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Recap

¢ Imitation Learning
e Given: expert demonstration data D = {(«%.,,u}.; )},
e Goal: reproduce demonstrations

e Main Challenges:
e Distributional Domain Shift Solutions:

e Behavior Cloning: add noise
e DAgger: interactively add additional expert data
¢ Trajectory Distribution Learning: rely on controller

e Data Collection Solutions:

e Humans: teleoperation, kinesthetic teaching, motion capture, videos
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Recap

¢ Imitation Learning
e Given: expert demonstration data D = {(«%.,,u}.; )},
e Goal: reproduce demonstrations

e Main Challenges:

e Distributional Domain Shift Solutions:
e Behavior Cloning: add noise
e DAgger: interactively add additional expert data
¢ Trajectory Distribution Learning: rely on controller

e Data Collection Solutions:
e Humans: teleoperation, kinesthetic teaching, motion capture, videos
¢ high-effort computations (w.r.t. to computation or observation), e.g., Privileged Teacher
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Outline Today

e Data Collection: Privileged Teacher
e Generative Models

e Case Studies

e Quadrotor Acrobatics
e Learning from ALOHA data
e Transfer Learning

Learning and Intelligent Systems Lab, TU Berlin Imitation Learning 2 — 3/7?



Privileged Teacher

e So far we considered to directly learn 7y : = +— w (Or g : y — u)
¢ y might be high-dimensional or unstructured (e.g., RGBD sequences)

e Key insight: First learn privileged policy (“teacher”); use it to generate data for the
“student”

(i) Learn my, : z — u (where z contains some “ground truth” data, e.g., states, traffic lights,
neighbor behavior)
(i) Use my, to generate data D = { (x4, , ui.;. )}y
(iii) Learn mg, : x — u

Learning and Intelligent Systems Lab, TU Berlin Imitation Learning 2 — 4/7?



Privileged Teacher

Learning by Cheating

Dian Chen
UT Austin

Brady Zhou
Intel Labs, UT Austin

’ ’ @
wil
imitation

]
i Privileged
- 8 agent
1]

(a) Privileged agent imitates the expert

https://youtu.be/u9ZCxxD-Ulw

Learning and Intelligent Systems Lab, TU Berlin

Vladlen Koltun
Intel Labs

)
. ivileged 0
agent ol o

imitation

¥ Sensorimotor
agent

(b) Sensorimotor agent imitates the privileged agent

Philipp Kriihenbiihl
UT Austin

4
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https://youtu.be/u9ZCxxD-UUw

Privileged Teacher

e Pros and Cons compared to one-stage IL?
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Privileged Teacher

e Pros and Cons compared to one-stage IL?

Pros: Cons
e Second stage can be easily trained with e Simulation-focused
DAgger e Hierarchical approach (requires domain
e Data augmentation simple knowledge)
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Generative Models

e Generative Model:
e Input: Data D = {d*}1" ,
e Learning: find distribution py such that d’ ~ ps
¢ Inference: generate novel data d* ~ py
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Generative Models

e Generative Model:
e Input: Data D = {d*}1" ,
e Learning: find distribution py such that d’ ~ ps
¢ Inference: generate novel data d* ~ py

e What generative models do you know?
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Generative Models

e Generative Model:
e Input: Data D = {d*}1" ,
e Learning: find distribution py such that d’ ~ ps
¢ Inference: generate novel data d* ~ py

e What generative models do you know? [GAN, VAE, Diffusion, for details see']

e Relationship to IL
o If D= {(z%.1,,ui.;.)}i,, we can learn conditional distribution pg(u¢|;)
e Can also generate solution trajectories (esp. in combination with “classic” methods)
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Generative Adverserial Network (GAN)

¢ Train two networks (generator and discriminator)

real images

o
» 1
=ag
e l J d(x,¢)
z —| Generator trﬁ?’
[—] &

glz. w)

synthetic images

e Loss function (d4 should be 1 for real data):

Z lnd¢ $n —N

nedata gen

max mln —
w Niata

Y (1 — dy(gu(2n)))

negen
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GAN + Imitation Learning = (GAIL)

. . o . nerator i li
Generative Adversarial Imitation Learning * Generator is a policy

e )
Jonathan Ho Stefano Ermon . ..
OpenAl Stanford University e Discriminator has z,u as
hoj@openai.com ermon@cs.stanford. edu
Algorithm 1 Generative adversarial imitation learning Input

1: Input: Expert trajectories 75 ~ 7, initial policy and discriminator parameters gy, wg .
2 fori=0,1,2,... do ] StepS.
3:  Sample trajectories 7; ~ mg,
4:  Update the discriminator parameters from w; to w; 1 with the gradient (|) Ro"out/Sample

E, [V log(D,(s. B, [V log(l — Dy(s,a))] 17 H H H

[V log(Du (5. )] + v, [V log(1 = Du(s,0))] an trajectories using
5. Take a policy step from 6; to 6;, using the TRPO rule with cost function log(D,,,,, (s,a)). generator (=p0|icy)
Specifically, take a KL-constrained natural gradient step with
£ [Volog mo(als)Q(s,)] - AVoH (o), s (i) Update discriminator
where Q(5,a) = &, [log(D,, (s, a)) | sq = 5, a9 = a] .
A 08(Du (3, @) [ 50 = 5,0 (iii) Update policy

6: end for
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Variational Autoencoder (VAE)

¢ Train two networks (encoder and decoder)

Reconstructed

Ipug- -------------------------- Ideally they are identical. ~ ------------------oooom input

x ~x
— Probabilistic Encoder E—

a¢(2[x)

Mean Sampled
K latent vector
* ) .
Std. dev |Z|
An compressed low dimensional

z=ptooe representation of the input.
— e~ N(0,1) L

ML Lecture, slides 8 and 9

Probabilistic
Decoder

Po(x|2)

e Loss function:

Hal,iqﬁn _Ez~q¢(z|x) log py (X|Z) + DKL(QQS(Z’X) |p9 (Z))
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Variational Autoencoder (VAE)

e Training: SGD Updates for both networks
repeat
L0

forje{l,...,M}do
Enj ~ -'\--(0 ]-] Q
:Ji_j — ﬂ_j (xn q})fr!j == CF x}i
£<—£+%{1+lnrr;J ;:;J ﬁj}
end for
L+ L+ Inp(x,|z,. W)
W — W+ J‘}Vwﬁ Update decoder weights
(}f) — (15 + J‘}v‘pﬁ Update enceoder weights

until converged

return w. ¢
[There is an error in the Bishop book (Alg. 19.1): u and o are swapped at the highlighted line]

¢ Inference: Sample from Normal distribution and execute decoder
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Variational Autoencoder (VAE) + Imitation Learning

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

Learning Sampling Distributions for Robot Motion Planning

1

Brian Ichter™!, James Harrison*2, Marco Pavone

Learning Sample Distribution Methodology Outline

Offline:
I Input: Data (successful motion plans, robot in action,
human demonstration, etc.)
2 Construct conditioning variables y
3 Train CVAE, as in Fig. 2a
Online:
4 Input: Motion planning problem (Aec, Tinit, Xgoal ),
learned sample fraction A
5 Construct conditioning variable y
6 Generate AN free samples from the CVAE latent space
conditioned on y, as in Fig. 2b
7 Generate (1 — A)N free samples from an auxiliary
(uniform) sampler
8 Run sampling-based planner (e.g., PRM”, FMT", RRT")
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Diffusion

e Train one network that “removes” noise

polxe—1]x:)
Oz O "@r —Cp

a(x; |Xz 1)

Forward diffusion process: sample x, and add iid
Gaussian noise ML Lecture, slide 11

q(x1:7[%0) = Hq X¢|%¢-1)

q(x¢|xi-1) = N(x¢3 /1 = Bixy—1, BI)
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Diffusion

e Train one network that “removes” noise

PalXe—1[x:)
O 0 "0y Cp

(x;|x[ 1]

Reverse process: learn pg(x;—1|x¢)

po(x0.1) = p(xr) Hpe(thﬂXt)
t=1

Po(Xi—1|x¢) = N(xp—1; pro(x¢, ), 2o (x4, 1))

Learning and Intelligent Systems Lab, TU Berlin

ML Lecture, slide 11
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Diffusion: Training

Algorithm 20.1: Training a denoising diffusion probabilistic model

Input: Training data D = {x,}
Noise schedule {3;,..., 37}
Output: Network parameters w
forte {1,...,T} do
‘ g — H3:1(1 - BT) // Calculate alphas from betas

end for

repeat
x~D // sample a data point
t~{l,...,T} // sample a point along the Markov chain
€NN(€|0,I) // Sample a noise vector
Zt (—\/OTtx—F\/l——ate // Evaluate noisy latent variable
L(w) < |lg(z;, w,t) —€||? // compute loss term
Take optimizer step

until converged

return w
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Diffusion: Sampling

Algorithm 20.2: Sampling from a denoising diffusion probabilistic model

Input: Trained denoising network g(z, w, )
Noise schedule {3, ..., 87}
Output: Sample vector x in data space

ZTNN(Z|0,I) // Sample from final latent space
fortcT,...,2do
[ Hf_zl(l — 57) // Calculate alpha
t

output

/ls_tatg(zt,wai)}
EN.N’(E‘O,I) // Sample a noise vector
Zi—1  p(ze, w,t) +/Bre // Add scaled noise

end for

= 1 B t ; cnoising ste
X = Wir:n Z) — mg(zl,w, ) // Final denoising step
return x
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Diffusion + Imitation Learning

i and Sy 2
Daegu, Republic of Korea, July 10-July 14,2023

Diffusion Policy:

Visuomotor Policy Learning via Action Diffusion

Cheng Chi', Siyuan Fengz, Yilun Du?, Zhenjia Xu!, Eric Cousineau?, Benjamin Burchfiel?, Shuran Songl
! Columbia University 2 Toyota Research Institute 3 MIT
https://diffusion-policy.cs.columbia.edu

Input: Image Observation Sequence Observation O (o7 __

" s sl

| Diffusion Policy z¢(O, A, k) » ¥ ConviD S
¥ x: Action Emb <K 8 1" 2 2 [xK

mm - mmel| [y I
] —— a-x+b & F
Action Sequence A: b D » é
- . H

<——Prediction Horizon Tp — A Bl FiLy  X:Action Emb F g- Action Emb

- itianing ConviD A
A A a1 con
[ R - o

Output: Action Sequence a) Diffusion Policy General Formulation b) CNN-based c) Transformer-based
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Comparison of Generative Models

Discriminator Generator

GAN: Adversarial ! x
G(z)

training

Encoder
q5(2(%)

VAE: maximize X |
variational lower bound

Decoder ’
: i_, sl x
po(x|2)

Diffusion models:
Gradually add Gaussian
noise and then reverse

e What are advantages / disadvantages? (e.g., sample quality, sample efficiency,
distribution “coverage”, ease of training)
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Case Study: Deep Drone Acrobatics

Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

Deep Drone Acrobatics

Elia Kaufmann*!, Antonio Loquercio*i, René Ranftl, Matthias Miiller, Vladlen Koltun', Davide Scaramuzza®

< y E,

fi: )

% 3‘ -+
et

https://youtu.be/2N_wKXQ6MXA
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https://youtu.be/2N_wKXQ6MXA

Case Study: Deep Drone Acrobatics

e Input
(i) Abstraction of sequence of last camera images (feature tracks)

(i) Preprocessed sequence of IMU data
(iii) Reference trajectory

e Output
e Desired body rates and thrust (to be tracked by attitude controller)

e Data
e Purely from simulation (privileged expert = optimization-based MPC controller)

e Learning
e Privileged Teacher (here: given, not learned from human demonstrations)
e DAgger
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Case Study: Deep Drone Acrobatics

Feature Tracks (15Hz) Temporal Convolutions
o : 1x128 128 x1 :
-t o _ 2 Polntbiet | | 1 A Multi-Layer Perceptron Action
a R — Pnlmﬂal‘ I ] |
IMU {200Hz) 1x10 -
P Sampler @ I 7
.G 7 @ooHp IV
Reference Trajectory | 1x10 ]
0 7
Sa
@\ > Somn 4 :
[

Learning and Intelligent Systems Lab, TU Berlin Imitation Learning 2 — 21/77



Case Study: Deep Drone Acrobatics

Unique design choices:
e Pre-processing of input for sim-to-real transfer

e Asynchronous network branch inference
e Custom DAgger rollout for sim-to-real transfer: only use policy if similar to expert;
also include random actions
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Case Study: Using ALOHA Data

Learning Fine-Grained Bimanual Manipulation with
Low-Cost Hardware

Tony Z. Zhao'!  Vikash Kumar® Sergey Levine? Chelsea Finn!
! Stanford University 2 UC Berkeley * Meta

Example Teleoperated Skills

NIST boare

Example Learned Policy

Fig. 1: ALOHA * : A Low-cost Open-source Hardware System for Bimanual Teleoperation. The whole system costs <$20k with off-the-shelf
robots and 3D printed components. Left: The user teleoperates by backdriving the leader robots, with the follower robots mirroring the motion.
Right: ALOHA is capable of precise, contact-rich, and dynamic tasks. We show examples of both teleoperated and learned skills.

https://tonyzhaozh.github.io/aloha/
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Case Study: Using ALOHA Data

Bl top camera

wrist camera wrist camera

frontcamera

[ —— Glcm  ————|

red: bimanual workspace

Learning and Intelligent Systems Lab, TU Berlin
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Case Study: Using ALOHA Data

e Conditional Variational Autoencoder (CVAE)
e Encoder: joint positions, expert action sequence (k >> 1)
e Latent space: z “style” (dim=32)
e Decoder: observations (4 RGB images), joint positions, “style” z; output: planned
action sequence

action sequence

|1__|z style variable 1 ' [L_-‘D ~O-00g % |_‘—_\ |_y—_\ F}%\
I T T T 117
2 )
transformer transformer transformer
encoder encoder decoder

L laEEis | DD BB EBIL Lhid L

position embeddings (fixed)

[CLS] joints action sequence + PosEmb agoxedoxs SN cam 1 cam4 joints 2
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Case Study: Using ALOHA Data
e Inference: z is always set to 0 (deterministic genera-
tor)

e Key insights: transformer architectures for encoder
and decoder; MPC-style encoding (action chunks +
temporal ensemble)

e Fun statistics:

e 80 M parameters; 5h training (RTX 2080 Ti); 10ms
inference

e 50 demonstrations per task (about 20min of data)

Learning and Intelligent Systems Lab, TU Berlin

Action Chunking

0 1 2 3
o @000
t=4 mooao

Action Chunking + Temporal Ensemble
=0 [ O I x[0.5,03,020.1 =]
t=1 (0 |

=2 [ {4

=3 M OO E

4 5 6 7
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Case Study: Domain Adaptive Imitation Learning (DAIL)

Domain Adaptive Imitation Learning

Kuno Kim ' Yihong Gu? Jiaming Song' Shengjia Zhao' Stefano Ermon'

e How to perform a task, given demonstrations from a different domain (viewpoint,
embodiment, and/or dynamics mismatch)?

Ve glgeddd
. 4

https://youtu.be/10tc1JCN_1M
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https://youtu.be/l0tc1JCN_1M

Case Study: Domain Adaptive Imitation Learning (DAIL)

e Given: unprocessed examples for the same tasks for robots x and y

° Dm,y = {(DA4,T,T717DJ\4?,,T7¢)}1]‘V:1 for N tasks {Tz}ljil
e Data is not paired/aligned, i.e., s\ does not “match” s
a.

Paired x (/171 |>D| DD DI
igne T .
Doy = |} (G \eeeD)

)

U d
Unpaired (- [ { TN [AIK] [EIIK )

D, = |y (DA, [C[C[C] -}
T .

e Goal: Given a new demonstration of unseen task 7} for y, transfer/execute directly
(“zero-shot”) on robot x
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Case Study: Domain Adaptive Imitation Learning (DAIL)

e Learning Alignment from D, , = {(Das, 11, Dar, 1)}y
(i) Learn 7y . for all T; (Behavior Cloning)

(i) Learn mapping of states from z to y: fy, : v, — =,

(iii) Learn mapping of actions from y to x: gg, u, +— u,

(iv) Learn dynamics/step function of z: Py : x4, uz + o4
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Case Study: Domain Adaptive Imitation Learning (DAIL)

e Adaption
(i) Learn 7y ;. for new task 7; (Behavior Cloning)

(i) w1, (x2) = go, (73, 1, (fo, (22)))

b. Alignment g C. Adaptation
Unaligned T T
(5, @y,5y), (200 5%) ~ Dyy o T TT TS

® @ @}@i v || (CIFIFIAIAIAIATAD

mind(c*>Y,0%)

Outputs
-
.9
([ S5 e Sy SESS n LR e e
f 222";1 x (CIEIETRIRTAIATAR
Pep B.C '_m]iEtagin I:?ISAS)] B.C
—>min E[D (|| Polic - -
fe e Adap); 7Tx_7-—g°71'y7~°f

®
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Case Study: Domain Adaptive Imitation Learning (DAIL)

e Alignment Approach: Generative Adversarial MDP Alignment (GAMA)

e Discriminator tries to separate real transitions ((x,u) — z’) from aligned transitions
e “Generator” are f and g (deterministic)

Algorithm 1 Generative Adversarial MDP Alignment (GAMA)

input: Alignment task set D, ,, = {(D'MI.T, D, - )}, of unpaired trajectories, fitted T,
while not done do:

fori=1,..., N do:

Sample (5, az,5,) ~ Dag, .- (5, ay, 8,) ~ D, . and store in buffer B.. B,
forj=1,....Mdo:

Sample mini-batch j from B, B

Update dynamics model with: 71@""1,‘5 (Vi (P (S, a2) — 5,)7]
Update discriminator: Eﬂ;m [Vo: log Dy, (sy,ay,5,)] + fEW;j‘ (Vs 1og (1= Dy (8,0, )]
Update alignments (fy ., gp, ) With gradients:
—E, 1 [Vo,log Dy (3, 4y, )] + E«j,q—l Vo, (Fa,7:(52) — a2)?]
—IAE-,rerl [V, log Dy, (5, 4y, 5,)] + IAEﬂ.erl (Yo, (Fa7:(52) — ax)?]
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Conclusion

¢ Imitation Learning works well for robotics
o Efficient, effective, stable training
e Fastinference
e State-of-the-art real-robot results (mobile robots, manipulation, planning)
e Main challenge: acquire labeled data
e Simulation possible (e.g., make slow algorithms fast) = Use DAgger and/or
privileged teacher paradigm
¢ Only real data = intuitive data collection interfaces, powerful generative and sequence
models, transfer learning
¢ Details can be tricky (what to learn [policy, trajectory, value function], how to
represent inputs, network architectures)

e Not discussed (yet): How to become better than the “expert” (notion of reward)
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