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Motivation: Multi-Robot Systems

e Multiple robots (typically in a team) with a common goal
e Typical promises:

e Achieve goal faster

e Achieve goal more robustly

¢ Higher flexibility (esp. heterogeneous systems)
e Cheaper (?)

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning — 2/43



Motivation: Multi-Robot Systems

e Successful (industrial) solutions
e Warehouse logistics (Amazon Robotics, former Kiva systems)

e Aerial Drone shows (Intel, Verity Studios)

Learning and Intelligent Systems Lab, TU Berlin
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Motivation: Multi-Robot System Challenges

e Controls: additional constraint for inter-robot collision avoidance

e Decision Making: information sharing, task assignment, curse-of-dimensionality for
centralized approaches, safety/robustness for decentralized systems

e Perception: sensing team members, sensor fusion
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Outline

e Handling Dynamic Neighbors

e LSTMs

e CNNs

e DeepSets

e Graph Neural Networks

e Multi-Agent Reinforcement Learning (MARL)
e Discussion / Open Challenges
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Dynamic Neighbors

e Team of robots has time-varying neighbors/observations/communication links

e Often need to learn with time-varying input dimensionality
e Example: (Distributed) collision avoidance maps observation of neighboring robots to
actions f(Y) —» u

e Learned functions need to be permutation-invariant and support dynamic domain
cardinality

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning — 6/43



LSTMs [3]

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018

Motion Planning Among Dynamic, Decision-Making Agents
with Deep Reinforcement Learning

Michael Everettf, Yu Fan Chenf, and Jonathan P. How!

¢ Key idea: Feed observations of neighbors into an LSTM (closest neighbor last)

e

FC —{FC /
\:‘n(s, u)

Fig. 3: Network Architecture. Observable states of nearby agents, s,
are fed sequentially into the LSTM, as unrolled in Fig. 2. The final

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning — 7/43
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CNNs [14]

2378 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 3, JULY 2019

PRIMAL.: Pathfinding via Reinforcement and
Imitation Multi-Agent Learning

Guillaume Sartoretti , Justin Kerr @, Yunfei Shi, Glenn Wagner, T. K. Satish Kumar,
Sven Koenig, and Howie Choset

¢ Key idea: Encode neighbor information as a picture
e Videos: https://goo.gl/T627XD

Learning and Intelligent Systems Lab, TU Berlin
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Deep Sets [21]

¢ Any continuous, permutation-invariant function f(X) can be approximated:

Learns aggregation of hid- Learns representation of
den state each element

f)~=p (Z (x))

zeX

1

[superposition in hidden state}

¢ Improvement over Convolutional NN (CNN): continuous space, efficiency
e Example:

+=9
++=20
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Case Study: GLAS [13]

e Goal: imitate (slow) centralized controller using only local observations: 7 : y — u

e Data: Example trajectories by solving many multi-robot motion planning instances
with a centralized planner

e Approach: Behavior Cloning + Privileged Teacher
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Case Study: GLAS [13]

1. We generate trajectories using a global motion planner

10 %
obstacles

20 %
obstacles

4 robots 8 robots 16 robots
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Case Study: GLAS [13]

2. We extract local observations and actions

Learning and Intelligent Systems Lab, TU Berlin
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Case Study: GLAS [13]

e Train (5 small feedforward networks trained jointly)

glas/architecture_simple.pdf
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Case Study: GLAS [13]

e How would one train this in practice in pyTorch? [variable number of neighbors vs. batching]

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning — 14/43



Case Study: Neural-Swarm2 [15]

e Goal: predict aerodynamic interaction [unmodeled physics, as a function of neighbors’ positions]

Small Robot ~

111

Ground Effect

e Data: Real flight tests (synchronized trajectories with poses of robots and
measured accelerations and motor commands)

e Approach: Behavior Cloning Multi-Robot Learning — 15/43
ulti-RODO earning —
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Case Study: Neural-Swarm2 [15]: Heterogeneous Deep Sets

Learns represen-
Learns aggrega- | | tation from type
tion for type J(i) ||J(y) neighbor
o\ (= ”
B0~ by | D0 D @)

k=1 X(ij)erg)pek

neuralswarm2/figla.pdf
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Case Study: Neural-Swarmz2 [15]

{Small,Small,Large} - Small ’
(h) B
-5
2
—IOH‘[‘;
-15
-0.4 -0.2 0.0 0.2 0.4
y [m] 20
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Case Study: Neural-Swarm2 [15]

https://youtu.be/Y02;juH6BDxo

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning — 18/43
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Graph Neural Networks (GNNs)

e Inspiration: CNNs as graph
1

T
—

1 I+1
(a) (b)

C. M. Bishop and H. Bishop. Deep Learning: Foundations and Concepts.
Springer International Publishing, Cham, 2024.
doi:10.1007/978-3-031-45468-4
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Graph Neural Networks (GNNs)
e Graph § = (V,¢)

e Basic case: learn features for each node n ¢ 'V

e Use L layers with D-dimensional vector D

Learning and Intelligent Systems Lab, TU Berlin
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Graph Neural Networks (GNNs)

Algorithm 13.1: Simple message-passing neural network

Input: Undirected graph G = (V, &)
Initial node embeddings {h{’ = x, }
Aggregate(-) function
Update(-, -) function

Output: Final node embeddings {h”’}

// Iterative message-passing
forl{0,....L —1}do
2 Aggregate ({hi}? tm g ,N'(n.]})
hith Update (h&f): ZS))
end for
return {h\"’}
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Graph Neural Networks (GNNs)

e Examples for Aggregate/Update:
o Aggregate({h}) : m € N(n)}) = MLP, (zmeN(n) MLP¢(h$,?))
. Update(hﬁf), Zr(Ll)) = f(Wserhg) + Wneighzr(Ll) +0b)
e Extensions to have input/output features per edge and graph [see e.g., [1]]
e Training “as usual” (on whole graphs)
e In practice: PyG https://www.pyg.org/ or DGL https://www.dgl.ai/

Multi-Robot Learning — 22/43
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Case Study: Learning to Communicate for Multi-Robot Path
Finding [8]

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Graph Neural Networks for Decentralized Multi-Robot Path Planning

Qingbiao Lil, Fernando Gamag, Alejandro Ribeirog, Amanda Prorok!

e Goal: Learn how to communicate to imitate a centralized Multi-Agent Path Finding
expert

e Data: Trajectories computed by a centralized expert
e Approach: IL w/ DAgger
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Case Study: Learning to Communicate for Multi-Robot Path
Finding [8]

e I e e e e e e e e e Te=mmmmmm———— 1
! Dataset Generation ! Pre-Processing ! Decentralized Framework ! Training !
: Compute target path in map (W x H) :Input tensor (wm,,me,,x!): Encoder Communication  Action Poliq{ Predict Target:
1 1 1 1 1
I Set up — Case #1 1 State  Goal Map 1 CNN GNN MLP T u(ty) u (t)1
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Case Study: Multi-Robot Perception [23]

IEEE ROBOTI LETTERS. VOL 7, X0 2 APRIL 2022

Multi-Robot Collaborative Perception With Graph
Neural Networks

Yang Zhou®, Graduate Student Member, IEEE, Jiuhong Xiao @, Yue Zhou @,
. Member, IEET

and Giuseppe Loianno

e Goal: Learn what to communicate
for depth estimation or segmenta- Graph
tion Nhtla:vl.\:roarlk

e Data: Labeled Data mostly from
simulator; some from real flights

e Approach: Behavior Cloning

e Video: https://youtu.be/2bdhLI3dqo0
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GNN Applications

Flocking (in simulation) [17, 7, 5]

Navigation (simulation + RL) [19]
Graph Control Barrier Function (simulation + IL w/ DAgger) [22]

Learning to Communicate Variations [9, 5]
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Outline

e Handling Dynamic Neighbors

e LSTMs

e CNNs

e DeepSets

e Graph Neural Networks

¢ Multi-Agent Reinforcement Learning (MARL)
e Discussion / Open Challenges
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MARL Definition

e Single Robot: MDP (8, A, P, R, Py, ) with state space 8, action space A, transition
probabilities P(s;t1]|s¢, at), reward fct r, = R(sq, ay), initial state distribution Py(s),
and discounting factor v € [0, 1].
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MARL Definition

e Single Robot: MDP (8, A, P, R, Py, ) with state space 8, action space A, transition
probabilities P(s;t1]|s¢, at), reward fct r, = R(sq, ay), initial state distribution Py(s),
and discounting factor v € [0, 1].

e Multi-Robot: Markov game (N, 8, A, P, R, Py,~) with N robots, S joint state space,
A= A; x Ag x ... x Ay joint action space, reward fct rq,...,rny = R(s,a)

e Goal: Find policy (or policies) that maximize expected reward

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning — 28/43



Rewards
e Fully cooperative: r; = ry = ... = 75 [No credit assignment; difficult to train]
e Competitive: zero-sum games (>, r; = 0), prey-predator games (cooperative per
team; competitive per game)
e Mixed Cooperative-Competitive: (local) reward shaping, to achieve a common
goal

Multi-Robot Learning — 29/43
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Learning

e Centralized model as stacked robot (centralized training & inference)

¢ Independent Learning each robot learns own policy (decentralized training &
inference)

¢ Centralized Training Decentralized Execution (CTDE)
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Challenges

e Non-Stationarity: if policy of other agents can’t be observed, the Markov
assumption is violated (e.g., distributed Q-Learning)

e Scalability: in standard policy gradient algorithms, the probability of estimating the
policy gradient correctly might decrease exponentially with the number of agents

[Concrete example: appendix of [10]]
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Approaches

e Centralized critic, e.g., Multi-Agent deep deterministic policy gradient (MADDPG,
[10])

e Factorized value functions, e.g., Value Decomposition Networks (VDN, [16])

e Communication Learning
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Practical Considerations

e VMAS (Vectorized Multi-Agent Simulator for Collective Robot Learning)
https://github.com/proroklab/VectorizedMultiAgentSimulator [Simple 2D physics
engine build in pyTorch]

e MARLIib https://github.com/Replicable-MARL/MARL1ib
e More Details/Overview about MARL.:

Y. Wang, M. Damani, P. Wang, Y. Cao, and G. Sartoretti. Distributed reinforcement learning for robot teams: A review.
Current Rob cs Fieporrs 3(4):239-257, Dec. 2022.
doi:10 154-022-00091-8

J. Orr and A. Dutta. Multi-agent deep reinforcement learning for multi-robot applications: A survey.
Sensors, 23(7):3625, Jan. 2023.
doi:10.3390/523073625
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https://doi.org/10.3390/s23073625

Case Study: Distributed Collision Avoidance (Ground) [4]

Article

Distributed multi-robot collision avoidance
via deep reinforcement learning for
navigation in complex scenarios

Tingxiang Fan'", Pinxin Longz‘ , Wenxi Liu® and Jia Pan’

Yo

& 9 _
- <
o1 it @ s>
g1 Sampling
Environment
1 -0=0
Agents with shared policy 7
ol [ )
6
T
2
Policy Optimization

Learning and Intelligent Systems Lab, TU Berlin
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Case Study: Distributed Collision Avoidance (Ground) [4]

Goal: find decentralized policy: 7 : y,g — u

Data: Collected in simulation during RL (input LIDAR, relative goal, velocity; output:
action)

Approach: PPO (centralized learning, decentralized execution; shared policy)

Video: https://sites.google.com/view/hybridmrca
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Case Study: Distributed Collision Avoidance (UAVs) [6]

Goal: find decentralized policy: 7 : y,g — u

Data: Collected in simulation during RL (input state, nearby obstacles, nearby
neighbors; output: thrust per rotor)

Approach: IPPO (centralized learning, decentralized execution; shared policy)

Video: https://sites.google.com/view/obst-avoid-swarm-rl
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Case Study: Neural Tree Expansion [12]

e Goal: find decentralized policies for multi-team games (e.g., reach-target avoid)

‘ Offline Training Loop ‘
Policy
VT— Expert : ' e Data: Collected with a neural-biased
g 7 “expert” (large Monte-Carlo Tree
Search)
e Approach: MCTS + IL + DAgger
(essentially: AlphaZero in continuous
state spaces)

Online Decentralized Deployment .
e Video:

https://youtu.be/mklbTfW17DE

X

I

Samples
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Outline

e Handling Dynamic Neighbors

e LSTMs

e CNNs

e DeepSets

e Graph Neural Networks

e Multi-Agent Reinforcement Learning (MARL)
e Discussion / Open Challenges
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DiNNO: Distributed Neural Network Optimization [20]

3 .‘vﬂ' 2
o g DiNNO J— o °§¢°

® Distributed -x ﬁ »
aining

TATA

“0 \
Cent:al ized &
Training

e Collect data locally, local augmented Lagrangian update, share resulting weights
via consensus
e Works for IL and RL

e Web: https://msl.stanford.edu/projects/dist_nn_train
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LLMs and Multi-Robots [2]

Why Solving Multi-agent Path Finding
with Large Language Models has not Succeeded Yet

Weizhe Chen' Sven Koenig' Bistra Dilkina'

e (Arxiv, Jan. 2024)

Complete
( Solution
[[System Prompt]] | [[User Prompt]] . [lUser Prompt]]  Valid but not finished 3
~ Task Description Scenario description Step Description
| | Finished
_— Y @
LLM as Solver . One-step .| Solution
Solution Checker
[
Invalid

[[User Prempt]]
Errar Information
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LLMs and Multi-Robots [2]

Agent 1 is currently in (0,2), and wants to go to (3,1).
Agent 2 is currently in (1,3), and wants to go to (2,0).

The map is as follows, where @’ denotes a cell with an
obstacle that an agent cannot pass, and °." denotes an empty
cell that an agent can pass.

The bottom-left cell is (0,0) and the bottom-right cell is
(31,00:

@,

In the next step:

Agent 1 can move [’stay at (0, 2)’, ‘right to (1, 2)°, "up to (0,
3), ‘down to (0, 1)°].

Agent 2 can move [’stay at (1, 3)’, "left to (0, 3)’, 'right to
(2, 3)", 'downto (1, 2)"].
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Open Challenges

e Deployment to real robots (especially RL)
e Safety (esp. partially unknown dynamics, perception)
¢ Interpretability (of communication)
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Conclusion

e Multi-Robot brings new challenges

e Large state space (or violation of Markov assumption)
e Dynamic number of neighbors
e Reasoning about communication

Deep Sets: permutation invariant architecture that is easy to train and
computationally efficient usefu for 7 : 2, N+ u]

GNN: Generalization of deep Sets [useful for learning communication]

Learning a decentralized policy from a centralized expert works well (IL + DAgger)

Deployment to real robot teams remains challenging

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning — 43/43
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