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e So far we discussed dynamics and imitation learning

— The mappings we learned concerned z, y, u (including also dynamics parameters © and
constraints ¢(z))

— Demonstration data was given, or dynamics data well-collected
— There is no external task/cost evaluation

¢ In RL, we assume rewards r given, which opens a new dimension
— We will learn state values (V-, Q-function) and a policy maximizing expected discounted rewards
— RL is more autonomous in that it explores the world and generates its own data
— But it relies on an externally given reward function
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Outline

e First essentials towards modern Deep RL methods

e Then a discussion of challenges
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Markov Decision Process

e The world: An MDP (8, A, P, R, Py, ~) with state space 8, action space A, transition
probabilities P(s¢t1 | s¢,ar), reward fct ry = R(s, ay), initial state distribution Py(so),
and discounting factor v € [0, 1].
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Markov Decision Process

The world: An MDP (S, A, P, R, Py,~) with state space 8, action space A, transition
probabilities P(s¢t1 | s¢,ar), reward fct ry = R(s, ay), initial state distribution Py(so),

and discounting factor v € [0, 1].
e The agent: A parameterized policy 7y (a;|s¢).
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Markov Decision Process

e The world: An MDP (8, A, P, R, Py, ~) with state space 8, action space A, transition
probabilities P(s¢t1 | s¢,ar), reward fct ry = R(s, ay), initial state distribution Py(so),
and discounting factor v € [0, 1].

e The agent: A parameterized policy 7y (at|st).

e Together they define the path distribution (£ = (so.741, ao:))

T
Py(&) = P(s0) [ molarls:) P(sisalsi, ar)
=0
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Markov Decision Process

e The world: An MDP (8, A, P, R, Py, ~) with state space 8, action space A, transition
probabilities P(s¢t1 | s¢,ar), reward fct ry = R(s, ay), initial state distribution Py(so),
and discounting factor v € [0, 1].

e The agent: A parameterized policy 7y (at|st).

e Together they define the path distribution (£ = (so.741, ao:))

T
Py(&) = P(s0) [ molarls:) P(sisalsi, ar)
=0

and the expected discounted return (with discounting factor v € [0, 1))

J(0) = Bepy { 520 7 Ristyar) } = /E Po(€) R(E) de
R(¢)
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Value functions
[The following assumes a deterministic policy a = 7 (s); stochastic 7 (a|s) is handled with expectations over a.]

e The value function of a policy 7y gives the return when started in state s:

V7i(s) = E{Zt Ve | 5028}
VT(s) = R(s,m(s)) + 7E5/|87W(5){V7T(8/)} (Bellman Equation)
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Value functions
[The following assumes a deterministic policy a = 7 (s); stochastic 7 (a|s) is handled with expectations over a.]

e The value function of a policy 7y gives the return when started in state s:

V7i(s) = E{Zt Ve | 50:3}
VT(s) = R(s,m(s)) + 7E5/|87W(5){V7T(8/)} (Bellman Equation)

e The Q-function gives the return when starting in state s and taking first action a:
Q" (s,a) = E{Zt Yire | so=s, ao:a}

Q" (s,a) = R(s,a) + ’yESWS’a{QW(S,, 71'(8/))} (Bellman Equation)
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Bellman Optimality Equation

¢ Bellman equations («+ Policy Evaluation):

Vﬂ(‘g) R(Svﬂ-(s)) +7E8’|5,ﬂ(5){vw(3/)}
QW(S; a) = R(57 CL) + VEs’ls,a{Qﬂ(Sla 77(5,))}
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Bellman Optimality Equation

¢ Bellman equations («+ Policy Evaluation):

Vﬂ(s) R(Svﬂ-(s)) +7E8’|5,ﬂ(5){vﬂ(8/)}
Qﬂ(sa a) = R(57 CL) + ’Y]Es’Is,a{Qﬂ(Sla ’/T(SI))}

e Bellman optimality equations: (+» Q-lteration/Value Iteration)
V*(s) = max, [R(s, a) + 'yIES/‘S’a{V*(S/)}} = max, Q*(s, a)

Q" (s,a) = R(s,a) + 1Ey|s o{maxa Q" (s, a)}
7 (s) = argmax, Q*(s,a)

u_‘ Richard E. Bellman (1920—1984)

[Sketch of proof: If 7* would be other than argmax, [-], then 7’ = 7 everywhere except 7’ (s) = argmax,[-] would be better.]
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e The core question is how to actually compute them

e Model-based: (if we know or estimated the models P(s'|s,a), R(s,a), P(sp))
— Q-lteration, Policy lteration

e Data-based: (if we directly use data D = {(s;, a;, 74, si+1) 1)
— “Reinforcement Learning”
— TD-Learning, Q-learning, Actor-Critic
— Modern: DDPG, TC3, SAC, etc
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Model-based: Q-lteration

¢ Bellman Optimality equation for Q*:

Q*(S, CL) = R(57 a) + IYES/ | s,a{ H}?X Q*($,7 a,) }
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Model-based: Q-lteration
¢ Bellman Optimality equation for Q*:

Q*(S, CL) = R(57 a) + V}Es/ | s,a{ H}?X Q*($,7 a,) }

—_———
Ve (s')

e Q-lteration: initialize Q;—(s,a) = 0, then iterate:
Vst Viyi1(s) = max Qi(s, a’)

vs,a : Qk+1(8, CL) = R(Sa a) + ’yEs’\s,a{Vk—&-l(S,)}

stopping criterion:  max;, , |Qr+1(8,a) — Qr(s,a)| < e

[Note: Using V41 in this iteration is like a buffer — cf. the “target network” in neural RL.]

e Theorem: Q-lteration converges to the optimal state-action value function Q*
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Q-lteration — Proof of convergence
o Let Ay = |Q* — Qkloo = max, o |Q*(s,a) — Qi(s,a)]

Qr+1(s,a) = R(s,a) + VEy s o{max, Qr(s',a')}
< R(s,a) + 1By o maxe [Q7(s',0') + A }
— [R(s,0) + 1B afmaxa Q°(s',a)} | +7A%
=Q"(s,a) +7Ag

similarly: Qr+1 > Q* — vAg

e The proof translates directly also to value iteration
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Model-based: Policy Iteration

¢ Policy Evaluation: Dynamic Programming for Q™ instead of Q*: Iterate:

Vs Vk—i—l(s) = Qk(sﬂr(s))
\V/s,a : Qk+1(37 a’) = R(37 CL) + VES’\s,a{Vk+1(SI)}

stopping criterion:  max; , |Qr+1(,a) — Qr(s,a)| <€

¢ Policy Improvement: Then update the policy to become better:

7(s) < argmax Q(s, a)

e lterating the two steps above is guaranteed to converge
e This is also called actor-critic (with r=actor, and Q™ =critic)
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e The two discussed methods (Q-lteration and Policy Iteration) can compute optimal policies,
but require a known (or estimated) model

e To approximately do the same from data, we follow two strategies
— Whenever there was an expectation E{-} in these equations, we replace it by sample data

— Whenever there was a full function update (e.g. Vs, : Q(s,a) < - -- or policy improvement) we
need to replace it by a data-based loss functions and do gradient steps.
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e The two discussed methods (Q-lteration and Policy Iteration) can compute optimal policies,
but require a known (or estimated) model

e To approximately do the same from data, we follow two strategies
— Whenever there was an expectation E{-} in these equations, we replace it by sample data

— Whenever there was a full function update (e.g. Vs, : Q(s,a) < - -- or policy improvement) we
need to replace it by a data-based loss functions and do gradient steps.

e For simplicity, the following focusses on Policy lteration (or actor-critic) approaches
[Similar strategies can be applied for “Deep Q-Learning”:

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski. Human-level control through deep reinforcement
learning.

nature, 518(7540):529-533, 2015.

URL: https://

But major RL methods nowadays follow actor-critic approaches]

w.nature.com/articles/nature14236

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning — 11/29


https://www.nature.com/articles/nature14236

Data-based: Bellman Loss for the Q-function

e Recall
Q"(s,a) = R(s,a) + 1By 5o { Q" (s, 7(s")) }

e Givendata D = {(s;, ai, 4, si+1) } L, define the Bellman residual:

Bﬂ(@@u Q) = E(s,a,r,s’)ND{ [Q@(S, (Z) —-r—= 7@(8/7 77(5/))]2 }
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Data-based: Bellman Loss for the Q-function

e Recall

Q™ (s,a) = R(s,a) + ’)/Es/‘sﬂ{Qﬂ—(Sl, 77(5'))}
e Givendata D = {(s;, ai, 4, si+1) } L, define the Bellman residual:

(Q@u@) (sars ~D{ Q@ S (Z)—T—’}/Q(S ﬂ-( ))]2}

¢ This defines a supervised ML problem for Qy! We have Q-gradients and can do
standard SGD.

— Actually we want Q = Qy, and could compute gradients also accounting for yQ(s’, 7(s’)). This is
called Bellman residual minimization, and known since the 80ies, but has challenges [12, 4]

— So instead, during training we fix Q to some “old version” of Qy: We set Q = Q; where d is a
low-pass filter of 0 (a delayed version of the current parameters 6). This stabilizes training.
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e So, for a given policy m, B™(Qg, Q) defines a loss for Qg
e How can we also define a loss function for the policy?
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Data-based: Return Maximization for the Policy

¢ To train the policy, we choose to directly maximize expected return:

J(0) = Eenr,{ 2oi20 v Rist ar) } = [ Po(€) R(E) d€
R(¢)

— This is not really an error, but exactly what we aim to maximize
— All we need is the gradient 2.7 (0)
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Policy Gradient 2.J(0)

[The word “policy gradient” means gradient of J(0) w.r.t. the policy parameters 6.]

e For a deterministic policy a = my(s) € R%:

5700 = Eour, { £:07 (5,0)[,_  fym(s)}

[Derived here: [18], and led to the Deep Deterministic Policy Gradient (DDPG) method [11]. Is the foundation of many followups.
This gradient is somewhat noisy, D4PG is an improvement.]
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Policy Gradient 2.J(0)

[The word “policy gradient” means gradient of J(0) w.r.t. the policy parameters 6.]

e For a deterministic policy a = my(s) € R%:

5700 = Eour, { £:07 (5,0)[,_  fym(s)}

[Derived here: [18], and led to the Deep Deterministic Policy Gradient (DDPG) method [11]. Is the foundation of many followups.
This gradient is somewhat noisy, D4PG is an improvement.]

e For a stochastic policy 7y (a|s): (standard “Policy Gradient Theorem”):

GJ(0) = 55 [ Py(€) R(&) dé = [ Py(&) 25 log Py (&) R(€)dE

= Eewr, { & 108 PO RE) } = Eewr, { 1Ly 2" [ log mo(adlse)] Th_, 2" ~rv }
| —

Q7O (st,at)
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RL: Interleaving training with data collection

Algorithm 1 TD3
Initialize critic networks @y, , (24, and actor network m,
with random parameters 61, 62, ¢
Initialize target networks 0] « 01, 0 < 02, ¢' < ¢

Iniilizeseplay buffer e Actor-Critic style Deep RL:
ort=1to7T do _
Select action with exploration noise a ~ (s) + ¢, - %B(Qe, Q) prOVIdeS gradlent steps for Qe
€ ~ N(0,0) and observe reward r and new state s’ 5 . .
Store transition tuple (s, a, r, s') in B — 35 J(0) provides gradient steps for s
Sample mini-batch of IV transitions (s, a, r, s") from B - gradua”y training both is interleaved with

a< 7y (s)+e €~ clip(N(0, &)
y 7+ yminy o Qg (s, a)
Update critics 6; < ming, N=1 3 (y — Qy, (s,a))?
if £ mod d then . . ) ) .
Update ¢ by the deterministic policy gradient: fr.niu&rgto;gag. Hoof, and D. Meger. Addressing function approximation error in actor-
Vol (0) = N71SVaQo, (5,0)|aer,(5) Voms(s) In International Conference on Machine Learning, pages 15871596, 2018.
Update target networks: URL: https://proceedings.mlr.pres fujimotol8a.htm
0« 70; + (1 —71)0)
¢ — T+ (1—7)¢
end if
end for

—c,0) collecting more data
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Techniques to improve methods

e Papers on techniques in state-of-the-art methods:
— In Deep Q-Learning (DQN) approaches: [7] (Rainbow paper)
— In Actor-Critic approaches: [3] (TD3 paper)
— A state-of-the-art actor-critic method: [5] (SAC paper)
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Techniques to improve methods

e Papers on techniques in state-of-the-art methods:
— In Deep Q-Learning (DQN) approaches: [7] (Rainbow paper)
— In Actor-Critic approaches: [3] (TD3 paper)
— A state-of-the-art actor-critic method: [5] (SAC paper)

e Many ideas:
— Replay buffers (“experience replay”): Limited buffer of experiences to train on (approximates Py (s, a,r, s’))
— Double Q-Learning: maintain 2 indep. Q-functions Q1 2(s, a) (and use min in policy update)
— Delayed targets: low pass filter Q of Q as target
— Smoothed policy samples: add (clipped) noise when sampling policy in Bellman loss
— Prioritized Replay: (pick replay data where Bellman error is largest)
— Dueling Networks: (decompose Q in value and advantage)
— Multi-Step Learning: (n-step updates)
— Distributional RL: (let Q-function predict return distribution, not mean)
— Noisy Nets: (replace e-greedy exploration by “learnt noise”)
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Discussion

e The previous material should enable you to read about modern Deep RL methods
(TD3, D4PG, SAC)

¢ Rest of this lecture is discussion
— Why do we actually learn @ and not V'?
— What if we have partial observability?
— How is the data collected?
— How are reward functions engineered?
— Why not just use black-box optimization?
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Why do we actually learn ) and not V'?
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Why do we actually learn ) and not V'?

e ((s,a) tells us what is the best action a = argmax, Q
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Why do we actually learn ) and not V'?

e ((s,a) tells us what is the best action a = argmax, Q
¢ In control, value functions are also estimated, but never @ (I think). Why?

[E.g. the Hamilton-Jacobi-Bellman Eq: — 2 V (z, ) = min,, [c(z, ) + 2Y f (=, u)} ]
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Why do we actually learn ) and not V'?

e ((s,a) tells us what is the best action a = argmax, Q
¢ In control, value functions are also estimated, but never @ (I think). Why?

[E.g. the Hamilton-Jacobi-Bellman Eq: — 2 V (z, ) = min,, [c(z, ) + 2Y f (=, u)} ]

e Without Q-function, we’d somehow have to learn how to walk up-hill on V:
— Learn an inverse model (s, As) — a
— Learn a “flow” policy 7 : s — As &~ 2V (s)
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What if we have partial observability?

e Policy has only access to observations .

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning — 20/29


https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf

What if we have partial observability?

e Policy has only access to observations .

— Make the @ function a recursive NN

Q-Values 7 18

LSTM / 512

Conv3
64-filters 6
3x3
Stride 1
7

7

x4 In 2015 Aaai Fall Symposium Series, 2015.
Stride2 URL: https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf

;
Convl
32-filters 32
8x8

.
0 1
‘ y
84

Conv2
fafl’i‘l‘:cr\ m‘” M. Hausknecht and P. Stone. Deep recurrent g-learning for partially observable mdps.
J

=

v
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How is the data collected?
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How is the data collected?

e A core challenge in modern RL!

e Many modern methods require that the data is collected from the current my!
— So that E{-} can be replaced by the data in the Bellman equations
— This is called on-policy — we’ll discuss off-policy next time
— But 7 is so uninformed! So non-exploring! So iid. in each step (~ Brownian noise)
— Check pseudo codes of mentioned methods (SAC, DDPG, TD3, etc)
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How is the data collected?

e A core challenge in modern RL!

e Many modern methods require that the data is collected from the current my!
— So that E{-} can be replaced by the data in the Bellman equations
— This is called on-policy — we’ll discuss off-policy next time
— But 7 is so uninformed! So non-exploring! So iid. in each step (~ Brownian noise)
— Check pseudo codes of mentioned methods (SAC, DDPG, TD3, etc)

¢ In old RL (discrete state-action spaces), things were much better!
— Explicit Exploit or Explore [8] — a must read!
— R-mAX [1], Optimistic value initialization, Bayesian RL

— These methods design policies to systematically explore, typically by systematically rewarding
exploration

— Optimism in the face of uncertainty: Rewarding decisions with uncertain outcomes!
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How is the data collected?

e In Deep RL: Structured noise instead of Brownian:

O. Eberhard, J. Hollenstein, C. Pinneri, and G. Martius. Pink noise is all you need: Colored noise exploration in deep reinforcement learning.
In The Elevsmh International Conference on Learning Representations, 2022.
URL: https://openreview.net/forun?id=hQovs

QN27eS

e Parameter-space noise: (add noise to 6 instead of a)

M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel, and M. Andrychowicz. Parameter Space Noise for Exploration, 2018-01-31.
URL: http://arxiv.org/abs/1706.01905, arXiv:1706.01905
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How is the data collected?

e In Deep RL: Structured noise instead of Brownian:

O. Eberhard, J. Hollenstein, C. Pinneri, and G. Martius. Pink noise is all you need: Colored noise exploration in deep reinforcement learning.
In The Eleventh International Conference on Representations, 2022.
URL: https://openreview.net/forun?id=h s

e Parameter-space noise: (add noise to 6 instead of a)

M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel, and M. Andrychowicz. Parameter Space Noise for Exploration, 2018-01-31.
URL: http://arxiv.org/abs/1706.01905, arXiv:1706.01905

e Guided Policy Search

S. Levine and V. Koltun. Guided policy search.
In International Conference on Machme Learning, pages 1-9, 2013.
: s. 28/1levine13.html

- Use model-based trajectory optimization to generate data
e Demonstration Guided [15]

e Or just give up:
— Offline Reinforcement Learning: Assume the data was generated somehow externally
— Imitation Learning & Inverse RL: Learn from demonstrations
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How are reward functions engineered?

e Reward shaping theory: You can add potentials without changing optimal policy

A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and application to reward shaping.
In Jeml, volume 99, pages 278-287, 1999.

URL: https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
T Y F L= L 3 );
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How are reward functions engineered?

e Reward shaping theory: You can add potentials without changing optimal policy

A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and application to reward shaping.
In Jeml, volume 99, pages 278-287, 1999.
URL: https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell- shaping- ICML1999.pdf

e Reward engineering:

"o
—8

employ the same joint final reward. At the time ¢, where the
ball passes the rim of the cup with a downward direction, we
compute the reward as r(t,) = exp(—a(z, — ;)% — aly. —
yp)?) while we have v (f) = 0 for all t = ¢, Here, the
cup position is denoted by [z, .. z.] € R?, the ball position
[I},.y},.zb] € R? and we have a ling parameter o = 100.
The directional information is necessary as the algorithm could
otherwise learn to hit the bottom of the cup with the ball. The

J. Kober and J. Peters. Learning motor primitives for robotics.
In 2009 IEEE International Conference on Robotics and Automation, pages 2112-2118, 2009.
URL: b //ieeexplore.ieee.org/abstract/document/5152577/

https://www.youtube.com/watch?v=qtqubguikMk

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning — 23/29


https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
https://ieeexplore.ieee.org/abstract/document/5152577/
https://www.youtube.com/watch?v=qtqubguikMk

Why not just use black-box optimization?
e Eventually, maxy J(#) is an optimization problem

— Instead of deriving gradients (via Bellman, and Q-functions), why not treat as black-box or
derivative-free optimization problem?
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Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAl

Abstract

‘We explore the use of Evolution Strategies (ES), a class of black box optimization
algorithms, as an alternative to popular MDP-based RL techniques such as Q-
learning and Policy Gradients. Experiments on MuJoCo and Atari show that ES
is a viable solution strategy that scales extremely well with the number of CPUs
available: By using a novel communication strategy based on common random
numbers, our ES implementation only needs to communicate scalars, making it
possible to scale to over a thousand parallel workers. This allows us to solve 3D
humanoid walking in 10 minutes and obtain competitive results on most Atari
games after one hour of training. In addition, we highlight several advantages of
ES as a black box optimization technique: it is invariant to action frequency and
delayed rewards, tolerant of extremely long horizons, and does not need temporal
discounting or value function approximation.

T. Salimans, J. Ho, X. Chen, S. Sidor, and |. Sutskever. Evolution Strategies as a Scalable Alternative to Reinforcement Learning, 2017-09-07.
URL: http://arxiv.org/abs/1703.03864, arXiv:1703.03864
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e Ratio of ES timesteps to TRPO timesteps needed to reach various percentages of TRPO’s

learning progress at 5 million timesteps:

Environment 25% 50% 75% 100%
HalfCheetah 0.15 049 042 0.58
Hopper 053 364 6.05 6.94
InvertedDoublePendulum 046 048 049 1.23
InvertedPendulum 028 0.52 0.78 0.88
Swimmer 056 047 0.53 0.30
Walker2d 041 569 8.02 7.88

Learning and Intelligent Systems Lab, TU Berlin

Reinforcement Learning — 26/29
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e Roughly: “Do you spend your time training nets, or simulating?”
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DQN ES A3C RSIB GAIB GAG6B
DQN 6 6 3 6 7
ES 7 7 3 6 8
A3C 7 6 6 6 7
RS 1B 10 10 7 13 13
GA 1B 7 7 7 0 13
GA 6B 6 5 6 0 0

Table 4. Head-to-head comparison between algorithms on the
13 Atari games. Each value represents how many games for
which the algorithm listed at the top of a column produces a
higher score than the algorithm listed to the left of that row (e.g.
GA 6B beats DQN on 7 games).

e Conclusion: It varies from problem to problem what is better.
And it is suprising that “naive” black-box ES can beat elaborate RL-methods
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