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Motivation: Multi-Robot Systems

• Multiple robots (typically in a team) with a common goal
• Typical promises:

• Achieve goal faster
• Achieve goal more robustly
• Higher flexibility (esp. heterogeneous systems)
• Cheaper (?)
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Motivation: Multi-Robot Systems

• Successful (industrial) solutions
• Warehouse logistics (Amazon Robotics, former Kiva systems)

◦
• Aerial Drone shows (Intel, Verity Studios)
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Motivation: Multi-Robot System Challenges

• Controls: additional constraint for inter-robot collision avoidance

• Decision Making: information sharing, task assignment, curse-of-dimensionality for
centralized approaches, safety/robustness for decentralized systems

• Perception: sensing team members, sensor fusion
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Outline

• Handling Dynamic Neighbors
• LSTMs
• CNNs
• DeepSets
• Graph Neural Networks

• Multi-Agent Reinforcement Learning (MARL)

• Discussion / Open Challenges
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Dynamic Neighbors

• Team of robots has time-varying neighbors/observations/communication links
• Often need to learn with time-varying input dimensionality

• Example: (Distributed) collision avoidance maps observation of neighboring robots to
actions f(Y) → u

• Learned functions need to be permutation-invariant and support dynamic domain
cardinality
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LSTMs [3]

• Key idea: Feed observations of neighbors into an LSTM (closest neighbor last)
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CNNs [14]

• Key idea: Encode neighbor information as a picture

• Videos: https://goo.gl/T627XD
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Deep Sets [21]
• Any continuous, permutation-invariant function f(X) can be approximated:

f(X) ≈ ρ

(∑
x∈X

ϕ(x)

)

• Improvement over Convolutional NN (CNN): continuous space, efficiency
• Example:

+ = 9

+ + = 20

Learns representation of
each element

superposition in hidden state

Learns aggregation of hid-
den state
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Case Study: GLAS [13]

• Goal: imitate (slow) centralized controller using only local observations: π : y 7→ u

• Data: Example trajectories by solving many multi-robot motion planning instances
with a centralized planner

• Approach: Behavior Cloning + Privileged Teacher

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning – 10/43



Case Study: GLAS [13]
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Case Study: GLAS [13]
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Case Study: GLAS [13]
• Train (5 small feedforward networks trained jointly)

glas/architecture_simple.pdf
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Case Study: GLAS [13]
• How would one train this in practice in pyTorch? [variable number of neighbors vs. batching]

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning – 14/43



Case Study: Neural-Swarm2 [15]
• Goal: predict aerodynamic interaction [unmodeled physics, as a function of neighbors’ positions]

• Data: Real flight tests (synchronized trajectories with poses of robots and
measured accelerations and motor commands)

• Approach: Behavior Cloning
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Case Study: Neural-Swarm2 [15]: Heterogeneous Deep Sets

f̂ (i)a ≈ ρI(i)

 K∑
k=1

∑
x(ij)∈r(i)typek

ϕI(j)(x
(ij))



Learns represen-
tation from type
I(j) neighbor

superposition in
hidden state

Learns aggrega-
tion for type I(i)

neuralswarm2/fig1a.pdf

f (3)a ≈ ρlarge

(
ϕsmall(x

(31)) + ϕsmall(x
(32))

+ ϕenv(x
(34))

)
• Expressiveness: can approximate any K-Group permutation-invariant function
• Efficient: only 2K networks need to be trained
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Case Study: Neural-Swarm2 [15]
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Case Study: Neural-Swarm2 [15]

https://youtu.be/Y02juH6BDxo
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Graph Neural Networks (GNNs)

• Inspiration: CNNs as graph

C. M. Bishop and H. Bishop. Deep Learning: Foundations and Concepts.
Springer International Publishing, Cham, 2024.
doi:10.1007/978-3-031-45468-4
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Graph Neural Networks (GNNs)

• Graph G = (V,E)

• Basic case: learn features for each node n ∈ V

• Use L layers with D-dimensional vector h(l)n
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Graph Neural Networks (GNNs)
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Graph Neural Networks (GNNs)

• Examples for Aggregate/Update:
• Aggregate({h(l)

m : m ∈ N(n)}) = MLPρ

(∑
m∈N(n) MLPϕ(h

(l)
m )
)

• Update(h(l)
n , z

(l)
n ) = f(Wselfh

(l)
n +Wneighz

(l)
n + b)

• Extensions to have input/output features per edge and graph [See e.g., [1]]

• Training “as usual” (on whole graphs)

• In practice: PyG https://www.pyg.org/ or DGL https://www.dgl.ai/
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Case Study: Learning to Communicate for Multi-Robot Path
Finding [8]

• Goal: Learn how to communicate to imitate a centralized Multi-Agent Path Finding
expert

• Data: Trajectories computed by a centralized expert

• Approach: IL w/ DAgger
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Case Study: Learning to Communicate for Multi-Robot Path
Finding [8]

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning – 24/43



Case Study: Multi-Robot Perception [23]

• Goal: Learn what to communicate
for depth estimation or segmenta-
tion

• Data: Labeled Data mostly from
simulator; some from real flights

• Approach: Behavior Cloning

• Video: https://youtu.be/2bdhLI3dqo0
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GNN Applications

• Flocking (in simulation) [17, 7, 5]

• Navigation (simulation + RL) [19]

• Graph Control Barrier Function (simulation + IL w/ DAgger) [22]

• Learning to Communicate Variations [9, 5]
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Outline

• Handling Dynamic Neighbors
• LSTMs
• CNNs
• DeepSets
• Graph Neural Networks

• Multi-Agent Reinforcement Learning (MARL)

• Discussion / Open Challenges
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MARL Definition

• Single Robot: MDP (S,A, P,R, P0, γ) with state space S, action space A, transition
probabilities P (st+1∥st, at), reward fct rt = R(st, at), initial state distribution P0(s0),
and discounting factor γ ∈ [0, 1].

• Multi-Robot: Markov game (N, S,A, P,R, P0, γ) with N robots, S joint state space,
A = A1 ×A2 × . . .×AN joint action space, reward fct r1, . . . , rN = R(s, a)

• Goal: Find policy (or policies) that maximize expected reward

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning – 28/43



MARL Definition

• Single Robot: MDP (S,A, P,R, P0, γ) with state space S, action space A, transition
probabilities P (st+1∥st, at), reward fct rt = R(st, at), initial state distribution P0(s0),
and discounting factor γ ∈ [0, 1].

• Multi-Robot: Markov game (N, S,A, P,R, P0, γ) with N robots, S joint state space,
A = A1 ×A2 × . . .×AN joint action space, reward fct r1, . . . , rN = R(s, a)

• Goal: Find policy (or policies) that maximize expected reward

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning – 28/43



Rewards
• Fully cooperative: r1 = r2 = . . . = rN [No credit assignment; difficult to train]

• Competitive: zero-sum games (
∑

i ri = 0), prey-predator games (cooperative per
team; competitive per game)

• Mixed Cooperative-Competitive: (local) reward shaping, to achieve a common
goal
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Learning

• Centralized model as stacked robot (centralized training & inference)

• Independent Learning each robot learns own policy (decentralized training &
inference)

• Centralized Training Decentralized Execution (CTDE)

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning – 30/43



Challenges

• Non-Stationarity: if policy of other agents can’t be observed, the Markov
assumption is violated (e.g., distributed Q-Learning)

• Scalability: in standard policy gradient algorithms, the probability of estimating the
policy gradient correctly might decrease exponentially with the number of agents
[Concrete example: appendix of [10]]
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Approaches

• Centralized critic, e.g., Multi-Agent deep deterministic policy gradient (MADDPG,
[10])

• Factorized value functions, e.g., Value Decomposition Networks (VDN, [16])

• Communication Learning
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Practical Considerations
• VMAS (Vectorized Multi-Agent Simulator for Collective Robot Learning)
https://github.com/proroklab/VectorizedMultiAgentSimulator [Simple 2D physics

engine build in pyTorch]

• MARLlib https://github.com/Replicable-MARL/MARLlib

• More Details/Overview about MARL:
Y. Wang, M. Damani, P. Wang, Y. Cao, and G. Sartoretti. Distributed reinforcement learning for robot teams: A review.
Current Robotics Reports, 3(4):239–257, Dec. 2022.
doi:10.1007/s43154-022-00091-8

J. Orr and A. Dutta. Multi-agent deep reinforcement learning for multi-robot applications: A survey.
Sensors, 23(7):3625, Jan. 2023.
doi:10.3390/s23073625
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Case Study: Distributed Collision Avoidance (Ground) [4]
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Case Study: Distributed Collision Avoidance (Ground) [4]

• Goal: find decentralized policy: π : y, g 7→ u

• Data: Collected in simulation during RL (input LIDAR, relative goal, velocity; output:
action)

• Approach: PPO (centralized learning, decentralized execution; shared policy)

• Video: https://sites.google.com/view/hybridmrca

Learning and Intelligent Systems Lab, TU Berlin Multi-Robot Learning – 35/43

https://sites.google.com/view/hybridmrca


Case Study: Distributed Collision Avoidance (UAVs) [6]

• Goal: find decentralized policy: π : y, g 7→ u

• Data: Collected in simulation during RL (input state, nearby obstacles, nearby
neighbors; output: thrust per rotor)

• Approach: IPPO (centralized learning, decentralized execution; shared policy)

• Video: https://sites.google.com/view/obst-avoid-swarm-rl
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Case Study: Neural Tree Expansion [12]

• Goal: find decentralized policies for multi-team games (e.g., reach-target avoid)

• Data: Collected with a neural-biased
“expert” (large Monte-Carlo Tree
Search)

• Approach: MCTS + IL + DAgger
(essentially: AlphaZero in continuous
state spaces)

• Video:
https://youtu.be/mklbTfWl7DE
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Outline

• Handling Dynamic Neighbors
• LSTMs
• CNNs
• DeepSets
• Graph Neural Networks

• Multi-Agent Reinforcement Learning (MARL)

• Discussion / Open Challenges
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DiNNO: Distributed Neural Network Optimization [20]

• Collect data locally, local augmented Lagrangian update, share resulting weights
via consensus

• Works for IL and RL

• Web: https://msl.stanford.edu/projects/dist_nn_train
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LLMs and Multi-Robots [2]

• (Arxiv, Jan. 2024)
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LLMs and Multi-Robots [2]
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Open Challenges

• Deployment to real robots (especially RL)

• Safety (esp. partially unknown dynamics, perception)

• Interpretability (of communication)
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Conclusion

• Multi-Robot brings new challenges
• Large state space (or violation of Markov assumption)
• Dynamic number of neighbors
• Reasoning about communication

• Deep Sets: permutation invariant architecture that is easy to train and
computationally efficient [useful for π : x,N 7→ u]

• GNN: Generalization of deep sets [useful for learning communication]

• Learning a decentralized policy from a centralized expert works well (IL + DAgger)

• Deployment to real robot teams remains challenging
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