How is it learned? (Maximum Likelihood)

e Given: Dataset with trajectory (position, orientation, motor speed), Z;
measurements (IMU data, motor commands), U

e Goal:
Xz, Oz = argmaxp(Z, U, X, §)
X.0

(parameters to estimate §; state estimates X; probability p)
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Multirotors: How is it learned? (Maximum Likelihood)

e Assumptions to simplify p(Z, U, X, 6)

e White noise (IMU, motors)

e Access to a prior trajectory — linearize around it and reason about “residuals” instead
e p(-) becomes a mixture of Gaussians — can be maximized by minimizing the

negative log-likelihood
[essentially a least square problem]
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Multirotors: How is it learned? (Maximum Likelihood)

1:n:=10

2: ¢ := INITIALIZEESTIMATOR ()

3: % Solve ML problem

4: while n < npq, do

5: b, A := EVALUATERESIDUALS (%)

6: dy := SOLVELEASTSQUARESPROBLEM (b, A)
7 y =y H iy

8: 0" :=EXTRACTPARAMETERS (¥)

9: 3y := RECOVERPARAMETERCOVARIANCE (A)

10: return 0%, 3,
where § = (X, 6)" from before

Michael Burri, Janosch Nikolic, Helen Oleynikova, Markus W. Achtelik, and Roland Siegwart, (2016). Maximum likelihood parameter identification for MAVs.
In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 4297—-4303

Michael Burri, Michael Bloesch, Zachary Taylor, Roland Siegwart, and Juan Nieto, (2018). A framework for maximum likelihood parameter identification applied on MAVs.
Journal of Field Robotics, 35(1):5-22
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Multirotors: How is it learned? (Supervised Deep NN)

e Basic models do not capture “complicated” aerodynamic effects

e Blade Element Momentum (BEM) work for single rotors (but high computational
effort)

e Can we use (more) data to use function approximation instead?
Challenges:
¢ Training/Data efficiency
¢ Inference speed
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Multirotors: How is it learned? (Supervised Deep NN)

e Key idea: learn the “residual physics”, only

[Input: past h states and motor commands — not Markovian!]

[Output: forces and torques that cannot be explained by the basic model(s) (f,, 74)]

Our Approach

[Qk,cmd]

-mk Qk-

First Principles

Tr—1 Q1
T2 Q2

|1 Te—n r_n

Learning and Intelligent Systems Lab, TU Berlin
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Multirotors: How is it learned? (Supervised Deep NN)

e ML method: Supervised training — Where do the labels come frome?
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Multirotors: How is it learned? (Supervised Deep NN)

e ML method: Supervised training — Where do the labels come frome?
[Solve dynamics for f,, 74]

e Architecture
e Input ~ = 20 (past 50 ms)
e temporal convolutional (TCN) with 25k parameters (MLP and other parameters in
ablation)

e Main takeaway: strong model/physics priors are better

Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide Scaramuzza, (2021). NeuroBEM: Hybrid aerodynamic quadrotor model.
In Robotics: Science and Systems XVII, volume 17

VldeO . https://youtu.be/NzelwlfmzTQ
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Multirotors: Data Collection

e Motion capture system for accurate position/orientation state estimates
[Sampling at 500 Hz, submillimeter accuracy]
[Very costly: EUR 20k — 100k]

e On-board data logging of IMU

[Sampling at 1000 Hz, very noisy]
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Multirotors: Data Preprocessing

e Two data sources — Synchronization needed (incl. clock skew)

¢ Online Option: Send data to one computer using a low-latency link (and account for
link delay)
o Offline Option: Solve optimization problem for clock skew and bias

e Some derivatives (e.g., v) are not directly observable

e Online Option: Use data from an online filter (e.g., Extended Kalman Filter)
¢ Offline Option: Interpolate data (e.g., using splines), use analytical solution of fitted
spline

e Motor delays (“easy” to measure)

e Option 1: Include it in model explicitly
e Option 2: Shift/filter data accordingly
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Multirotors: Data Quantity

e Maximum Likelihood: 45 sec flight data “The pilot was careful to excite all axes,
especially in yaw direction.”
e NeuroBEM: 96 flights, 75 min flight data (1.8M data points) (up to 18 m/s and 47

m/s?)
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not mentioned...

Constrained ML models (Geist)
Embed to Control

Koopman embedding

Dual control

Safe Exploration
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