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Safety

What might “safety” refer to in safe learning?
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Motivation

L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning.
5:411–444.
URL: https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211, doi:10.1146/annurev-control-042920-020211
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Outline

• Definitions of Safety and Safe Learning

• Overview of Existing Solutions (& Case Studies)

• Discussion / Open Challenges
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What is learned?
environment/task parameters

plans/anticipationstate evaluations
xt

state
ut

controls

observations
value V (x)

Q-valueQ(x, u)

constraint φ(x)

rewards rt

yt
action plan a1:K

waypoints/subgoals xt1:K

physics parameters Θ

trajectory x[t,t+H]

instructions/lang./goal info g

• Consider policy π : xt 7→ ut

• Safety means (intuitively) that if we rollout π (xt+1 = f(xt, π(xt)) ∀t), we never end up
in a “bad” state (e.g., collision, crash, stability/tracking) for “valid” start states x0

• In some cases, safety should apply while learning as well
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Definition of Safety (1)

• Dynamics xk+1 = fk(xk, uk, wk)

• xk ∈ X (state)
• uk ∈ U (action)
• wk ∼ W (process noise)

• Why fk and not f?

• Objective J(x0:N , u0:N−1) = lN (xN ) +
∑N−1

k=0 lk(xk, uk)

• Safety constraints
• State constraints (e.g., no collisions)
• Input constraints (e.g., actuation limits)
• Stability guarantees (e.g., robot converging to desired reference path)
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Definition of Safety (2)

L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning.
5:411–444.
URL: https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211, doi:10.1146/annurev-control-042920-020211
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Definition of Safety (3)

• Hard constraints (safety level 3)

cjk(xk, uk, wk) ≤ 0 ∀k ∀j

• Chance constraints (safety level 2)

Pr(cjk(xk, uk, wk) ≤ 0) ≥ pj ∀k ∀j pj ∈ [0, 1]

• Soft constraints (safety level 1)

cjk(xk, uk, wk) ≤ ϵj ∀k ∀j
lϵ(ϵ) ≥ 0 (Cost function term)
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Definition of Safe (Control) Learning

Learning and Intelligent Systems Lab, TU Berlin Safe Learning – 9/36



Relationship to (Classic) Controls

• Robust control
• Assume disturbance bounds known
• Find fixed controller that works even in the worst-case

• Adaptive controls
• Assume environment has varying parameters Θ (not directly observed)
• Controller changes online (e.g., by estimating Θ)

• Tube-based Model Predictive Control (MPC)
• Robust control in MPC framework: use tighter constraints to account for unmodeled

dynamics
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Relationship to (Classic) Controls
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Relationship to (Classic) RL

Learning and Intelligent Systems Lab, TU Berlin Safe Learning – 12/36



Outline

• Definitions of Safety and Safe Learning

• Overview of Existing Solutions (& Case Studies)

• Discussion / Open Challenges
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Existing Solution Strategies

(i) Safely Learn Uncertain Dynamics
(ii) RL that Encourages Safety and Robustness
(iii) Safety Certification

[Online Adaption/Learning (dynamics, cost function, constraints, control parameters) vs Offline (update in batches)]
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Existing Solution Strategies

L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning.
5:411–444.
URL: https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211, doi:10.1146/annurev-control-042920-020211Learning and Intelligent Systems Lab, TU Berlin Safe Learning – 15/36
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Strategy III: Safety Certification: Constraint Set

• Key idea
• Learn policy “as usual”
• At runtime, apply a safe action usafe = argminu ||u− ulearned||2 such that xk+1 is safe

• Safe states can be computed by
• Control Barrier Functions (CBFs)
• Hamilton-Jacobi Reachability Analysis
• Predictive safety filters

[keep track of safe control inputs that could steer back to a known safe state]
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Strategy III: Safety Certification: Constraint Set

• More Advanced
• If safety layer is differentiable → end-to-end training (e.g. [7])
• Learn safety filters directly

K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tomlin, A. D. Ames, and M. N. Zeilinger. Data-Driven Safety Filters: Hamilton-Jacobi Reachability, Control Barrier Functions,
and Predictive Methods for Uncertain Systems.
43(5):137–177.
URL: https://ieeexplore.ieee.org/document/10266799/, doi:10.1109/MCS.2023.3291885
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Strategy III: Safety Certification: Stability
• Stability: (informal) Can the robot track the reference, even with (small)

disturbances? [Formal proofs via Lyapanov functions or contraction theory]

• Typical assumptions:
• Bounded disturbance
• Bounded change in disturbance (Lipschitz continuous with known Lipschitz bound)
• Unbounded control authority

• Lipschitz-based: Treat neural network as “disturbance”; limit magnitude and
Lipschitz bound during training (Spectral Normalization) (e.g., [8])

• Region of Attraction: Lyapunov Neural Networks [6]
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Case Study: Neural Lander (based on slides from Shi)

Video: https://youtu.be/FLLsG0S78ik
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Case Study: Neural Lander (based on slides from Shi)
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Strategy II: RL that Encourages Safety and Robustness

• 1. Safe Exploration and Optimization

• 2. Risk-averse RL and uncertainty-aware RL

• 3. RL for Constrained MDPs (CMDPs)

• 4. RL for Robust MDPs
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Strategy II: RL that Encourages Safety: Safe Exploration

• Safe Exploration: only allow the policy to explore safe states

T. M. Moldovan and P. Abbeel. Safe exploration in Markov decision processes.
In Proceedings of the 29th International Coference on International Conference on Machine Learning, ICML’12, pages 1451–1458. Omnipress
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Strategy II: RL that Encourages Safety: Safe Exploration

• Safe Optimization: Minimize cost function without sampling inputs that violate
safety constraints, e.g., SafeOpt [1]

Safe set Sn (red): Could be potential maximizers Mn (green) or expanders Gn

(magenta)
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Case Study: SafeOpt

• Update sets using GPs

• From the union of safe potential
maximizers or expanders, measure
where the uncertainty is highest
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Case Study: SafeOpt

Application: Safe controller gain tuning

Video: https://youtu.be/GiqNQdzc5TI
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Strategy II: RL that Encourages Safety: Safe Exploration

• Learning a safety critic: learn a Q-function that predicts “safety”, e.g., [9]
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Strategy II: RL that Encourages Safety: Risk-averse RL

• Learn/estimate risks (e.g., probability of a collision)

• At runtime, prefer actions with low risk (e.g., MPC planner)
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Case Study: Agile But Safe [3]

Web: https://agile-but-safe.github.io/
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Strategy II: RL that Encourages Safety: RL for CMDPs

“However, most of the work in this area remains confined to naive simulated tasks,
motivating further research on their applicability in real-world control.”
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Strategy II: RL that Encourages Safety: RL for Robust MDPs

• Robust Adversarial RL [5]

• Train two policies: a robust policy and
a destabilizing adversary (that can
apply random forces on the robot)

• Trained iteratively

• Domain Randomization
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Strategy I: Safely Learn Uncertain Dynamics

• 1. Learning Adapative Control

• 2. Learning Robust Control

• 3. Learning Robust MPC

• 4. Safe Model-based RL
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Outline

• Definitions of Safety and Safe Learning

• Overview of Existing Solutions (& Case Studies)

• Discussion / Open Challenges
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Open Challenges

• Broader class of robots (hybrid dynamics, multi-robot, soft-robot, ...)

• Scalability & Sampling/Computational Efficiency

• Imperfect State Measurements

• Verification of Safety-Related Assumptions

• Automatic Inference about What is Safe
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Discussion

• What about other learning problems?
• Learning planners that output waypoints/trajectories (rather than a policy that outputs

one action)?
• Using humans as input (e.g., through language)?
• Including perception (e.g., y 7→ u)
• We discussed Safe RL and safe dynamics learning; What would Safe Imitation

Learning be? What would Safe Inverse RL be?

• How would you safely learn how to fly from scratch?
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Conclusion

• Three Safety Levels: soft constraints, chance constraints, hard constraints

• Safety filters can be easily used, but are difficult to design for uncertain dynamics

• Encouraging safety has other advantages (e.g., sim-to-real transfer)

• Many practical challenges remain, especially for full robotic solutions
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