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• So far we discussed dynamics and imitation learning
– The mappings we learned concerned x, y, u (including also dynamics parameters Θ and

constraints ϕ(x))
– Demonstration data was given, or dynamics data well-collected
– There is no external task/cost evaluation

• In RL, we assume rewards r given, which opens a new dimension
– We will learn state values (V -, Q-function) and a policy maximizing expected discounted rewards
– RL is more autonomous in that it explores the world and generates its own data
– But it relies on an externally given reward function

Learning and Intelligent Systems Lab, TU Berlin Reinforcement Learning – 2/29



Outline

• First essentials towards modern Deep RL methods

• Then a discussion of challenges
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Markov Decision Process

• The world: An MDP (S,A, P,R, P0, γ) with state space S, action space A, transition
probabilities P (st+1 | st, at), reward fct rt = R(st, at), initial state distribution P0(s0),
and discounting factor γ ∈ [0, 1].

• The agent: A parameterized policy πθ(at|st).

• Together they define the path distribution (ξ = (s0:T+1, a0:T ))
a0

s0

r0

a1

s1

r1

a2

s2

r2Pθ(ξ) = P (s0)

T∏
t=0

πθ(at|st) P (st+1|st, at)

and the expected discounted return (with discounting factor γ ∈ [0, 1))

J(θ) = Eξ∼Pθ

{∑∞
t=0 γ

tR(st, at)︸ ︷︷ ︸
R(ξ)

}
=

∫
ξ
Pθ(ξ) R(ξ) dξ
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Value functions
[The following assumes a deterministic policy a = π(s); stochastic π(a|s) is handled with expectations over a.]

• The value function of a policy πθ gives the return when started in state s:

V π(s) = E
{∑

t γ
trt | s0=s

}
V π(s) = R(s, π(s)) + γEs′|s,π(s)

{
V π(s′)

}
(Bellman Equation)

• The Q-function gives the return when starting in state s and taking first action a:

Qπ(s, a) = E
{∑

t γ
trt | s0=s, a0=a

}
Qπ(s, a) = R(s, a) + γEs′|s,a

{
Qπ(s′, π(s′))

}
(Bellman Equation)
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Bellman Optimality Equation

• Bellman equations (↔ Policy Evaluation):

V π(s) = R(s, π(s)) + γEs′|s,π(s){V π(s′)}
Qπ(s, a) = R(s, a) + γEs′|s,a{Qπ(s′, π(s′))}

• Bellman optimality equations: (↔ Q-Iteration/Value Iteration)

V ∗(s) = maxa

[
R(s, a) + γEs′|s,a{V ∗(s′)}

]
= maxa Q

∗(s, a)

Q∗(s, a) = R(s, a) + γEs′|s,a{maxa′Q∗(s′, a′)}
π∗(s) = argmaxa Q

∗(s, a)

A

B

A opt ⇒ B opt Richard E. Bellman (1920–1984)

[Sketch of proof: If π∗ would be other than argmaxa[·], then π′ = π everywhere except π′(s) = argmaxa[·] would be better.]
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• The core question is how to actually compute them

• Model-based: (if we know or estimated the models P (s′|s, a), R(s, a), P (s0))
– Q-Iteration, Policy Iteration

• Data-based: (if we directly use data D = {(si, ai, ri, si+1)}ni=0)
– “Reinforcement Learning”
– TD-Learning, Q-learning, Actor-Critic
– Modern: DDPG, TC3, SAC, etc
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Model-based: Q-Iteration

• Bellman Optimality equation for Q∗:

Q∗(s, a) = R(s, a) + γEs′ | s,a
{
max
a′

Q∗(s′, a′)︸ ︷︷ ︸
V ∗(s′)

}

• Q-Iteration: initialize Qk=0(s, a) = 0, then iterate:

∀s : Vk+1(s) = max
a′

Qk(s, a
′)

∀s,a : Qk+1(s, a) = R(s, a) + γEs′|s,a
{
Vk+1(s

′)
}

stopping criterion: maxs,a |Qk+1(s, a)−Qk(s, a)| ≤ ϵ
[Note: Using Vk+1 in this iteration is like a buffer – cf. the “target network” in neural RL.]

• Theorem: Q-Iteration converges to the optimal state-action value function Q∗
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Q-Iteration – Proof of convergence

• Let ∆k = ||Q∗ −Qk||∞ = maxs,a |Q∗(s, a)−Qk(s, a)|

Qk+1(s, a) = R(s, a) + γEs′|s,a{maxa′ Qk(s
′, a′)}

≤ R(s, a) + γEs′|s,a

{
maxa′

[
Q∗(s′, a′) + ∆k

]}
=

[
R(s, a) + γEs′|s,a{maxa′ Q∗(s′, a′)}

]
+ γ∆k

= Q∗(s, a) + γ∆k

similarly: Qk+1 ≥ Q∗ − γ∆k

• The proof translates directly also to value iteration
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Model-based: Policy Iteration

• Policy Evaluation: Dynamic Programming for Qπ instead of Q∗: Iterate:

∀s : Vk+1(s) = Qk(s, π(s))

∀s,a : Qk+1(s, a) = R(s, a) + γEs′|s,a
{
Vk+1(s

′)
}

stopping criterion: maxs,a |Qk+1(s, a)−Qk(s, a)| ≤ ϵ

• Policy Improvement: Then update the policy to become better:

π(s)← argmax
a

Q(s, a)

• Iterating the two steps above is guaranteed to converge

• This is also called actor-critic (with π=actor, and Qπ=critic)
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• The two discussed methods (Q-Iteration and Policy Iteration) can compute optimal policies,
but require a known (or estimated) model

• To approximately do the same from data, we follow two strategies
– Whenever there was an expectation E{·} in these equations, we replace it by sample data
– Whenever there was a full function update (e.g. ∀s,a : Q(s, a)← · · · or policy improvement) we

need to replace it by a data-based loss functions and do gradient steps.

• For simplicity, the following focusses on Policy Iteration (or actor-critic) approaches
[Similar strategies can be applied for “Deep Q-Learning”:
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski. Human-level control through deep reinforcement
learning.
nature, 518(7540):529–533, 2015.
URL: https://www.nature.com/articles/nature14236

But major RL methods nowadays follow actor-critic approaches]
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Data-based: Bellman Loss for the Q-function

• Recall
Qπ(s, a) = R(s, a) + γEs′|s,a

{
Qπ(s′, π(s′))

}
• Given data D = {(si, ai, ri, si+1)}Ti=0, define the Bellman residual:

Bπ(Qθ, Q̄) = E(s,a,r,s′)∼D

{
[Qθ(s, a)− r − γQ̄(s′, π(s′))]2

}

• This defines a supervised ML problem for Qθ! We have Q-gradients and can do
standard SGD.

– Actually we want Q̄ ≡ Qθ, and could compute gradients also accounting for γQ̄(s′, π(s′)). This is
called Bellman residual minimization, and known since the 80ies, but has challenges [12, 4]

– So instead, during training we fix Q̄ to some “old version” of Qθ: We set Q̄ = Qθ̄ where θ̄ is a
low-pass filter of θ (a delayed version of the current parameters θ). This stabilizes training.
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• So, for a given policy π, Bπ(Qθ, Q̄) defines a loss for Qθ

• How can we also define a loss function for the policy?
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Data-based: Return Maximization for the Policy

• To train the policy, we choose to directly maximize expected return:

J(θ) = Eξ∼Pθ

{∑∞
t=0 γ

tR(st, at)︸ ︷︷ ︸
R(ξ)

}
=

∫
ξ Pθ(ξ) R(ξ) dξ

– This is not really an error, but exactly what we aim to maximize
– All we need is the gradient ∂

∂θ
J(θ)
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Policy Gradient ∂
∂θJ(θ)

[The word “policy gradient” means gradient of J(θ) w.r.t. the policy parameters θ.]

• For a deterministic policy a = πθ(s) ∈ Rd:

∂
∂θJ(θ) = Es∼Pθ

{
∂
∂aQ

πθ(s, a)
∣∣
a=πθ(s)

∂
∂θπ(s)

}
[Derived here: [18], and led to the Deep Deterministic Policy Gradient (DDPG) method [11]. Is the foundation of many followups.
This gradient is somewhat noisy, D4PG is an improvement.]

• For a stochastic policy πθ(a|s): (standard “Policy Gradient Theorem”):

∂
∂θ

J(θ) = ∂
∂θ

∫
Pθ(ξ) R(ξ) dξ =

∫
Pθ(ξ)

∂
∂θ

logPθ(ξ)R(ξ)dξ

= Eξ∼Pθ

{
∂
∂θ

logPθ(ξ)R(ξ)
}

= Eξ∼Pθ

{∑H
t=0 γ

t [ ∂
∂θ

log πθ(at|st)]
∑H

t′=t γ
t′−trt′︸ ︷︷ ︸

Qπθ (st,at)

}
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RL: Interleaving training with data collection

• Actor-Critic style Deep RL:
– ∂

∂θ
B(Qθ, Q̄) provides gradient steps for Qθ

– ∂
∂θ

J(θ) provides gradient steps for πθ

– gradually training both is interleaved with
collecting more data

S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-
critic methods.
In International Conference on Machine Learning, pages 1587–1596, 2018.
URL: https://proceedings.mlr.press/v80/fujimoto18a.html
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Techniques to improve methods

• Papers on techniques in state-of-the-art methods:
– In Deep Q-Learning (DQN) approaches: [7] (Rainbow paper)
– In Actor-Critic approaches: [3] (TD3 paper)
– A state-of-the-art actor-critic method: [5] (SAC paper)

• Many ideas:
– Replay buffers (“experience replay”): Limited buffer of experiences to train on (approximates Pθ(s, a, r, s

′))

– Double Q-Learning: maintain 2 indep. Q-functions Q1,2(s, a) (and use min in policy update)

– Delayed targets: low pass filter Q̄ of Q as target

– Smoothed policy samples: add (clipped) noise when sampling policy in Bellman loss

– Prioritized Replay: (pick replay data where Bellman error is largest)

– Dueling Networks: (decompose Q in value and advantage)

– Multi-Step Learning: (n-step updates)

– Distributional RL: (let Q-function predict return distribution, not mean)

– Noisy Nets: (replace ϵ-greedy exploration by “learnt noise”)
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Discussion

• The previous material should enable you to read about modern Deep RL methods
(TD3, D4PG, SAC)

• Rest of this lecture is discussion
– Why do we actually learn Q and not V ?
– What if we have partial observability?
– How is the data collected?
– How are reward functions engineered?
– Why not just use black-box optimization?
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Why do we actually learn Q and not V ?

• Q(s, a) tells us what is the best action a = argmaxaQ

• In control, value functions are also estimated, but never Q (I think). Why?
[E.g. the Hamilton-Jacobi-Bellman Eq: − ∂

∂tV (x, t) = minu

[
c(x, u) + ∂V

∂x f(x, u)
]
.]

• Without Q-function, we’d somehow have to learn how to walk up-hill on V :
– Learn an inverse model (s,∆s) 7→ a

– Learn a “flow” policy π : s 7→ ∆s ≈ ∂
∂s

V (s)
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What if we have partial observability?

• Policy has only access to observations y0:t

→ Make the Q function a recursive NN

M. Hausknecht and P. Stone. Deep recurrent q-learning for partially observable mdps.
In 2015 Aaai Fall Symposium Series, 2015.
URL: https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
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In 2015 Aaai Fall Symposium Series, 2015.
URL: https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
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How is the data collected?

• A core challenge in modern RL!

• Many modern methods require that the data is collected from the current πθ!
– So that E{·} can be replaced by the data in the Bellman equations
– This is called on-policy – we’ll discuss off-policy next time
– But π is so uninformed! So non-exploring! So iid. in each step (∼ Brownian noise)
– Check pseudo codes of mentioned methods (SAC, DDPG, TD3, etc)

• In old RL (discrete state-action spaces), things were much better!
– Explicit Exploit or Explore [8] – a must read!
– R-MAX [1], Optimistic value initialization, Bayesian RL
– These methods design policies to systematically explore, typically by systematically rewarding

exploration
– Optimism in the face of uncertainty: Rewarding decisions with uncertain outcomes!
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How is the data collected?

• In Deep RL: Structured noise instead of Brownian:
O. Eberhard, J. Hollenstein, C. Pinneri, and G. Martius. Pink noise is all you need: Colored noise exploration in deep reinforcement learning.
In The Eleventh International Conference on Learning Representations, 2022.
URL: https://openreview.net/forum?id=hQ9V5QN27eS

• Parameter-space noise: (add noise to θ instead of a)
M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel, and M. Andrychowicz. Parameter Space Noise for Exploration, 2018-01-31.
URL: http://arxiv.org/abs/1706.01905, arXiv:1706.01905

• Guided Policy Search
S. Levine and V. Koltun. Guided policy search.
In International Conference on Machine Learning, pages 1–9, 2013.
URL: https://proceedings.mlr.press/v28/levine13.html

– Use model-based trajectory optimization to generate data

• Demonstration Guided [15]

• Or just give up:
– Offline Reinforcement Learning: Assume the data was generated somehow externally
– Imitation Learning & Inverse RL: Learn from demonstrations
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How are reward functions engineered?

• Reward shaping theory: You can add potentials without changing optimal policy
A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and application to reward shaping.
In Icml, volume 99, pages 278–287, 1999.
URL: https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf

• Reward engineering:

J. Kober and J. Peters. Learning motor primitives for robotics.
In 2009 IEEE International Conference on Robotics and Automation, pages 2112–2118, 2009.
URL: https://ieeexplore.ieee.org/abstract/document/5152577/

https://www.youtube.com/watch?v=qtqubguikMk
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Why not just use black-box optimization?

• Eventually, maxθ J(θ) is an optimization problem
– Instead of deriving gradients (via Bellman, and Q-functions), why not treat as black-box or

derivative-free optimization problem?
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T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution Strategies as a Scalable Alternative to Reinforcement Learning, 2017-09-07.
URL: http://arxiv.org/abs/1703.03864, arXiv:1703.03864
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• Ratio of ES timesteps to TRPO timesteps needed to reach various percentages of TRPO’s
learning progress at 5 million timesteps:
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F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks
for Reinforcement Learning, 2018-04-20.
URL: http://arxiv.org/abs/1712.06567, arXiv:1712.06567

• Roughly: “Do you spend your time training nets, or simulating?”
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• Conclusion: It varies from problem to problem what is better.
And it is suprising that “naive” black-box ES can beat elaborate RL-methods
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