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General Idea

• Given expert demonstration data D = {(xi1:Ti
, ui1:Ti

)}ni=1

i : episode/demonstration

xi
1:Ti

: ith state trajectory

ui
1:Ti

: ith control trajectory

without external rewards/objectives/costs defined
→ extract the “relevant information/model/policy” to reproduce demonstrations

• Reproducing could mean various things
– Move along similar trajectories (e.g. imitate a gesture)
– Reproduce the effect of the demonstration (manipulation, flight maneuver, no traffic collisions)
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Early Work

Deep Imitation Learning in 1989
q A CMU paper!
• CMU has incubated many self-driving companies

(Shi’s lecture 5)

https://www.youtube.com/watch?v=ntIczNQKfjQLearning and Intelligent Systems Lab, TU Berlin Imitation Learning – 3/31

https://www.youtube.com/watch?v=ntIczNQKfjQ


Early Work

• Behavior Cloning (later called so):
Dean A. Pomerleau, (1988). Alvinn: An autonomous land vehicle in a neural network.
Advances in neural information processing systems, 1

• Early review paper:
Stefan Schaal, Auke Ijspeert, and Aude Billard, (2003). Computational approaches to motor learning by imitation.
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431):537–547

[clarifies direct policy learning (BC) vs. trajectory imitation (and auto-control); mentiones work from the 60ies, but esp. 90ies]

• Early work named Learning from Demonstration (or Programming by Demonstration)
Christopher G. Atkeson and Stefan Schaal, (1997). Robot learning from demonstration.
In ICML, volume 97, pages 12–20

[Idea: Avoid explicit programming → teach by demonstration. See also entries in “Handbook of Robotics”...]

• Another early survey:
Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning, (2009). A survey of robot learning from demonstration.
Robotics and autonomous systems, 57(5):469–483

[Distinguishes 3 kinds: behavior cloning, use data to learn dynamics (system identification), learn plans (nowadays uncommon)]
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https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html
https://royalsocietypublishing.org/delete_doi/10.1098/rstb.2002.1258
https://mcgovern-fagg.org/amy_html/courses/cs5973_fall2005/lfd.pdf
https://www.sciencedirect.com/science/article/pii/S0921889008001772?casa_token=23LVhxWg4jgAAAAA:GehDaKG7uEQPK4tGHZvaYo9YPFM63lvQpXoH7LjTu46LEo4YSRpe2UtyEMGEaxrvrjkq7P_1mw


Outline

• Types of Imitation Learning
– Behavior Cloning
– Trajectory Distribution Learning (& Constraint Learning)
– Direct (Interactive) Policy Learning
– Inverse Reinforcement Learning (not covered today)

• Data Generation
– Distributional (domain) shift, “compound errors” in imitation, on-/off-policy
– Data augmentation or interactive data aggregation
– Collection techniques: Tele-Operation, Kinesthetic Teaching, Human Demonstrations
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Behavior Cloning

• Formulate Imitation Learning literally as Supervised ML

• Given data D = {(xi1:Ti
, ui1:Ti

)}ni=1, find

min
θ

∑
i,t

ℓ(uit, πθ(x
i
t)) , (1)

where πθ : x 7→ u is a deterministic policy (e.g. NN) mapping states to controls
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Behavior Cloning

Deep Imitation Learning in 1989
q A CMU paper!
• CMU has incubated many self-driving companies

(Shi’s lecture 5)
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Behavior Cloning

• Behavior Cloning literally imitates the demonstrated mapping x 7→ u

• Issues:
– But does that also imitate the long term behavior or eventual effect of the demonstrations?

(Ignores distributional shift.)
– Does it capture the “essence” of what is demonstrated?
– Can it deal with multi-modal demonstrations? (→ next week: multi-modal policies)
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Trajectory Distribution Learning
[This is not common terminology, and seemingly skipped in other Imitation Learning lectures – unfortunately. I think this captures
an essence of the problem.]

• What does it mean to capture the “essence” of data?

– Learn a distribution model pθ(x1:T ) of demonstrated trajectories!

max
θ

∏
i

pθ(x
i
1:Ti

) (likelihood maximization (LM)) , (2)

where pθ is some model class powerful enough to represent “essence”

• What are “powerful” models?
– Transformer models, diffusion models
– But we’ll start with very basic Gaussian models
– ...and discuss models specifically for robotic manipulation
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Trajectory Distribution Learning: GMMs

Sylvain Calinon and Aude Billard, (2007). Incremental learning of gestures by imitation in a humanoid robot.
In Proceedings of the ACM/IEEE International Conference on Human-robot Interaction, pages 255–262

– Embed trajectories x1:T in “space-time” {(t, xt)}Tt=1

– Fit a density estimator to p(t, xt) (easiest: Gaussian Mixture Model (GMM), LM well studied)
– Can be translated to control policy by reading out conditional p(x|t) and using inverse dynamics
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https://dl.acm.org/delete_doi/10.1145/1228716.1228751


Trajectory Distribution Learning: GMMs
– A simple way to describe the distribution of demonstrated trajectories
– Variance of learned p(x|t) captures “consistent bottlenecks” in demonstrations

[Is that a key structure in demonstrations? Search also “Calinon constraints”]

– Can be combined with Dynamic Time Warping to temporally align demonstrations
– GMM approach is around for ∼ 20 years
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Trajectory Distribution Learning: ProMPs

Alexandros Paraschos, Christian Daniel, Jan R. Peters, and Gerhard Neumann, (2013). Probabilistic movement primitives.
Advances in neural information processing systems, 26

– Nothing but (prob.) linear regression t 7→ xt with basis function features (LM↔regression)
– Very simple distribution model over trajectories [could use GPs to kernelize]

– Related to Inference Control (AICO, ICML’09), Path Integral methods (RSS’12)
– Great flexibility to condition, compose, and blend
– Somewhat superseeds earlier work on learning movement primitives from demonstration

[typically Dynamic Movement Primitives (DMPs, Schaal et al’03)]
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https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html


Trajectory Distribution Learning: Features & Constraints

• Think about Manipulation!

Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake, (2022). KPAM: KeyPoint Affordances for Category-Level Robotic Manipulation.
In Tamim Asfour, Eiichi Yoshida, Jaeheung Park, Henrik Christensen, and Oussama Khatib, editors, Robotics Research, volume 20, pages 132–157
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https://link.springer.com/10.1007/978-3-030-95459-8_9
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Trajectory Distribution Learning: Features & Constraints

• Think about Manipulation!

Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann, (2022). Neural descriptor fields: Se (3)-equivariant
object representations for manipulation.
In 2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400
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https://ieeexplore.ieee.org/abstract/document/9812146/
https://ieeexplore.ieee.org/abstract/document/9812146/


Trajectory Distribution Learning: Features & Constraints

• Think about Manipulation!

Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022). Deep visual constraints: Neural implicit models for manipulation planning from visual input.
IEEE Robotics and Automation Letters, 7(4):10857–10864
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https://ieeexplore.ieee.org/abstract/document/9844753/


Trajectory Distribution Learning: Features & Constraints

• Connects to large body of literature:
– More examples: FlowBot3D, UMPNet, Bi-KVIL, ”Waypoint-based imitation learning”, ..

– Human Activity Modelling, Action Segmentation:

• What really is the essence to extract from demonstrations?
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• Back to Behavior Cloning...

• Issues:
– But does that also imitate the long term behavior or eventual effect of the demonstrations?

(Ignores distributional shift.)
– Does it capture the “essence” of what is demonstrated?
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Distributional (Domain) Shift

• Standard ML: x, y ∼ p(x, y) i.i.d.; same p for trains & test

• Sequential Decision Processes: own policy π influences test distrib. pπ(xt)!
– Fundamental difference between learning in sequential decision processes and Supervised ML!
– Also in off-policy & offline RL: We train a policy (or Q,V -function) with losses relative to pπβ (xt)

with behavior policy (πβ)
– Generally called distributional shift, or Out-of-Distribution (OOD) testing
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Distributional Shift in Behavior Cloning
• When we train policy πθ in BC, we minimize

min
θ

∑
i,t

ℓ(uit, πθ(x
i
t)) ↔ min

θ
Eπ∗{ℓ(u, πθ(x))} (3)

but when using the policy, we generate fully different distribution

Also called Compound Error (Shi’s lecture 5)

• What we should train is this:!

min
θ

Eπθ
{ℓ(π∗(x), πθ(x))} (4)
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Distributional Shift in Behavior Cloning

• BC formulates a supervised ML problem, but in view of testing, it is not:

(Shi’s lecture 5)
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How address the Distributional Shift?

• Ensure the data better covers the eventual pπ(xt) of trained π

– Enforce the expert to demonstrate also for non-optimal states (cover also non-expert situations)
– Collect data interactively at exactly the states visited by π (DAgger)
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Enforcing wider expert demonstrations

• Occasionally perturb the expert! Add noise!

(Shi’s lecture 5)
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DAgger

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell, (2011). A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

https://www.youtube.com/watch?v=V00npNnWzSU

• This repeatedly collects data from the current π, to approximate minθ Eπ{ℓ(π∗(xt), πθ(xt))}
Learning and Intelligent Systems Lab, TU Berlin Imitation Learning – 23/31

http://arxiv.org/abs/1011.0686
https://www.youtube.com/watch?v=V00npNnWzSU


• From Yue’s ICML’18 tutorial:

• Crucial point: For DAgger we have a very different setting: Access to the environment
(testing rollouts), interactively querying the expert.
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Data Collection
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Data Collection

• We’ve covered the theoretical aspect concerning distributional shift

• Data source:
– Tele-Operation
– Kinesthetic Teaching
– Human Demonstrations & Motion Capture
– Videos Only
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Tele-Operation: Aloha

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn, (2023). Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

https://tonyzhaozh.github.io/aloha/
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http://arxiv.org/abs/2304.13705
https://tonyzhaozh.github.io/aloha/


Kinesthetic Teaching

Learning movement primitives for force interaction tasks (Kober et al’15)
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Human Demonstrations & Motion Capture

Martin Do, Pedram Azad, Tamim Asfour, and Rudiger Dillmann, (2008). Imitation of human motion
on a humanoid robot using non-linear optimization.

In Humanoids 2008-8th IEEE-RAS International Conference on Humanoid Robots, pages 545–

552
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Human Demonstrations From Video Only

Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine, (2020). AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human Videos
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http://arxiv.org/abs/1912.04443


• This whole lecture talked about states! Same for observations yt only!
– History-input policies (analogous to autoregressive dynamics)
– Recursive (RNN) policies (analogous to recursive dynamics)
– Transformer policies (sequence models)

Learning and Intelligent Systems Lab, TU Berlin Imitation Learning – 31/31



[1] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning, (2009).
A survey of robot learning from demonstration.
Robotics and autonomous systems, 57(5):469–483.

[2] Christopher G. Atkeson and Stefan Schaal, (1997).
Robot learning from demonstration.
In ICML, volume 97, pages 12–20.

[3] Sylvain Calinon and Aude Billard, (2007).
Incremental learning of gestures by imitation in a humanoid robot.
In Proceedings of the ACM/IEEE International Conference on Human-robot Interaction, pages 255–262.

[4] Martin Do, Pedram Azad, Tamim Asfour, and Rudiger Dillmann, (2008).
Imitation of human motion on a humanoid robot using non-linear optimization.
In Humanoids 2008-8th IEEE-RAS International Conference on Humanoid Robots, pages 545–552.

[5] Jung-Su Ha, Danny Driess, and Marc Toussaint, (2022).
Deep visual constraints: Neural implicit models for manipulation planning from visual input.
IEEE Robotics and Automation Letters, 7(4):10857–10864.

[6] Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake, (2022).
KPAM: KeyPoint Affordances for Category-Level Robotic Manipulation.
In Tamim Asfour, Eiichi Yoshida, Jaeheung Park, Henrik Christensen, and Oussama Khatib, editors, Robotics Research, volume 20,
pages 132–157.

[7] Alexandros Paraschos, Christian Daniel, Jan R. Peters, and Gerhard Neumann, (2013).
Probabilistic movement primitives.
Advances in neural information processing systems, 26.

[8] Dean A. Pomerleau, (1988).
Alvinn: An autonomous land vehicle in a neural network.

Learning and Intelligent Systems Lab, TU Berlin Imitation Learning – 31/31

https://www.sciencedirect.com/science/article/pii/S0921889008001772?casa_token=23LVhxWg4jgAAAAA:GehDaKG7uEQPK4tGHZvaYo9YPFM63lvQpXoH7LjTu46LEo4YSRpe2UtyEMGEaxrvrjkq7P_1mw
https://mcgovern-fagg.org/amy_html/courses/cs5973_fall2005/lfd.pdf
https://dl.acm.org/delete_doi/10.1145/1228716.1228751
https://ieeexplore.ieee.org/abstract/document/4756029/
https://ieeexplore.ieee.org/abstract/document/9844753/
https://link.springer.com/10.1007/978-3-030-95459-8_9
https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html


Advances in neural information processing systems, 1.

[9] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell, (2011).
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning.

[10] Stefan Schaal, Auke Ijspeert, and Aude Billard, (2003).
Computational approaches to motor learning by imitation.
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431):537–547.

[11] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann,
(2022).
Neural descriptor fields: Se (3)-equivariant object representations for manipulation.
In 2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400.

[12] Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine, (2020).
AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human Videos.

[13] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn, (2023).
Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware.

Learning and Intelligent Systems Lab, TU Berlin Imitation Learning – 31/31

http://arxiv.org/abs/1011.0686
https://royalsocietypublishing.org/delete_doi/10.1098/rstb.2002.1258
https://ieeexplore.ieee.org/abstract/document/9812146/
http://arxiv.org/abs/1912.04443
http://arxiv.org/abs/2304.13705

