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Remaining Lectures

e June 25: TAMP & Language
e July 2: Multi-Robot Learning
¢ July 9: Robot Learning Discussion — Lecture Feedback — Exam Info

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 2/37



Outline

Background on Task and Motion Planning (TAMP)
Learning in TAMP

Language in Robotics

LLMs & TAMP
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Task and Motion Planning (TAMP) examples:

()

(4) Pavilion: 8 Agents, 113 Parts, 339 actions.
Garrett et al: PDDLStream (ICAPS’20)
Hartmann et al. (IROS 20)

i Leamingand Intelligent Systems Lab, TU Berlin TAMP' & Language — 4/37



Task and Motion Planning (TAMP)

e What is the right level of “abstraction” to reason about manipulation?

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 5/37



Task and Motion Planning (TAMP)

e What is the right level of “abstraction” to reason about manipulation?
— Low-level motor commands? (Torques?)
— Mid-level kinematic commands? (6D endeff target position/velocity)
— Actions/skills? (Pick, place, push, throw, hit, how long is the list?)

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 5/37



Abstractions

e What does the Al/RL researcher say about abstractions?
— Hierarchical MDPs, Options, Hierarchical RL
— (Classical Al: Landmarks in A* search)
— Abstraction learning is hard:
— Given action primitives — state abstractions clear (Konidaris’ work)
— Given state abstractions — action primitives clear (“skill discovery”)

— Classical ideas for state abstractions: identifying bottlenecks (=doors in configuration space;
McGovern, Barto 2001)

— Modern view: Data-driven: Assume tons of demonstrations and cluster-segment them

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 6/37



Abstractions

e What does the Al/RL researcher say about abstractions?
— Hierarchical MDPs, Options, Hierarchical RL
— (Classical Al: Landmarks in A* search)
— Abstraction learning is hard:
— Given action primitives — state abstractions clear (Konidaris’ work)
— Given state abstractions — action primitives clear (“skill discovery”)

— Classical ideas for state abstractions: identifying bottlenecks (=doors in configuration space;
McGovern, Barto 2001)

— Modern view: Data-driven: Assume tons of demonstrations and cluster-segment them

e What does the Roboticist say about abstractions?
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Abstractions

e What does the Al/RL researcher say about abstractions?
— Hierarchical MDPs, Options, Hierarchical RL
— (Classical Al: Landmarks in A* search)
— Abstraction learning is hard:
— Given action primitives — state abstractions clear (Konidaris’ work)
— Given state abstractions — action primitives clear (“skill discovery”)

— Classical ideas for state abstractions: identifying bottlenecks (=doors in configuration space;
McGovern, Barto 2001)

— Modern view: Data-driven: Assume tons of demonstrations and cluster-segment them

e What does the Roboticist say about abstractions?
— Force level, motion level, task level
— Task level: discrete symbolic state and actions (STRIPS/PDDL)

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 6/37



STRIPS/PDDL

bedroom

(:action move
:parameters (?r ?locl ?loc2)

:precondition (and (Robot 7r)
(Location ?locl)

(Location 7loc2)
(At 7r ?locl))

:effect (and (At ?r ?loc2)
(not (At ?r ?locl)))

(At robot shelf)
(At apple shelf)
(At banana shelf)

(HandEmpty robot)
Move (shelf, table) Pick (banana, shelf)
Move(shelf, Pick(apple,
desk) shelf)
(At robot table) (At robot desk) (At robot shelf) (At robot shelf)
(At apple shelf) (At banana shelf) (At apple shelf)
(Holding robot apple) (Holding robot banana)

(At apple shelf)
(At banana shelf) (At banana shelf)
(HandEmpty robot) (HandEmpty rcbot)
— A symbolic state s; is a set of grounded literals
— A symbolic action operators defines a precondition and effect

— Eventually, his defines the set of possible successor states s;+1 € succ(s;)
TAMP & Language — 7/37
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Task and Motion Planning

o Task-level is defined by
— symbols (predicates), objects (constants), and action operators
— initial state so, goal sentence, action operators imply succ(s:)

e Motion-level is defined by
— world configuration space X, goal configurations Xgea € X
— feasible space X9 C X depending on logic state s and entry point 6 (action parameter)

[Xs,6 is called foliation, or multi-modal space — multi-modal motion planning (MMMP)]

e Path-Finding formulation of TAMP:

Find sequence of (s;, ;) of symbolic states and continuous feasible paths 7; that lead to goal:
Paths: 7; : [0,1] — X, .0,

Continuity: 7(0) = 7:.1(1)

Entry points: 6; = 7;.1(1) (e.g. action parameter, grasp, lower-dim feature of 7.1 (1))

— Goal: sk = goal, 7 (1) € Xgoal

C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez. Integrated Task and Motion Planning.
Annual Review of Control, Robotics, and Autonomous Systems, 4(1):265-293, 2021-05-03.

ttps://www.annualre org/delete_doi/10.1146/annurev-control-091420-084139

URL: https://wwu.annualrevieus.org
Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 8/37
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TAMP as Logic-Geometric Program (LGP)

S1K
2:[0, K T]—X

KT
min / c(z(t)) dt
0
s.t. z(0) = =o,
Yecio, 1) A1), spy) <0
Ve, x} @ o@(tr), k-1, 5%) <0

sk = 9goal, Yieq1,. Kk} ¢ Sk € SUCC(sk.1)

e Skeleton s;.x defines schedule of physical modes
e Constraints ¢, ¢ define correct physics differentiable

[inequalities subsume equalities; z = (x, &, )]

M. Toussaint. Logic-Geometric Programming: An Optimization-Based Approach to Combined Task and Motion Planning.
In IJCAI, pages 1930-1936, 2015.

URL: https://argmin.lis.tu-berlin.de/papers/15-toussaint-IJCAI.pdf

M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and stable modes for tool-use and manipulation planning.

ace.mit.edu/handle/1721.1/126626

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 9/37


https://argmin.lis.tu-berlin.de/papers/15-toussaint-IJCAI.pdf
https://dspace.mit.edu/handle/1721.1/126626

TAMP as Logic-Geometric Program (LGP)

feasible
geometry)/
kin/physics

skeletons
Constraints

KT
min / c(z(t)) dt NLP
0

s

1: K
2:[0,KT]—X c
PDDL 2
: ]
Logic E’
w

s.t. z(0) = =o,
Yecio, 1) A1), spy) <0
Ve, x} @ o@(tr), k-1, 5%) <0
sk F=g0al, Yieqn,. Kk} ¢ Sk € SUCC(8k.1)

infeasible subgraphs -> skeleton parts -> actions
A* heuristics from NLP bounds & geometry

e Skeleton s;.x defines schedule of physical modes

e Constraints ¢, ¢ define correct physics differentiable Solving implies searching over si.x
[inequalities subsume equalities; z = (x, &, )] and So]ving the Corresponding NLP

M. Toussaint. Logic-Geometric Programming: An Optimization-Based Approach to Combined Task and Motion Planning.
In IJCAI, pages 1930-1936, 2015.

URL: https://argmin.lis.tu-berlin.de/papers/15-toussaint-IJCAI.pdf

M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and stable modes for tool-use and manipulation planning.

ace.mit.edu/handle/1721.1/126626

TAMP & Language — 9/37
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renderings of example solutions...

_
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Abstractions

e What does “LGP” say about abstractions?

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 11/37



Abstractions

e What does “LGP” say about abstractions?
— There are two levels: the convex level (NLP), and the non-convex (discrete decisions)

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 11/37



Outline

Intro to Task and Motion Planning (TAMP)
Learning in TAMP

Language in Robotics

LLMs & TAMP
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Is model-based TAMP a dead end?

e LGP formulates TAMP as model-based optimization problem
— Assumption of having a world model is unrealistic (state estimation from vision ill-posed...)
— High computation time for large problems — why plan from scratch every time?

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 13/37



Is model-based TAMP a dead end?

e LGP formulates TAMP as model-based optimization problem
— Assumption of having a world model is unrealistic (state estimation from vision ill-posed...)
— High computation time for large problems — why plan from scratch every time?

e Opportunities for learning:
— Replace exact model by learned constraints ¢(z)
— The LGP definition actually only needs constraints ¢(x), no explicit world model
— Instead of hand-defining these from a model — image-conditional neural models ¢ (z;J)
— Learn to predict plans
— Instead of solving from scratch, learn to predict promising actions a:.x from the scene image

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 13/37



¢ Replace exact model by learned constraints ¢(x):

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 14/37



Deep Visual Constraints: Neural Implicit Models
for Manipulation Planning from Visual Input

Jung-Su Ha  Danny Driess Marc Toussaint
Learning & Intelligent Systems Lab, TU Berlin, Germany

(a) No object model (b) See (c) Plan (d) Act
e Learn ¢(z,J) with V inputimages J s.t.. e Data generating in simulation:
- ¢(x;J) =0 < =z is correct grasp — Collect trial-and-error data on correct
- ¢(x;9) =0 & xis correct hanging grasps and hanging

J.-S. Ha, D. Driess, and M. Toussaint. Deep visual constraints: Neural implicit models for manipulation planning from visual input.
IEEE Robotics and Automation Letters, 7(4):10857-10864, 2022.
URL: https://ieeexplore.ieee.org/abstract/document/9844753/

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 15/37
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Deep Visual Constraints: Network Architecture

e Cameraviews J = {(I', KY),...,(IV,K")}
Wanted: image-based constraint model
¢(z;9)

e First train a d-dimensional field representation
y(p:9) = 3 32, MLP(UNet(I*, K*(z)), K*(x))

[p € R3, pre-trained for shape decoding (SDF prediction)]

e Function is queried at finite set of interaction
points p1(x), .., pr () to get the feature

J.-S. Ha, D. Driess, and M. Toussaint. Deep visual constraints: Neural implicit ¢(£L’7 j) = MLP(y(pl (CC) ) j)’ i y(pK (l’), j))

models for manipulation planning from visual input.
IEEE Robotics and Automation Letters, 7(4):10857-10864, 2022. . . . . . .
URL: https://iecexplore. icee /l()tjr/w [fine-tuned for manipulation success (trial & error in sim)]

Fig. 2: The interaction feature prediction scheme of DVC

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 16/37
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Deep Visual Constraints

(No search over skeletons, no reactive MPC, just optimal path for given sequence of constraints.)

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 17/37



reconstruction

for arbitrary views
at any predicted
time-step with
compositional

NeRF decoder

Similar: Learn Dynamics Constraints

latent vectors.

Learning Multi-Object Dynamics with Compositional
Neural Radiance Fields

Mare Toussaint

.mlr.

Danny Driess Zhiao Huang Yunzhu Li Russ Tedrake
TU Berlin UC San Diego MIT MIT TU Berlin
D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint. Learning multi-object dynamics - ;
with compositional neural radiance fields. the el seene
In Conference on Robot Learning, pages 1755-1768, 2023 from multiple views
- N estimate adjacenc estimate adjacency
/dri Jhtml matts A from NeRF matrix A from NeRF
Figure 2: Overview of the dynamics prediction framework. The initial scene observations are encoded with ©
into a set of latent vectors z1.,,,. each representing the objects individually. The GNN dynamics model predicts
the evolution of the latent vectors. At each step, the predicted latent vectors can be rendered into an arbitrary
view with the compositional NeRF decoder. Refer to the appendix for visualizations of 2 and the GNN

//proceedi

URL: https://1
https://dannydriess.github.io/compnerfdyn/

D
e Each object has a latent code 2!
t+1|

i
' e learn dynamics 2%, > z;

a) Bottom row renderings of forward predictions with dynamic model, top row ground truth (b) novel view

TAMP & Language — 18/37
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e Learning to predict plans..

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 19/37



Deep Visual Reasoning: Learning to Predict Action Sequences
for Task and Motion Planning from an Initial Scene Image

Danny Dricss Jung-Su Ha Marc Toussaint H _ T 1 a0 1\ \n
: : u e Data collection D = {(S*,¢*,a’ .;, F*)}!
Machine Learning and Robotics Lab, University of Stuttgart, Germany 1: K
Max-Planck Institute for Intelligent Sysiems, Stuttgart, Germany
Learing and Intelligent Systems Group, TU Berlin, Germany

i=1
. ’L ’L . ’L .
— with scene S°, goal g¢*, actions a ., feasi-

bility £ :
— random generated “in simulation”, model-
based TAMP solver used to label feasi-
- o

(a) initial scene (b) action 1 (grasp) (c) action 2 (place) blllty

g‘

[ S L
(d) action 3 (grasp) (e) action 4 (grasp) (f) action 5 (place)

e Train a sequential policy:
m(ax; g, a1:k-1,S)

Fig. 1. Typical scene: The yellow object should be placed on the red spot, P(3K>K3ak+1:K : al:KfeaSlble ‘ Ak> 9, A1:k-1, S)
which is, however, occupied by the blue object. Furthermore, the yellow object . . “
cannot be reached by the fobot arm that i able to place it on the red spot. — Similar to language model: Predict next “to-

ken” ay, given previous a1.x1 conditional g, S

D. Driess, J.-S. Ha, and M. Toussaint. Deep Visual Reasoning: Learning to Predict Action Se-
quences for Task and Motion Planning from an Initial Scene Image, 2020-06-09.
URL: http://arxiv.org/abs/2006.05398, patharXiv:2006.05398

Learning and Intelligent Systems Lab, TU Berlin
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Deep Visual Reasoning: Network Architecture

depth image depth image

object mask target object mask

image I(Ok, S) CNN

[ Action-object Hobjcct—imngc

empty channel table mask

image 1 (Og~ S) CNN (a) Initial scene (b) Action-object image for grasp () Action-object image for place (d) Goal- and action-object image
action with the left robot arm and  action with the left robot arm (for place action) representing
. ) the blue object that occupies the  representing placing the blue placing the yellow target object on
Figure 3. Proposed neural network architecture. red goal location object on the table the red goal location

[ Goal-object Hobjecl—image

e Uses RNN — modern version would use transformer
e Special encoding of predicates a, g and references O (as masks)

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 21/37



Deep Visual Reasoning: Results

z 7 ] & sl ]
£ o6t g ERds g
5 5 1 1
. . . . s 4t B S5F b
Generalization to Multiple Objects £ ] 54t ]
i g ol i 5 3F R
One can add more objects El = I:E[I | E 2f |:_[| B
to the scene and still g o= | 21— — 1
the first action sequence - 2 3 4 5 6 2 3 4 5 6
that is predicted by the Action sequence Iengl.h Action sequence length
network is feasible _ Deep Visual Reasoning _ LGP Tree Search
: ’ 3,000 F 3 3000 F 3
although it has B B
never seen more than two 2 ol ] = ol ]
objects during training H H
(the colors are just for 2 1o} i 2 Lo}
visualization purposes e ]
purposes) R I Enri_ég}[, |
Number of solved NLPs: 1 = 2 3 4 5 6 = 2 3 4 5 6
Total solution time: 1.0 s o Action sequence length Action sequence length

e Often, the first proposed action sequence is feasible

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 22/37



Outline

Intro to Task and Motion Planning (TAMP)
Learning in TAMP

Language in Robotics

LLMs & TAMP
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Robots That Use e Great survey on Natural Language Robot

Language: A Survey Interaction
— Using natural language to command robots,

set tasks

— Using natural language to instruct robots,
e.g. as part of demonstrations

— Different to standard NLP or dialog sys-

S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek. Robots That Use Language. . -
Annual Review of Control, Robotics, and Autonomous Systems, 3(1):25-55, 2020-05- tems: Ianguage needs to be phVSIcaIIy

03.
URL: https://waw.annualreviews.org/delete_doi/10.1146/ grounded
annurev-control-101119-071628

Stefanie Tellex!, Nakul Gopalan?, Hadas
Kress-Gazit®, and Cynthia Matuszek*

TAMP & Language — 24/37
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Hand me the |
| | white table leg |

a) Using language to ask
or help with a shared task,
Tellex et al.

b) A Baxter robot learns
da dialog, demonstrations
md performing actions in
he world. Chai et al. (37)

¢) A Jaco arm identifying
bjects from attributes, here
silver, round, and empty.”
Chomason et al. (I79)

(d) The Gambit manipulator
follows multimodal pick-and-
place instructions. Matuszek
et al

(e) A Pioneer AT achieving
goals specified as “Go to the
break room and report the
location of the blue box.”
Dzifeak et al.

(£) CoBot leaming to follow
commands like “Take me to
the meeting room.” Kollar

et al. (93)

(g) TUM-Rosie making pan-
cakes by downloading recipes
from wikihow.com.  Nyga

(h) A socially assistive robot

helping elderly users in per-

forming physical ~exer

Fasola and Matari¢ (
S

s

(i) A Baxter performing a
sorting task synthesized from
language. Boteanu

Figure 1: Robots used for language-based interactions.

from [9]

Learning and Intelligent Systems Lab, TU Berlin

Natural Language Robot Interaction: Examples

robot asks for help

human sets task (with language & gesture)
robot “reads/comprehends” wikihow
demonstrations via dialog

human sets task (nagivation)

human sets task (object identification)

human sets task (navigation)
human sets task (manipulation)

TAMP & Language — 25/37



Natural Language Robot Interaction: Datasets

Dataset | Type of Data | Link to dataset
MARCO dataset Navigation instructions given to a. w8 utexas. edu/
(1o robot to navigate a map, and the route | users/ml/clamp/navigation/
followed.
Scene dataset(98) | Images and descriptions of objet rtw.ml . cau. edu/
the image. tac12013.1sp/
Cornell NLVR Pairs of images and logical statements | lic.nlp.cornell.edu/alve/
dataset, (168) about them which are true or false.
CLEVR dataset Images and question-answer pairs. cs.stanford.edu/people/
1) jejohns/clevr/
Embodied Pairs of questions and answers in sim- | enbodiedqa.org

The agent
arch the environment to

“Data sets typically consist of natural lan-
Yon Anwering. | Tovent siated 30 ensommenter | Srorianapezors guage paired with some form of sensor-
Environments (5) based context information about the phys-

in Interactive
Room-to-Room Panoramic views in real buil

s, bringmeaspoon. org/ . . "
2R) Navigation | paired with instructions to be followed. ical environment

Question
Answering (47)

s
find the an;

H2R lab language | Predicate based sub-goal conditions github. con/2r/
grounding datasets | paired with natural language instruc- | language.datasets

91164] tions.

Cornell Instruction | Data for three separate navigation do- | github.con/clic-1ab/cits
Following mains in 3D environments, containing

Framework instructions paired with trajectorics.

(17l[125)

MIT Spatial Pairs of language command and tra- people.caail.nit.edu/
guage Under- jectories for navigation and mobile stefiel0/slu/

standing da manipulation.

Table 2: Datasets used in Language Grounding and Robotics

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 26/37



e Previous survey highlights substantial literature on Natural Language Robot Interaction
before rise of LLMs

Example: https://youtu.be/VqSb-ZZuIwI?t=2523

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 27/37
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CLIP (Contrastive Language-lmage Pre-training)

“We demonstrate that the simple pre-training task of
predict- ing which caption goes with which image is an
efficient and scalable way to learn SOTA image rep-
resentations from scratch on a dataset of 400 million
(image, text) pairs collected from the internet.”

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford" ! Jong Wook Kim"! Chris Hallacy! Aditya Ramesh! Gabriel Goh! Sandhini Agarwal! (1) Cortrastve pre-taining 2) Create dataset classife from label text
Girish Sastry! Amanda Askell!| Pamela Mishkin' Jack Clark ' Gretchen Krueger! Tlya Sutskever '

o

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, J‘ .{ ‘

P. Mishkin, and J. Clark. Learning transferable visual models from natural language 8) Use for zero-shot preiction v

supervision. moge : e
In International Conference on Machine Learning, pages 8748-8763, 2021. Enender ’ Sl Il ’_, L A P ‘F xS
URL: http://proceedings.mlr.press/vi39/radford21ia

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a lincar classifier to predict
some label, CT trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples, Al test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
arget dataset’s classes

[Contrastive Training: “maximize the cosine similarity of the image and text embeddings of the N real pairs in the batch while
minimizing the cosine similarity of the embeddings of the N2 — N incorrect pairings.]

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 28/37
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CLIPort

CLIPORT: What and Where Pathways
for Robotic Manipulation

< s WL s “CLIPort: a language-conditioned imitation-learning
mshr@cs.washington.edu lmanuelli@nvidia.com fox@cs.washington.edu agent that Comb"‘]es the broad Semantlc understand—
ing (what) of CLIP with the spatial precision (where) of
M. Shridh_ar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic Tl"ansporter"
manipulation.

In Conference on Robot Learning, pages 894-906, 2022.

URL: https://proceedings.mlr.press/v164/shridhar22a.html

https://cliport.github.io/

e Trains a policy 7 : (y;,1;) — ay
— top-down orthographic RGB-D ., language instruction ., pick-n-place 2D coordinates a

Learning and Intelligent Systems Lab, TU Berlin TAMP & Language — 29/37
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SayCan

Instruction Relevance with LLMs Combined Skill Affordances with Value Functions

Find an apple 06

H i‘ N -30 Find a coke 0.6 S - 4
Do As | Can, Not As | Say: Grounding T | % e o
NGO | . roreme o2
table? | 30 Pickupthe coke 0.2
‘

Language in Robotic Affordances , T
1 would: 1 o | i P

| 5 Place the apple
A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, Q’ // 30 Place the coke 041
Value
E. Jang, and R. Julian. Do as i can, not as i say: Grounding language in robotic affor- -10 Goto the table 08 3
LLM Functions
dances. 20 Gotothe counter 0.8

In Conference on Robot Learning, pages 287-318, 2023.

URL: https://proceedings.mlr.press/v205/ichter23a.html
I would: 1. Find an apple, 2.

https://say-can.github.io/ 3
B

e Use a LLM (PaLM) to predict multiple actions (with probabilities)
e Multiply each option with affordance prediction (= probability of success)

TAMP & Language — 30/37
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PaLM-E

Given <emb> ... <img> Q: How to grasp blue block? r lock

7 ViT

PaLM-E: An Embodied Multimodal Language Model X
Control A: First, grasp yellow block and ...

Danny Driess'2 Fei Xia' Mehdi S. M. Sajjadi> Corey Lynch' Aakanksha Chowdhery>
Brian Ichter! Ayzaan Wahid ! Jonathan Tompson' Quan Vuong' Tianhe Yu'! Wenlong Huang '
Yevgen Chehotar ! Pierre Sermanet! Daniel Duckworth? Sergey Levine! Vincent Vanhoucke !
Karol Hausman ! Marc Toussaint? Klaus Greff* Andy Zeng' Igor Mordatch® Pete Florence'

e Input: Multi-modal sentence:
— Interleaves words, images (with segmenta-

!Robotics at Google 2TU Berlin  *Google Rescarch

D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tomp- H
son, Q. Vuong, T. Yo, W, Huang, Y. Chebota, P. Sermae, D. Duckwor, S. Levine, tion), vectors, reference-keywords
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e Output:

— Sequences of action primitives (previously

trained, RT-1)
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Adversarial Disturbance

. (]
“Bring me the rice chips from the drawer”

“Bring me the green star” “Push green blocks to the turtle”
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Example input/output

e Prompt: Given <img>. Q: How to grasp the green object?.
Target: A: First grasp the orange object and place it on the table, then
grasp the green object.

e Prompt: Given <img>. Q: How to stack the white object on top of the red
object?.
Target: A: First grasp the green object and place it on the table, then grasp
the white object and place it on the red object.
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PaLM-E Evaluations

e Data sets:
— TAMP data (generated by our LGP-TAMP planner)
— Table data (previous RT1 paper)
— SayCan data
— Other visual/language data: WebLl, VQA, COCO, etc.
e Pre-taining:
— LLM backbone: language, VQA (WebLl, VQA, COCO)
— Encodings: reconstruction, auto-encoding

e Ablation studies:
— Varying transformer sizes
— generalization (to unseen object situations, esp. higher number of objects)
— freezing, refining, full-learning of backbone LLM or encodings
— with full/partial choice of data sets & sizes
— various image encodings
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PaLM-E evaluations

100%
z 8 TAMP Success (Table 1)
g B Language-Table Success (Table 2)
3 T [ sayCan Affordances (Table 4)
5
£ s50%
&
@
§ 25%
@

0%

TAMP Data Only  Lang. Table Data Only
PalM-E
Training
Data

SayCan Data Only

Full Mixture

(All robots + WebL,
V@A, COCO, ete.)

=i

©One model
with VIT + Pal

Object- LLM Embodied VQA  Planning
centric pre-train gy 9 93 44 P1 P2
SayCan (oracle afford.) Ahne[aL@ e 2 - - - 387333
PaLI (zero-shot) (Chen el__r,“ﬁlla. B s/ 0o 00 - - -
PalLM-E (ours) w/ input enc:
State V(GT) X 994 898 90.3 88.3 45.0 46.1
State V(GT) /1000 963 951 93.1 559 49.7
ViT +TL V(GT) V347 546 46 91.6 24.0 147
ViT-4B single robot X v 459 784 92.2 30.6 329
ViT-4B full mixture X v 707 934 92.1 74.1 746
OSRT (no VQA) v v - - - - 719751
OSRT v /997 982 100.0 93.7 82.5 76.2

LLM finetune (full mixture)
LLM finetune (single robot)
L without pretraining

LLM frozen (full mixture)

LLM frozen (single robot)

20% 40% 60% 80% 100%
Baselines Failure det.  Affordance
0.73 0.62
0.65 -
0.89 -
- 0.63
PalM-E-12B from  LLM+VIT LLM
trained on scratch  pretrain  frozen
Single robot 4 X nfa 0.54 0.46
Single robot X 4 v 0.91 0.78
Full mixture X v v 0.91 0.87
Full mixture X v X 0.77 0.91
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Follow Up: RT-2

RT-2: Vision-Language-Action Models
Transfer Web Knowledge to Robotic Control
Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, '):L(;:m.

Krzysatof Choromansi, Tianl Ding. Danny Dries, Avinava Dubey, C
Pete Florence, Chuy
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y Singh,
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. Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yo, Brianna Zitkovich

B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, and
A. Wahid. Rt-2: Vision-language-action models transfer web knowledge to robotic con-

trol.
In Conference on Robot Learning, pages 2165-2183, 2023.
URL: https://proceedings.mlr.press/v229/zitkovich23a.html
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Internet-Scale VQA + Robot Action Data

Vision-Language-Action Models for Robot Control Closed-Loop
Robot Control

a:inatisrapening aw
i the imaga?

A grey donkey walks
own the street, L . |

E]!M;
)

| ] -
A Rfaraition =01, 0Z.0]
- ARotation = 10} 2¢

Figure 1: RT-2 overview: we represent robot actions as another language, which can be cast into text tokens and trained
together with Intemet-scale vison-language datasts, During inference, the text tokens are de-tokenized into robox
actions, enabling closed loop control. This allows us to | d pretraining of vis iguage models
in learning robotic policies, u‘ansfemng mme of their generalization, semantic understanding, and reasoning (o robotic
control. We f R the project website: robotics-transformer2. glchub io,

Co-Fine-Tune Deploy

quasi-continuous actions (trained end-to-end):
“terminate Apos, Apos, Apos, Arot, Arot, Arot, gripper_extension”.

A possible instantiation of such a target could be: “1 128 91 241 5 101 127". The two VLMs that we
finetune in our experiments, PaLI-X [16] and PaLM-E [17], use different tokenizations. For PaLI-X,
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Conclusion

Levels of abstraction: Force, motion, task

Task and Motion “Planning”: Core problem formulation of robotic Al
— TAMP theory & solvers are fully model-based
— Clear opportunities for learning: constraint learning, learning to predict plans

Language <+ task & action level
— Lots of classical literature on language grounding
— Connecting natural language with typical robot task descriptions (STRIPS/PDDL)

Huge recent focus on marrying LLMs + TAMP + robotics
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