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Robot Learning

Imitation Learning

Learning from Demonstration, Behavior Cloning, Direct
(Interactive) Policy Learning, Traj. Dist. Learning, Constraint
Learning, (excluded: Inv. RL)

Marc Toussaint
Technical University of Berlin
Summer 2024



General Idea
e Given expert demonstration data D = {(z.;., u{.. )},

i: episode/demonstration
zi.p, ¢ ith state trajectory
uf.p, : ith control trajectory

without external rewards/objectives/costs defined
— extract the “relevant information/model/policy” to reproduce demonstrations
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General Idea
e Given expert demonstration data D = {(z.;., u{.. )},

i: episode/demonstration
zi.p, ¢ ith state trajectory
uf.p, : ith control trajectory

without external rewards/objectives/costs defined

— extract the “relevant information/model/policy” to reproduce demonstrations

e Reproducing could mean various things
— Move along similar trajectories (e.g. imitate a gesture)
— Reproduce the effect of the demonstration (manipulation, flight maneuver, no traffic collisions)
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Early Work

Deep Imitation Learning in 1989 —

QACMU paper! AN AUTONOMOUS LAND VEHICLE IN A
NEURAL NETWORK

¢ CMU has incubated many self-driving companies

Dean A. Pomerleau
Computer Science Department
Camegie Mellon University
Pittsburgh, PA 15213

30x32 Video
Tnput Retina

(Shi’s lecture 5)

Learnind¥rERS SIS, sHan tub e L Aomfwatch?v=nt IczNQKE jQ Imitation Learning — 3/31


https://www.youtube.com/watch?v=ntIczNQKfjQ

Early Work

e Behavior Cloning (later called so):

Dean A. Pomerleau, (1988). Alvinn: An autonomous land vehicle in a neural network.
Advances in neural information processing systems, 1

e Early review paper:

Stefan Schaal, Auke lispeert, and Aude Billard, (2003). Computational approaches to motor learning by imitation.
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431):537-547

[clarifies direct policy learning (BC) vs. trajectory imitation (and auto-control); mentiones work from the 60ies, but esp. 90ies]

e Early work named Learning from Demonstration (or Programming by Demonstration)

Christopher G. Atkeson and Stefan Schaal, (1997). Robot learning from demonstration.
In ICML, volume 97, pages 12-20

[Idea: Avoid explicit programming — teach by demonstration. See also entries in “Handbook of Robotics”...]

e Another early survey:

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning, (2009). A survey of robot learning from demonstration.
Robotics and autonomous systems, 57(5):469-483

[Distinguishes 3 kinds: behavior cloning, use data to learn dynamics (system identification), learn plans (nowadays uncommon)]
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https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html
https://royalsocietypublishing.org/delete_doi/10.1098/rstb.2002.1258
https://mcgovern-fagg.org/amy_html/courses/cs5973_fall2005/lfd.pdf
https://www.sciencedirect.com/science/article/pii/S0921889008001772?casa_token=23LVhxWg4jgAAAAA:GehDaKG7uEQPK4tGHZvaYo9YPFM63lvQpXoH7LjTu46LEo4YSRpe2UtyEMGEaxrvrjkq7P_1mw

Outline

e Types of Imitation Learning
— Behavior Cloning
— Trajectory Distribution Learning (& Constraint Learning)
— Direct (Interactive) Policy Learning
— Inverse Reinforcement Learning (not covered today)

Learning and Intelligent Systems Lab, TU Berlin
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Outline

e Types of Imitation Learning
— Behavior Cloning
— Trajectory Distribution Learning (& Constraint Learning)
— Direct (Interactive) Policy Learning
— Inverse Reinforcement Learning (not covered today)

e Data Generation
— Distributional (domain) shift, “compound errors” in imitation, on-/off-policy
— Data augmentation or interactive data aggregation
— Collection techniques: Tele-Operation, Kinesthetic Teaching, Human Demonstrations
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Behavior Cloning

e Formulate Imitation Learning literally as Supervised ML
e Givendata D = {(«},,,ut.)}iy, find

mmin Y 6}, mo(a) 1)

it

where 7y : x — u is a deterministic policy (e.g. NN) mapping states to controls
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Behavior Cloning

Deep Imitation Learning in 1989 ALVINN:

QACMU paper! AN AUTONOMOUS LAND VEHICLE IN A
NEURAL NETWORK

¢ CMU has incubated many self-driving companies

Dean A. Pomerleau
Computer Science Department
Camegie Mellon University
Pittsburgh, PA 15213

| 30x32 Video
B Toput Retina

(Shi’s lecture 5)
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Behavior Cloning

e Behavior Cloning literally imitates the demonstrated mapping =z — «
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Behavior Cloning

e Behavior Cloning literally imitates the demonstrated mapping =z — «

e Issues:

— But does that also imitate the long term behavior or eventual effect of the demonstrations?
(Ignores distributional shift.)

— Does it capture the “essence” of what is demonstrated?
— Can it deal with multi-modal demonstrations? (— next week: multi-modal policies)

Learning and Intelligent Systems Lab, TU Berlin Imitation Learning — 8/31



Trajectory Distribution Learning

[This is not common terminology, and seemingly skipped in other Imitation Learning lectures — unfortunately. | think this captures
an essence of the problem.]

e What does it mean to capture the “essence” of data?
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Trajectory Distribution Learning

[This is not common terminology, and seemingly skipped in other Imitation Learning lectures — unfortunately. | think this captures
an essence of the problem.]

e What does it mean to capture the “essence” of data?
— Learn a distribution model py(x1.7) of demonstrated trajectories!

max []po(air,) (likelihood maximization (LM)) , ()

where py is some model class powerful enough to represent “essence”
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Trajectory Distribution Learning

[This is not common terminology, and seemingly skipped in other Imitation Learning lectures — unfortunately. | think this captures
an essence of the problem.]

e What does it mean to capture the “essence” of data?
— Learn a distribution model py(x1.7) of demonstrated trajectories!

max []po(air,) (likelihood maximization (LM)) , ()

where py is some model class powerful enough to represent “essence”

e What are “powerful” models?
— Transformer models, diffusion models
— But we’'ll start with very basic Gaussian models
— ...and discuss models specifically for robotic manipulation
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Trajectory Distribution Learning: GMMs
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Sylvain Calinon and Aude Billard, (2007). Incremental learning of gestures by imitation in a humanoid robot.
In Proceedings of the ACM/IEEE International Conference on Human-robot Interaction, pages 255-262

— Embed trajectories z,.r in “space-time” {(t, z:)}i—1

— Fit a density estimator to p(¢,z:) (easiest: Gaussian Mixture Model (GMM), LM well studied)
— Can be translated to control policy by reading out conditional p(z|t) and using inverse dynamics

Learning and Intelligent Systems Lab, TU Berlin
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https://dl.acm.org/delete_doi/10.1145/1228716.1228751

Trajectory Distribution Learning: GMMs

— A simple way to describe the distribution of demonstrated trajectories
— Variance of learned p(z|t) captures “consistent bottlenecks” in demonstrations

[Is that a key structure in demonstrations? Search also “Calinon constraints”]
— Can be combined with Dynamic Time Warping to temporally align demonstrations
— GMM approach is around for ~ 20 years
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Trajectory Distribution Learning: ProMPs

3 3
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(a) Conditioning (b) Combination

(c) Blending

‘We use a weight vector  to compactly represent a single trajectory. The probability of observing a
trajectory T given the underlying weight vector w is given as a linear basis function model

v = [ b } —efw+e, plrw) = LA (v |#] w.3,) m

Alexandros Paraschos, Christian Daniel, Jan R. Peters, and Gerhard Neumann, (2013). Probabilistic movement primitives.

Advances in neural information processing systems, 26

[typically Dynamic Movement Primitives (DMPs, Schaal et al’03)]

Learning and Intelligent Systems Lab, TU Berlin

Nothing but (prob.) linear regression ¢ — x; with basis function features (LM<regression)
Very simple distribution model over trajectories [could use GPs to kernelize]

Related to Inference Control (AICO, ICML09), Path Integral methods (RSS’12)

Great flexibility to condition, compose, and blend
Somewhat superseeds earlier work on learning movement primitives from demonstration
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https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html

Trajectory Distribution Learning: Features & Constraints

e Think about Manipulation!
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https://link.springer.com/10.1007/978-3-030-95459-8_9

Trajectory Distribution Learning: Features & Constraints

e Think about Manipulation!

Constraints
& Cost on
Keypoints

kPAM: KeyPoint Affordances for
Category-Level Robotic Manipulation

Lucas Manuelli*, Wei Gao*, Peter Florence, Russ Tedrake

CSAIL, Massachusetts Institute of Technology,
{manuelli, weigao, peteflo, russt} @mit.edu
*These authors contributed equally to this work.

Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake, (2022). KPAM: KeyPoint Affordances for Category-Level Robotic Manipulation.
In Tamim Asfour, Eiichi Yoshida, Jaeheung Park, Henrik Christensen, and Oussama Khatib, editors, Robotics Research, volume 20, pages 132-157
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Trajectory Distribution Learning: Features & Constraints

e Think about Manipulation!
Neural Descriptor Fields:

SE(3)-Equivariant Object Representations for Manipulation
Anthony Simeonov™!, Yilun Du™!, Andrea Tagliasacchi®?,
Joshua B. Tenenbaum', Alberto Rodriguez!, Pulkit Agrawall-!, Vincent Sitzmann'-!

'Massachusetts Institute of Technology — 2Google Research  *University of Toronto
* Authors contributed equally, order determined by coin flip. 'Equal Advising.

Test-time executions: Unseen objects in out-of-distribution poses

Small Handful (~5-10) of Demonstrations

Fig. I: Given a few (~5-10) demonstrations of a manipulation task (left), Neural Descriptor Fields (NDFs) generalize the task to novel
ohject instances in any 6-DoF configuration, including those unobserved at fraining time, such as mugs with arbitrary 3D translation and
rotation (right). NDFs are continuous functions that map 3D spatial coordinates to spatial des i

which encode SE(3) poses. such as those used for grasping and placing. NDFs are trained self-supervised for the surrogate task of 3D
reconstruction, do not require labeled keypoints, and are SE(3)-equivariant, guaranteeing generalization to unseen object configurations.

Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann, (2022). Neural descriptor fields: Se (3)-equivariant

object representations for manipulation.
In 2022 International Conference on Robotics and Automation (ICRA), pages 6394-6400
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https://ieeexplore.ieee.org/abstract/document/9812146/
https://ieeexplore.ieee.org/abstract/document/9812146/

Trajectory Distribution Learning: Features & Constraints

e Think about Manipulation!

Deep Visual Constraints: Neural Implicit Models
for Manipulation Planning from Visual Input

Jung-Su Ha Danny Driess Marc Toussaint
Learning & Intelligent Systems Lab, TU Berlin, Germany

(a) No object model (b) See (¢) Plan (d) Act

Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022). Deep visual constraints: Neural implicit models for manipulation planning from visual input.
IEEE Robotics and Automation Letters, 7(4):10857-10864
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Trajectory Distribution Learning: Features & Constraints

e Connects to large body of literature:
— More examples: FlowBot3D, UMPNet, Bi-KVIL, "Waypoint-based imitation learning”, ..
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Trajectory Distribution Learning: Features & Constraints

e Connects to large body of literature:
— More examples: FlowBot3D, UMPNet, Bi-KVIL, "Waypoint-based imitation learning”, ..
— Human Activity Modelling, Action Segmentation:

i—: 4 p ‘ - (@
e s
resd = “ _Tn_. @ o

o W T
+GTRM

ﬂmﬂﬂ-

wm_m B e o
= — 5 - s TS

Figure 4. Qualitative comparison of results for action segmentation task on (a) EGTEA, and (b) EPIC dataset. Only part of the whole video
iis shown for clarity. We can see in (a) that the take, put and close actions are correctly detected by adding GTRM.
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Trajectory Distribution Learning: Features & Constraints

e Connects to large body of literature:
— More examples: FlowBot3D, UMPNet, Bi-KVIL, "Waypoint-based imitation learning”, ..
— Human Activity Modelling Action Segmentation'

N
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\ﬁ—mimf@

m-GRU
B - e
Figure 4. Qualitative comparison of results for action segmentation task on (a) EGTEA, and (b) EPIC dataset. Only part of the whole video
is shown for clarity. We can see in (a) that the rake, put and close actions are correctly detected by adding GTRM.

e What really is the essence to extract from demonstrations?
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e Back to Behavior Cloning...
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e Back to Behavior Cloning...

e Issues:

— But does that also imitate the long term behavior or eventual effect of the demonstrations?
(Ignores distributional shift.)

— Does it capture the “essence” of what is demonstrated?
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Distributional (Domain) Shift
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Distributional (Domain) Shift

e Standard ML: =z,y ~ p(x,y) i.i.d.; same p for trains & test
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Distributional (Domain) Shift

e Standard ML: =z,y ~ p(x,y) i.i.d.; same p for trains & test

e Sequential Decision Processes: own policy 7 influences test distrib. p,(z;)!
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Distributional (Domain) Shift

e Standard ML: =z,y ~ p(x,y) i.i.d.; same p for trains & test

e Sequential Decision Processes: own policy 7 influences test distrib. p,(z;)!
— Fundamental difference between learning in sequential decision processes and Supervised ML!

— Also in off-policy & offline RL: We train a policy (or @, V-function) with losses relative t0 pr, (:)
with behavior policy (m )

— Generally called distributional shift, or Out-of-Distribution (OOD) testing
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Distributional Shift in Behavior Cloning

e When we train policy 7y in BC, we minimize

m@inZﬁ(ui, mo(xh)) m@inEﬂ*{E(u,ﬂg(aﬁ))} (3)
it

but when using the policy, we generate fully different distribution
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Distributional Shift in Behavior Cloning

e When we train policy 7y in BC, we minimize

m@inZﬁ(ui, mo(xh)) m@inEﬂ*{E(u,ﬂg(aﬁ))} (3)
it

but when using the policy, we generate fully different distribution

i o
Learned Policy e -A8.. Expert’s trajectory
& — A
"/ S
NG o~
“» ‘.‘.. .\
R,
“"‘-.. .;';
— pomerieauss paume0s)

Also called Compound Error (Shi’s lecture 5)
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Distributional Shift in Behavior Cloning

e When we train policy 7y in BC, we minimize

m@in Z O(ul, mo(xh)) m@in E - {l(u,mp(z))}
it

but when using the policy, we generate fully different distribution

—

Learned Policy s . Expert’s trajectory
o -,
"/ A3
iy o o~
“» ‘.‘.. .\
W

Also called Compound Error (Shi’s lecture 5)

¢ What we should train is this:!

m@in Ex, {0(7* (), m9(x))}

Learning and Intelligent Systems Lab, TU Berlin

(4)
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Distributional Shift in Behavior Cloning

e BC formulates a supervised ML problem, but in view of testing, it is not:

e Training distribution
’r.A—

".e from expert
/. =\
.

learned policy g

Low Training Good Test

Error Performance

(Shi’s lecture 5)
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How address the Distributional Shift?
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How address the Distributional Shift?

e Ensure the data better covers the eventual p,(x;) of trained =
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How address the Distributional Shift?

e Ensure the data better covers the eventual p,(x;) of trained =
— Enforce the expert to demonstrate also for non-optimal states (cover also non-expert situations)
— Collect data interactively at exactly the states visited by = (DAgger)
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Enforcing wider expert demonstrations

e Occasionally perturb the expert! Add noise!

Learning and Intelligent Systems Lab, TU Berlin

ALVINN:
AN AUTONOMOUS LAND VEHICLE IN A
NEURAL NETWORK

Dean A. Pomericay
Computer Science Deparument
Camegic Mellon Universty
Pitsburgh, PA 15213

Felipe Codevilla'-?

“...the network must not solely be
shown examples of accurate driving,
but also how to recover (i.e. return
to the road center) once a mistake
has been made.”

End-to-end Driving via Conditional Imitation Learning

Matthias Miiller'* Vladlen Koltun"

Antonio Lépez? Alexey Dosovitskiy'
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n
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04— Noise
-05 = Control

= Resultant

-06

0.0 0.5 10 15 2.0 25 3.0
Time

(Shi’s lecture 5)
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DAgger

Initialize D + 0.

Initialize 7, to any policy in I1.

fori=1to N do
Letm; = ,[3571'* + (1 — ,[31)’?1'1
Sample T-step trajectories using ;.
Get dataset D; = {(s,7%(s))} of visited states by 7;
and actions given by expert.
Aggregate datasets: D + D D;.
Train classifier ;1 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.

-,
Use interaction to collect data LT
\

where learned policy goes

Train policy on

expert data

Collect new
expert data to
recover from
mistakes

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell, (2011). A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

https://www.youtube.com/watch?v=V0OnpNnWzSU

e This repeatedly collects data from the current =, to approximate ming E, {¢(7*(x;), mo(x¢))}

Learning and Intelligent Systems Lab, TU Berlin
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http://arxiv.org/abs/1011.0686
https://www.youtube.com/watch?v=V00npNnWzSU

e From Yue’s ICML 18 tutorial:

Direct Policy Reward Access to Interactive Pre-collected
Learning Learning Environment Demonstrator | Demonstrations
Behavioral Yes No No No Yes
Cloning
Direct Policy Yes No Yes Yes Optional
Learning
(Interactive IL)
Inverse No Yes Yes No Yes
Reinforcement
Learning

e Crucial point: For DAgger we have a very different setting: Access to the environment
(testing rollouts), interactively querying the expert.

Learning and Intelligent Systems Lab, TU Berlin
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Data Collection
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Data Collection

e We've covered the theoretical aspect concerning distributional shift

e Data source:
— Tele-Operation
— Kinesthetic Teaching
— Human Demonstrations & Motion Capture
— Videos Only
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Tele-Operation: Aloha
Learning Fine-Grained Bimanual Manipulation with
Low-Cost Hardware

Tony Z. Zhao'!  Vikash Kumar® Sergey Levine? Chelsea Finn'
! Stanford University 2 UC Berkeley ¢ Meta

Example Teleoperated Skills

/
7]
~
thread zip NIST boare pingpo!

Example Learned Policy

Fig. 1: ALOHA ** : A Low-cost Open-source Hardware System for Bimanual Teleoperation. The whole system costs <$20k with off-the-shelf
robots and 3D printed components. Left: The user teleoperates by backdriving the leader robots, with the follower robots mirroring the motion.
Right: ALOHA is capable of precise, contact-rich, and dynamic tasks. We show examples of both teleoperated and learned skills.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn, (2023). Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

https://tonyzhaozh.github.io/aloha/
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http://arxiv.org/abs/2304.13705
https://tonyzhaozh.github.io/aloha/

Kinesthetic Teaching

|

Learning movement primitives for force interaction tasks (Kober et al’15)
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Human Demonstrations & Motion Capture

Recognition - Human Motion Capturing (HMC)

HMC-Modul 1

HMC-Modul 2

Markerless

Markerbased

Joint Angle

Reconstruction

JoInt Angle
Reconstruction

Conversion
to MMM

Reproduction |

onmizna |

Reproduction
n ARMAR Illb

Reproduction in
ARMAR Simulation

Learning and Intelligent Systems Lab, TU Berlin

Martin Do, Pedram Azad, Tamim Asfour, and Rudiger Dillmann, (2008). Imitation of human motion

on a humanoid robot using non-linear optimization.

In Humanoids 2008-8th IEEE-RAS International Conference on Humanoid Robots, pages 545—

562
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https://ieeexplore.ieee.org/abstract/document/4756029/
https://ieeexplore.ieee.org/abstract/document/4756029/

Human Demonstrations From Video Only

AVID: Learning Multi-Stage Tasks via
Pixel-Level Translation of Human Videos

Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine
Berkeley Artificial Intelligence Research, Berkeley, CA, 94720
Email: smithlaura@berkeley.edu

instructions

AR
o o

‘ translations

Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine, (2020). AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human Videos

reinforcement learning
instruction \nslructlm \nslruct\on |nstrucucn

! forward forward forward

%H,! P'

reset

=

W

querv querv quaw
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http://arxiv.org/abs/1912.04443

e This whole lecture talked about states! Same for observations y; only!
— History-input policies (analogous to autoregressive dynamics)
— Recursive (RNN) policies (analogous to recursive dynamics)
— Transformer policies (sequence models)
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8]

Leamﬁé‘iﬂﬂﬂie AN tonqralg%elﬁnnd vehicle in a neural network.

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning, (2009).
A survey of robot learning from demonstration.
Robotics and autonomous systems, 57(5):469-483.

Christopher G. Atkeson and Stefan Schaal, (1997).
Robot learning from demonstration.
In ICML, volume 97, pages 12-20.

Sylvain Calinon and Aude Billard, (2007).
Incremental learning of gestures by imitation in a humanoid robot.
In Proceedings of the ACM/IEEE International Conference on Human-robot Interaction, pages 255-262.

Martin Do, Pedram Azad, Tamim Asfour, and Rudiger Dillmann, (2008).
Imitation of human motion on a humanoid robot using non-linear optimization.
In Humanoids 2008-8th IEEE-RAS International Conference on Humanoid Robots, pages 545-552.

Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022).
Deep visual constraints: Neural implicit models for manipulation planning from visual input.
IEEE Robotics and Automation Letters, 7(4):10857—10864.

Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake, (2022).

KPAM: KeyPoint Affordances for Category-Level Robotic Manipulation.

In Tamim Asfour, Eiichi Yoshida, Jaeheung Park, Henrik Christensen, and Oussama Khatib, editors, Robotics Research, volume 20,
pages 132—-157.

Alexandros Paraschos, Christian Daniel, Jan R. Peters, and Gerhard Neumann, (2013).
Probabilistic movement primitives.
Advances in neural information processing systems, 26.

Dean A. Pomerleau, (1988).

ystems

Imitation Learning — 31/31


https://www.sciencedirect.com/science/article/pii/S0921889008001772?casa_token=23LVhxWg4jgAAAAA:GehDaKG7uEQPK4tGHZvaYo9YPFM63lvQpXoH7LjTu46LEo4YSRpe2UtyEMGEaxrvrjkq7P_1mw
https://mcgovern-fagg.org/amy_html/courses/cs5973_fall2005/lfd.pdf
https://dl.acm.org/delete_doi/10.1145/1228716.1228751
https://ieeexplore.ieee.org/abstract/document/4756029/
https://ieeexplore.ieee.org/abstract/document/9844753/
https://link.springer.com/10.1007/978-3-030-95459-8_9
https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html

Advances in neural information processing systems, 1.

[9] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell, (2011).
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning.
[10] Stefan Schaal, Auke ljspeert, and Aude Billard, (2003).
Computational approaches to motor learning by imitation.
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431):537-547.
[11] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann,
(2022).
Neural descriptor fields: Se (3)-equivariant object representations for manipulation.
In 2022 International Conference on Robotics and Automation (ICRA), pages 6394—6400.
[12] Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine, (2020).
AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human Videos.
[13] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn, (2023).
Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware.

Learning and Intelligent Systems Lab, TU Berlin Imitation Learning — 31/31


http://arxiv.org/abs/1011.0686
https://royalsocietypublishing.org/delete_doi/10.1098/rstb.2002.1258
https://ieeexplore.ieee.org/abstract/document/9812146/
http://arxiv.org/abs/1912.04443
http://arxiv.org/abs/2304.13705

