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Remaining Lectures

• June 25: TAMP & Language

• July 2: Multi-Robot Learning

• July 9: Robot Learning Discussion – Lecture Feedback – Exam Info
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Outline

• Background on Task and Motion Planning (TAMP)

• Learning in TAMP

• Language in Robotics

• LLMs & TAMP
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Task and Motion Planning (TAMP) examples:

◦
Mordatch et al: CIO (SIGGRAPH’12)

◦
Garrett et al: PDDLStream (ICAPS’20)

◦
Toussaint at al: LGP (RSS’18)

◦
Hartmann et al. (IROS 20)
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Task and Motion Planning (TAMP)

• What is the right level of “abstraction” to reason about manipulation?

– Low-level motor commands? (Torques?)
– Mid-level kinematic commands? (6D endeff target position/velocity)
– Actions/skills? (Pick, place, push, throw, hit, how long is the list?)
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Abstractions

• What does the AI/RL researcher say about abstractions?
– Hierarchical MDPs, Options, Hierarchical RL
– (Classical AI: Landmarks in A* search)
– Abstraction learning is hard:

– Given action primitives → state abstractions clear (Konidaris’ work)
– Given state abstractions → action primitives clear (“skill discovery”)
– Classical ideas for state abstractions: identifying bottlenecks (=doors in configuration space;

McGovern, Barto 2001)

– Modern view: Data-driven: Assume tons of demonstrations and cluster-segment them

• What does the Roboticist say about abstractions?
– Force level, motion level, task level
– Task level: discrete symbolic state and actions (STRIPS/PDDL)
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STRIPS/PDDL

– A symbolic state st is a set of grounded literals
– A symbolic action operators defines a precondition and effect
– Eventually, his defines the set of possible successor states st+1 ∈ succ(st)
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Task and Motion Planning

• Task-level is defined by
– symbols (predicates), objects (constants), and action operators
– initial state s0, goal sentence, action operators imply succ(st)

• Motion-level is defined by
– world configuration space X, goal configurations Xgoal ⊆ X

– feasible space Xs,θ ⊆ X depending on logic state s and entry point θ (action parameter)
[Xs,θ is called foliation, or multi-modal space → multi-modal motion planning (MMMP)]

• Path-Finding formulation of TAMP:
– Find sequence of (si, τi) of symbolic states and continuous feasible paths τi that lead to goal:
– Paths: τi : [0, 1] → Xsi,θi

– Continuity: τi(0) = τi-1(1)

– Entry points: θi = τi-1(1) (e.g. action parameter, grasp, lower-dim feature of τi-1(1))
– Goal: sK |= goal, τK(1) ∈ Xgoal

C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez. Integrated Task and Motion Planning.
Annual Review of Control, Robotics, and Autonomous Systems, 4(1):265–293, 2021-05-03.
URL: https://www.annualreviews.org/delete_doi/10.1146/annurev-control-091420-084139
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TAMP as Logic-Geometric Program (LGP)

min
s1:K

x:[0,KT ]→X

∫ KT

0
c(x(t)) dt

s.t. x(0) = x0,

∀t∈[0,T ] : ϕ̄(x(t), sk(t)) ≤ 0

∀k∈{1,..,K} : ϕ̂(x(tk), sk-1, sk) ≤ 0

sK |= goal, ∀k∈{1,..,K} : sk ∈ succ(sk-1)

• Skeleton s1:K defines schedule of physical modes

• Constraints ϕ̂, ϕ̄ define correct physics differentiable
[inequalities subsume equalities; x = (x, ẋ, ẍ)]

S
ke

le
to

n

Constraints
NLP

PDDL
Logic

feasible
skeletons

feasible
geometry/
kin/physics

infeasible subgraphs -> skeleton parts -> actions
A* heuristics from NLP bounds & geometry

• Solving implies searching over s1:K
and solving the corresponding NLP

M. Toussaint. Logic-Geometric Programming: An Optimization-Based Approach to Combined Task and Motion Planning.
In IJCAI, pages 1930–1936, 2015.
URL: https://argmin.lis.tu-berlin.de/papers/15-toussaint-IJCAI.pdf

M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and stable modes for tool-use and manipulation planning.
2018.
URL: https://dspace.mit.edu/handle/1721.1/126626
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renderings of example solutions...

◦
(R:SS 18)

◦

◦
(IROS 20)

◦
(IROS 20)

◦
(R:SS 20)

◦
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Abstractions

• What does “LGP” say about abstractions?

– There are two levels: the convex level (NLP), and the non-convex (discrete decisions)
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Outline

• Intro to Task and Motion Planning (TAMP)

• Learning in TAMP

• Language in Robotics

• LLMs & TAMP
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Is model-based TAMP a dead end?

• LGP formulates TAMP as model-based optimization problem
– Assumption of having a world model is unrealistic (state estimation from vision ill-posed...)
– High computation time for large problems – why plan from scratch every time?

• Opportunities for learning:
– Replace exact model by learned constraints ϕ(x)

– The LGP definition actually only needs constraints ϕ(x), no explicit world model
– Instead of hand-defining these from a model → image-conditional neural models ϕθ(x; I)

– Learn to predict plans
– Instead of solving from scratch, learn to predict promising actions a1:K from the scene image
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• Replace exact model by learned constraints ϕ(x):
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• Learn ϕ(x, I) with V input images I s.t.:
– ϕ(x; I) = 0 ⇔ x is correct grasp
– ϕ(x; I) = 0 ⇔ x is correct hanging

• Data generating in simulation:
– Collect trial-and-error data on correct

grasps and hanging

J.-S. Ha, D. Driess, and M. Toussaint. Deep visual constraints: Neural implicit models for manipulation planning from visual input.
IEEE Robotics and Automation Letters, 7(4):10857–10864, 2022.
URL: https://ieeexplore.ieee.org/abstract/document/9844753/
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Deep Visual Constraints: Network Architecture

J.-S. Ha, D. Driess, and M. Toussaint. Deep visual constraints: Neural implicit
models for manipulation planning from visual input.
IEEE Robotics and Automation Letters, 7(4):10857–10864, 2022.
URL: https://ieeexplore.ieee.org/abstract/document/9844753/

• Camera views I = {(I1,K1), ..., (IV ,KV )}
Wanted: image-based constraint model

ϕ(x; I)

• First train a d-dimensional field representation
y(p; I) = 1

V

∑
i MLP(UNet(Ii,Ki(x)),Ki(x))

[p ∈ R3, pre-trained for shape decoding (SDF prediction)]

• Function is queried at finite set of interaction
points p1(x), .., pK(x) to get the feature

ϕ(x; I) = MLP(y(p1(x); I), .., y(pK(x); I))

[fine-tuned for manipulation success (trial & error in sim)]
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Deep Visual Constraints

(No search over skeletons, no reactive MPC, just optimal path for given sequence of constraints.)

◦
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Similar: Learn Dynamics Constraints

D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint. Learning multi-object dynamics
with compositional neural radiance fields.
In Conference on Robot Learning, pages 1755–1768, 2023.
URL: https://proceedings.mlr.press/v205/driess23a.html

https://dannydriess.github.io/compnerfdyn/

• Each object has a latent code zti

• learn dynamics zt1:m 7→ zt+1
i !
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• Learning to predict plans..
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D. Driess, J.-S. Ha, and M. Toussaint. Deep Visual Reasoning: Learning to Predict Action Se-
quences for Task and Motion Planning from an Initial Scene Image, 2020-06-09.
URL: http://arxiv.org/abs/2006.05398, patharXiv:2006.05398

• Data collection D = {
(
Si, gi, ai1:Ki , F i

)
}ni=1

– with scene Si, goal gi, actions ai
1:Ki , feasi-

bility F i

– random generated “in simulation”, model-
based TAMP solver used to label feasi-
bility

• Train a sequential policy:
π(ak; g, a1:k-1, S)

P (∃K>K∃ak+1:K : a1:K feasible | ak, g, a1:k-1, S)

– Similar to language model: Predict next “to-
ken” ak given previous a1:k-1 conditional g, S
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Deep Visual Reasoning: Network Architecture

• Uses RNN – modern version would use transformer

• Special encoding of predicates ā, ḡ and references O (as masks)
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Deep Visual Reasoning: Results

◦

• Often, the first proposed action sequence is feasible
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Outline

• Intro to Task and Motion Planning (TAMP)

• Learning in TAMP

• Language in Robotics

• LLMs & TAMP
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S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek. Robots That Use Language.
Annual Review of Control, Robotics, and Autonomous Systems, 3(1):25–55, 2020-05-
03.
URL: https://www.annualreviews.org/delete_doi/10.1146/
annurev-control-101119-071628

• Great survey on Natural Language Robot
Interaction

– Using natural language to command robots,
set tasks

– Using natural language to instruct robots,
e.g. as part of demonstrations

– Different to standard NLP or dialog sys-
tems: language needs to be physically
grounded
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Natural Language Robot Interaction: Examples

from [9]

• robot asks for help

• human sets task (with language & gesture)

• robot “reads/comprehends” wikihow

• demonstrations via dialog

• human sets task (nagivation)

• ...

• human sets task (object identification)

• human sets task (navigation)

• human sets task (manipulation)
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Natural Language Robot Interaction: Datasets

“Data sets typically consist of natural lan-
guage paired with some form of sensor-
based context information about the phys-
ical environment”
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• Previous survey highlights substantial literature on Natural Language Robot Interaction
before rise of LLMs

Example: https://youtu.be/VqSb-ZZuIwI?t=2523
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CLIP (Contrastive Language-Image Pre-training)

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,

P. Mishkin, and J. Clark. Learning transferable visual models from natural language
supervision.
In International Conference on Machine Learning, pages 8748–8763, 2021.
URL: http://proceedings.mlr.press/v139/radford21a

“We demonstrate that the simple pre-training task of
predict- ing which caption goes with which image is an
efficient and scalable way to learn SOTA image rep-
resentations from scratch on a dataset of 400 million
(image, text) pairs collected from the internet.”

[Contrastive Training: “maximize the cosine similarity of the image and text embeddings of the N real pairs in the batch while
minimizing the cosine similarity of the embeddings of the N2 − N incorrect pairings.]
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CLIPort

M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic
manipulation.
In Conference on Robot Learning, pages 894–906, 2022.
URL: https://proceedings.mlr.press/v164/shridhar22a.html

https://cliport.github.io/

“CLIPort: a language-conditioned imitation-learning
agent that combines the broad semantic understand-
ing (what) of CLIP with the spatial precision (where) of
Transporter”

• Trains a policy π : (yi, ll) 7→ at
– top-down orthographic RGB-D yt, language instruction lt, pick-n-place 2D coordinates at
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SayCan

Do As I Can, Not As I Say: Grounding
Language in Robotic Affordances

A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan,

E. Jang, and R. Julian. Do as i can, not as i say: Grounding language in robotic affor-
dances.
In Conference on Robot Learning, pages 287–318, 2023.
URL: https://proceedings.mlr.press/v205/ichter23a.html

https://say-can.github.io/

• Use a LLM (PaLM) to predict multiple actions (with probabilities)

• Multiply each option with affordance prediction (= probability of success)
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PaLM-E

D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tomp-
son, Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine,
V. Vanhoucke, K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Flo-

rence. PaLM-E: An Embodied Multimodal Language Model, 2023-03-06.
URL: http://arxiv.org/abs/2303.03378, patharXiv:2303.03378

https://palm-e.github.io/

• Input: Multi-modal sentence:
– Interleaves words, images (with segmenta-

tion), vectors, reference-keywords
– All token-encoded
– Various image encodings (ViT, object-

centric ViT, OSRT, NeRFs pre-trained)

• Output:
– Sequences of action primitives (previously

trained, RT-1)
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◦
“Bring me the rice chips from the drawer”

◦
“Bring me the green star”

◦
“Push red blocks to the coffee cup”

◦
“Push green blocks to the turtle”
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Example input/output

• Prompt: Given <img>. Q: How to grasp the green object?.

Target: A: First grasp the orange object and place it on the table, then

grasp the green object.

• Prompt: Given <img>. Q: How to stack the white object on top of the red

object?.

Target: A: First grasp the green object and place it on the table, then grasp

the white object and place it on the red object.
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PaLM-E Evaluations

• Data sets:
– TAMP data (generated by our LGP-TAMP planner)
– Table data (previous RT1 paper)
– SayCan data
– Other visual/language data: WebLI, VQA, COCO, etc.

• Pre-taining:
– LLM backbone: language, VQA (WebLI, VQA, COCO)
– Encodings: reconstruction, auto-encoding

• Ablation studies:
– Varying transformer sizes
– generalization (to unseen object situations, esp. higher number of objects)
– freezing, refining, full-learning of backbone LLM or encodings
– with full/partial choice of data sets & sizes
– various image encodings
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PaLM-E evaluations
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Follow Up: RT-2

B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, and

A. Wahid. Rt-2: Vision-language-action models transfer web knowledge to robotic con-
trol.
In Conference on Robot Learning, pages 2165–2183, 2023.
URL: https://proceedings.mlr.press/v229/zitkovich23a.html • quasi-continuous actions (trained end-to-end):
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Conclusion

• Levels of abstraction: Force, motion, task

• Task and Motion “Planning”: Core problem formulation of robotic AI
– TAMP theory & solvers are fully model-based
– Clear opportunities for learning: constraint learning, learning to predict plans

• Language ↔ task & action level
– Lots of classical literature on language grounding
– Connecting natural language with typical robot task descriptions (STRIPS/PDDL)

• Huge recent focus on marrying LLMs + TAMP + robotics
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