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Safety

What might “safety” refer to in safe learning?
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Motivation

Model-driven approaches Data-driven approaches Combined approaches

Safe

~ -

t Model

Only a small part of the world
can be accurately modeled.
There is a clear boundary
between what can be
accurately modeled (and is
safe) and what cannot be
accurately modeled (and is

unsafe).
Unsafe

Generalizable and safe within defined

Benefits Strong guarantees within specific contexts Highly generalizable to new contexts e

Challenges Generalization to new contexts Providing hard guarantees Safely and efuﬁrzl:li(irmnesxploring the

L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning.
5:411-444.

URL: https://www.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211, doi:10.1146/annurev-control-042920-020211
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Outline

¢ Definitions of Safety and Safe Learning
e Overview of Existing Solutions (& Case Studies)

e Discussion / Open Challenges
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instructions/lang./goal info g

What is learned?

state controls
z ut
rewards 74 waypoints/subgoals @
value V (x) vaypoints/subgoals o1, i
ectory
Q-value Q(x, ) observations Jectory Tt v+ ]
ot action plan ay. 5
constraint ¢(x) U

e Consider policy 7 : z; — uy
e Safety means (intuitively) that if we rollout = (z¢+1 = f(z¢, 7(z¢)) Vt), we never end up
in a “bad” state (e.g., collision, crash, stability/tracking) for “valid” start states z
¢ In some cases, safety should apply while learning as well
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Definition of Safety (1)

e Dynamics 241 = fi(zk, g, wy,)
o 15 € X (state)
e u; € U (action)
e w; ~ W (process noise)
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Definition of Safety (1)

e Dynamics 241 = fi(zk, g, wy,)
o 15 € X (state)
e u; € U (action)
e w; ~ W (process noise)
e Why f, and not f?
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Definition of Safety (1)

e Dynamics zy11 = fi(@k, ug, wy)

o 15 € X (state)

e u; € U (action)

e w; ~ W (process noise)

e Why f; and not f?
o Objective J(zo.n, uo:n—1) = In(zn) + S0 g U (n, up)
e Safety constraints

e State constraints (e.g., no collisions)
e Input constraints (e.g., actuation limits)
e Stability guarantees (e.g., robot converging to desired reference path)
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Definition of Safety (2)

Soft constraints Probabilistic constraints Hard constraints
Safety level | Safety level Il Safety level Il

Possible No violations No
minimal with high violations
violations probability

Distribution

of possible Path
pathsthe — traversed by —

robot could the robot
traverse

I5 Brunke M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning.

UHL https //wwv.annualreviews.org/content/journals/10.1146/annurev-control-042920-020211, doi:10.1146/annurev-control-042920-020211
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Definition of Safety (3)

e Hard constraints (safety level 3)

c,i(xk,uk,wk)go Vk Vj

e Chance constraints (safety level 2)

Pr(c)(z, up,wy) <0) =9/ Yk Vi ple[o,]]

e Soft constraints (safety level 1)

cjk(mk,uk,wk) <e¢ VEk Vj
l.(e) > 0 (Cost function term)

Learning and Intelligent Systems Lab, TU Berlin
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Definition of Safe (Control) Learning

Safe Robot Control Problem

min J(X0:n, U0:N—1) + le(€)
TO:N—1,€

st. Xpp1 = (X, up, Wi), Wi ~ W, Vk € {0,...,N — 1},

hard, probablistic, or soft safety constraints c,

X0 = Xo, Each component may be

up = 71-,‘.()(,‘.) unknown or partially known!

Safe Learning Control (SLC) Design

SLC : (P, D) — my

Prior Knowledge —I L Data
P=tT freY D = {x,u®, c®, }i=D

Learning and Intelligent Systems Lab, TU Berlin

Dynamics "\ 3, Safety Constraints ¢
Uncertainty >
P 2.Task J
/ (e.g. following a desired path)

/C 1. System Model f
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Relationship to (Classic) Controls

e Robust control

e Assume disturbance bounds known

e Find fixed controller that works even in the worst-case
e Adaptive controls

e Assume environment has varying parameters © (not directly observed)
e Controller changes online (e.g., by estimating ©)

e Tube-based Model Predictive Control (MPC)

e Robust control in MPC framework: use tighter constraints to account for unmodeled
dynamics

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 10/36



Relationship to (Classic) Controls

Control Approach
Hard Constraint

Satisfaction prior model

(Safety Level I / ~ (possibly with
/ bounded
x model

z uncertainties)
Probabilistic
Constraint + MPC
Satisfaction adaptive control
(Safety Level Il) robust control

Increasing Safety
Guarantees

Soft Constraint
Satisfaction
(Safety Level I)

No Guarantees

Known Imperfect Knowledge of the Dynamics Mode! Unknown
Dynamics (Increasing Unstructuredness of the Problem) Dynamics

Learning and Intelligent Systems Lab, TU Berlin
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Relationship to (Classic) RL

Control Approach
Hard Constraint

Satisfaction prior model

(Safety Level ) / - (possibly with
/ bounded
model

uncertainties)
Probabilistic
Constraint « MPC
Satisfaction * adaptive control
(Safety Level Il) * robust control

Soft Constraint
Satisfaction
(Safety Level |)

Increasing Safety
Guarantees

. data data collected
/TN from interacting
N with the
environment
Known Imperfect Knowledge of the Dynamics Model Unknown

4 ! RL Approach
Dynamics (Increasing Unstructuredness of the Problem) Dynamics PP

No Guarantees

Learning and Intelligent Systems Lab, TU Berlin
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Outline

¢ Definitions of Safety and Safe Learning
e Overview of Existing Solutions (& Case Studies)

e Discussion / Open Challenges
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Existing Solution Strategies

(i) Safely Learn Uncertain Dynamics
(i) RL that Encourages Safety and Robustness
(iii) Safety Certification

[Online Adaption/Learning (dynamics, cost function, constraints, control parameters) vs Offline (update in batches)]

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 14/36



Existing Solution Strategies

Increasing safety
guarantees

Hard constraint

satisfaction

(safety level Ill) Expressive model with

strong safety guarantees
]

Probabilistic
constraint
satisfaction
(safety level Il)

Soft constraint

satisfaction
(safety level I)
_________ r-
No
guarantees
Increasing
reliance
Known Prior linear  Prior control- Prior structured Prior generic ~ Unknown on data
dynamics dynamics affine nonlinear nonlinear dynamics
dynamics dynamics dynamics

Imperfect prior knowledge/model
(i.e., dynamics uncertainty)

L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning.

5:41 4., .
Leaminqmd]mﬁgsw%ﬁanmhﬂé&éiﬁs .org/content/journals/10.1146/annurev- control-042920-020211, doi:10.1146/annurev-control-042920-0%afe Learnin g—15 /36
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Strategy lll: Safety Certification: Constraint Set

e Keyidea

e Learn policy “as usual”

e At runtime, apply a safe action usae = argmin,, |u — wjearned|® sUch that = is safe
e Safe states can be computed by

e Control Barrier Functions (CBFs)
e Hamilton-Jacobi Reachability Analysis

e Predictive safety filters
[keep track of safe control inputs that could steer back to a known safe state]

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 16/36



Strategy lll: Safety Certification: Constraint Set

e More Advanced

o If safety layer is differentiable — end-to-end training (e.g. [7])
e Learn safety filters directly

K. P. Wabersich, A. J. Taiy
and Predictive Methods for Uncertain Systems.
43(5):137-177.

Data-Driven Safety Filters

HAMILTON-JACOBI REACHABILITY, CONTROL BARRIER FUNCTIONS,
AND PREDICTIVE METHODS FOR UNCERTAIN SYSTEMS

KIH P WABERSICHO. ANDREW/ J. TAYLOR, JASON J. CHOL
KOUSHIL SREENATH, GLAIRE J. TOMLIN, AARON D. AES,
and MELANIE N, ZEILINGER.

URL: https://ieeexplore.ieee.org/document/10266799/, doi:10.1109/MCS.2023.3291885

Learning and Intelligent Systems Lab, TU Berlin

lor, J. J. Choi, K. Sreenath, C. J. Tomlin, A. D. Ames, and M. N. Zeilinger. Data-Driven Safety Filters: Hamilton-Jacobi Reachability, Control Barrier Functions,
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Strategy lll: Safety Certification: Stability

e Stability: (informal) Can the robot track the reference, even with (small)
disturbances? [Formal proofs via Lyapanov functions or contraction theory]

e Typical assumptions:
e Bounded disturbance

e Bounded change in disturbance (Lipschitz continuous with known Lipschitz bound)
e Unbounded control authority

e Lipschitz-based: Treat neural network as “disturbance”; limit magnitude and
Lipschitz bound during training (Spectral Normalization) (e.g., [8])

e Region of Attraction: Lyapunov Neural Networks [6]

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 18/36



Case Study: Neural Lander (based on slides from Shi)

| M@ +C@.9i+g@ =u+/(q,00) ]

U f(qg,q,u) is the unknown aerodynamics depending on 1
O Idea: use a DNN f (g, g, 1) to approximate f (g, g, 1)
O Q: How to guarantee stability?

,
ol T

much harder to
model!

and symbolic

Neural-Lander
[Shi et al., ICRA'19]

Video: https://youtu.be/FLLsGOS781ik

Learning and Intelligent Systems Lab, TU Berlin
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Case Study: Neural Lander (based on slides from Shi)

U Do we have to constraint the DNN? Yes! If we don’t:

Learning perspective: / can not generalize

=)
N

training set

Lipschitz constrained

2D heatmaps of
the learned |

Learning and Intelligent Systems Lab, TU Berlin

‘ Control perspective: closed-loop instability

height

ining set
in

w/o constraint
2.0

1.5

1.0

0.5

0.0

—0.5

faz (N)
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Strategy ll: RL that Encourages Safety and Robustness

e 1. Safe Exploration and Optimization

e 2. Risk-averse RL and uncertainty-aware RL
e 3. RL for Constrained MDPs (CMDPs)

¢ 4. RL for Robust MDPs

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 21/36



Strategy II: RL that Encourages Safety: Safe Exploration

e Safe Exploration: only allow the policy to explore safe states

Safe Exploration in Markov Decision Processes

Teodor Mihai Moldovan S.BERKELEY.EDU
Pieter Abbeel PABBEEL@CS.BERKELEY.EDU

University of California at Berkeley, CA 94720-1758, USA

Figure 1. Starting from state S, the policy (aababab. ..) is
safe at a safety level of .8. However, the policy (accce.. )
is not safe since it will end up in the sink state E with
probability 1. State-action Sa and state B can neither be
considered safe nor unsafe, since both policies use them.

T. M. Moldovan and P. Abbeel. Safe exploration in Markov decision processes.

In Proceedings of the 29th International Coference on International Conference on Machine Learning, ICML'12, pages 1451-1458. Omnipress
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Strategy Il: RL that Encourages Safety: Safe Exploration

e Safe Exploration: only allow the policy to explore safe states

Sl ot

(a) Based on the available infor-
mation after the first step, moving
South-West is unsafe.

(b) The safe explorer successfully
uncovers all of the map by avoiding
irreversible actions.

(¢c) The adapted R-max explorer
gets stuck before observing the en-
tire map.

T. M. Moldovan and P. Abbeel. Safe exploration in Markov decision processes.

In Proceedings of the 29th International Coference on International Conference on Machine Learning, ICML’'12, pages 1451-1458. Omnipress

Learning and Intelligent Systems Lab, TU Berlin
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Strategy Il: RL that Encourages Safety: Safe Exploration

¢ Safe Optimization: Minimize cost function without sampling inputs that violate
safety constraints, e.g., SafeOpt [1]

Pertormance J(a)

Inputs a Inputs a Inputs a

(a) Initial, safe parameters. (b) After 5 evaluations: local maximum found.  (c¢) After 13 evaluations: global maximum found.

Safe set 8, (red): Could be potential maximizers M,, (green) or expanders G,
(magenta)

Learning and Intelligent Systems Lab, TU Berlin
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Case Study: SafeOpt

Algorithm 1: Modified SAFEOPT algorithm

Inputs: Domain A

Safe threshold J.,in

GP prior (k(a;,a;), 02)

Initial, safe controller parameters ag
1 Initialize GP with (ag, .J(a0))
2forn=1,... do
3 S, {acA|l, = Jun}
4 M, «— {aeS8, | u,(a) > maxa l,(a')}
5 G,+{ac8,| g.(a) >0}
6 a, « argmax, g i, Wn(a)
. t
8
9

Obtain measurement J(a,) + J(a,) + w,

Update GP with (a,, J(ay))
end

Learning and Intelligent Systems Lab, TU Berlin

e Update sets using GPs

e From the union of safe potential
maximizers or expanders, measure
where the uncertainty is highest
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Case Study: SafeOpt

Application: Safe controller gain tuning

Controller Gain k>

06 —05 —04 —03 —02 —0.1 0.0
Controller Gain k;

Video: https://youtu.be/GigNQdzc5TI

" Leaming and Intelligent Systems Lab, TU Berlin
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Performance
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Strategy II: RL that Encourages Safety: Safe Exploration

e Learning a safety critic: learn a Q-function that predicts “safety”, e.g., [9]

Pretrain Q) iy Online RL
Diiflive Execute Recovery Policy
St Query a; ~ Tk (:[81)  Evaluate Safety,
(unsafe)
> Erisk

!

=
Qg isk

Execute Task Policy

Ay - el
Q{J_ris.k{.'-.) {Sc’.‘;lE)]

Recovery RL: For intuition, we illustrate Recovery RL on a 2D maze navigation task where a constraint violation corresponds to hitting a wall. ]

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 27/36



Strategy II: RL that Encourages Safety: Risk-averse RL

e Learn/estimate risks (e.g., probability of a collision)
e At runtime, prefer actions with low risk (e.g., MPC planner)

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 28/36



Case Study: Agile But Safe [3]

(i) Stage 1: Policy training. (a) Training
Ground Truth

(b) Deployment

Joint Targets

Proprioception Joint Targets

Exteroception Agile
Navigation Policy Recovery PD Controller
Command RL Optimizer Policy SiiEL

\ - :
) |
Twist Joint Targets k “ Twist .
Command ~7 ( ‘omman
Proprioception RL Optimizer

V< Vihreshold V > Vinreshold Online

Search for

s0Hz 50Hz

Reach/ z
igati i Safe Twist
Twist - orioception Exteroception  Failure/
Command Command PHOCER P! ) Safe
+

v s0H;
I
[

Navigation Proprioception  Exteroception

Command
State Ray-Prediction
Estimator Network o,

( Robot )

Agile Reach-Avoi Train Reach-Avoid
Policy Dataset Value Network
Rollout
i —— L
Perception Train Ray-Prediction
Dataset Network
A
N
) —

Web: https://agile-but-safe.github.io/

[ Reach-Avoid Value Network
[

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
'
i
(ii) Stage 2: Network training from agile policy rollout data. !
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
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Strategy II: RL that Encourages Safety: RL for CMDPs

“However, most of the work in this area remains confined to naive simulated tasks,
motivating further research on their applicability in real-world control.”

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 30/36



Strategy Il: RL that Encourages Safety: RL for Robust MDPs

e Robust Adversarial RL [5]

HalfCheetah

E e Train two policies: a robust policy and
a destabilizing adversary (that can

apply random forces on the robot)
e Trained iteratively

e Domain Randomlzatlon

Safe Learning — 31/36
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Strategy I: Safely Learn Uncertain Dynamics

e 1. Learning Adapative Control
e 2. Learning Robust Control

e 3. Learning Robust MPC

e 4. Safe Model-based RL

Learning and Intelligent Systems Lab, TU Berlin
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Outline

e Definitions of Safety and Safe Learning
e Overview of Existing Solutions (& Case Studies)

¢ Discussion / Open Challenges
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Open Challenges

Broader class of robots (hybrid dynamics, multi-robot, soft-robot, ...)

Scalability & Sampling/Computational Efficiency

Imperfect State Measurements
Verification of Safety-Related Assumptions

Automatic Inference about What is Safe

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 34/36



Discussion

e What about other learning problems?
e Learning planners that output waypoints/trajectories (rather than a policy that outputs
one action)?
e Using humans as input (e.g., through language)?
¢ Including perception (e.g., y — u)
e We discussed Safe RL and safe dynamics learning; What would Safe Imitation
Learning be? What would Safe Inverse RL be?

e How would you safely learn how to fly from scratch?

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 35/36



Conclusion

Three Safety Levels: soft constraints, chance constraints, hard constraints

Safety filters can be easily used, but are difficult to design for uncertain dynamics

Encouraging safety has other advantages (e.g., sim-to-real transfer)

Many practical challenges remain, especially for full robotic solutions

Learning and Intelligent Systems Lab, TU Berlin Safe Learning — 36/36
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