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All 4 exercises are a bit too much for a start. Question 3 is bonus.

1 Basic Inverse Kinematics

a) Inverse kinematics (or general constraint solving) can be framed as the optimization problem

min
q∈Rn

||q − q0||2 + µ||φ(q)||2 , (1)

for some constraint function φ : Rn → Rd. Assuming linear φ(q) = φ(q0) + J(q − q0) with Jacobian J , the

solution is

q∗ = q0 − (J>J + 1
µI)

-1J> φ(q0) . (2)

Verify this by deriving it step by step.

b) To enforce a hard constraint, we want to take the limit µ→∞. But J>J is typically not invertible (e.g., d < n),

and you can’t directly take the limit in the above solution. However, the solution to this limit is

q∗ = q0 − J>(JJ>)-1φ(q0) . (3)

Derive this from the above. Tip: Learn about the Woodbury identity.

a) Derivation...

b) Cheat sheet: https://www.user.tu-berlin.de/mtoussai/notes/gaussians.pdf

Woodbury (for A,B pos.def.): (A+ J>BJ)-1J>B = A-1J>(B-1 + JA-1J>)-1

Due to the Woodbury identity, the pseudo inverse can be written in two ways (with W = I):

J# = (W/µ+ J>J)-1J>= W -1J>(JW -1J>+ I/µ)-1 (4)

Note that you CANNOT USE THE FIRST VERSION to take the limit µ → ∞ because J>J is not invertible. (It is a

n× n-matrix of rank d.) But you can use the second version to let µ→∞ and J# → W -1J>(JW -1J>)-1, where JW -1J>

is a d× d-matrix with full rank (for non-singular J).

2 Point mass under PD control

Consider a point mass in a 1D space together with a PD control law:

� The point has mass m, and position q(t) ∈ R.
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� The PD controller applies linear force

u(t) = −kpq(t)− kdq̇(t)
to the point, where kp, kd ∈ R are positive constants.

� The resulting dynamics is mq̈(t) = u(t).

a) Given the initial state q(0) = a, q̇(0) = 0, what is q(t)? (Solve the differential equation.)

Ansatz: Assume q(t) = c eλt (where c, λ ∈ C!!)

Let’s first solve the differential equation, then later care about boundary constraints q(0) = a, q̇(0) = 0:

m c λ2 eλt = −kp c eλt − kd c λeλt (5)

0 =
[
m c λ2 + kd c λ + kp c] e

λt (6)

0 = m λ2 + kd λ+ kp (7)

λ =
−kd ±

√
k2d − 4mkp

2m
(8)

The term − kd
2m

in λ is real ↔ exponential decay

The square root is (typically) negative ↔ oscilatory, with ± just orientation

(I DIDN’T LOOK AT THE OVERDAMPED CASE.)

Now let’s look at the boundary conditions: Let’s write c = a+ iā with a, ā ∈ R:

a = q(t) = Re(c) = a (9)

0 = q̇(t) = Re(cλ) =
−akd ± ā

√
|k2d − 4mkp|

2m
(10)

ā = ± akd√
|k2d − 4mkp|

(11)

and the velocity constraint can be realized just by a phase shift by ā.

(I think I now get where you got the idea of “overlaying sin and cos solutions” from... In the complex notation, that’s

just a phase shift.)

b) The solution describes a damped oscillation around the set-point q∗ = 0. How do you have to choose kp and kd such

that the behavior becomes the exponential approach q(t) = ae−t/τ for some time scale τ ∈ R? (This is called “critically

damped”.)

kp = m/τ2 , kd = 2mξ/τ

In general ξ ∈ (0, 1] gives the damping coefficient. ξ = 1 is critically damped

3 BONUS: Fun with Euler-Lagrange

Consider an inverted pendulum mounted on a wheel in the 2D x-z-plane; similar to a Segway. The exercise is to derive

the Euler-Lagrange equation for this system.
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a) Describe the pose pi ∈ R3 of every body in (x, z, φ) coordinates: its position in the x-z-plane, and its rotation φ

relative to the world-vertical. Assume fixed parameters r: radius of the wheel, l: length of the pendulum (height

of its COM).

pA =


x
0
x
r

 , pB =


x+ sin(θ)l

cos(θ)l
θ

 (12)

b) Describe the (linear and angular) velocity vi = ṗi ∈ R3 of every body.

vA =


ẋ
0
ẋ
r

 , vB =


ẋ+ θ̇ cos(θ)l

−θ̇ sin(θ)l

θ̇

 (13)

c) Formulate the total kinetic energy T = 1
2

∑
i v
>
iMivi, summing over the two bodies i = A,B. Note that

Mi =


mi 0 0
0 mi 0
0 0 Ii

 (14)

with mi ∈ R the normal mass of body i, and Ii ∈ R the rotational inertia of body i.

T =
1

2
v>AMAvA +

1

2
v>BMBvB (15)

=
1

2

(
ẋ2mA +

ẋ2

r2
IA + ẋ2mB + 2mB ẋθ̇ cos(θ)l +mB θ̇

2 cos(θ)2l2 +mB sin(θ)2θ̇2l2 + θ̇2IB

)
(16)

=
1

2

(
ẋ2(mA +mB +

IA
r2

) + 2mBẋθ̇ cos(θ)l + θ̇2(mBl
2 + IB)

)
(17)

d) Formulate the potential energy U

U = gmB cos(θ)l (18)

e) Bonus: Compute the Euler-Lagrange Equation

u =
d

dt

∂L

∂q̇
− ∂L

∂q
, (19)

with L = T − U , using the minimal coordinates q = (x, θ), where x is the position of the wheel and θ the angle of the

pendulum relative to the world-vertical.

L = T − U (20)

=
1

2

(
ẋ2(mA +mB +

IA
r2

) + 2mB ẋθ̇ cos(θ)l + θ̇2(mBl
2 + IB)

)
− gmB cos(θ)l (21)

∂L

∂x
= 0 (22)

∂L

∂ẋ
= ẋ(mA +mB +

IA
r2

) +mB θ̇ cos(θ)l (23)

∂L

∂θ
= −mB ẋθ̇ sin(θ)l + gmB sin(θ)l = mBl sin(θ)(g − ẋθ̇) (24)

∂L

∂θ̇
= θ̇(mBl

2 + IB) +mBẋ cos(θ)l (25)

τ1 =
d

dt

∂L

∂ẋ
− ∂L

∂x
= ẍ(mA +mB +

IA
r2

) +mB θ̈ cos(θ)l −mB θ̇
2 sin(θ)l (26)
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τ2 =
d

dt

∂L

∂θ̇
− ∂L

∂θ
= θ̈(mBl

2 + IB) +mBẍ cos(θ)l −mB ẋθ̇ sin(θ)l −mBl sin(θ)(g − ẋθ̇) (27)

= θ̈(mBl
2 + IB) +mBẍ cos(θ)l −mBl sin(θ)g (28)

4 Logistic Regression

Consider a binary classification problem with data D = {(xi, yi)}ni=1, xi ∈ Rd and yi ∈ {0, 1}. We define

f(x) = x>β (29)

p(x) = σ(f(x)) , σ(z) = 1/(1 + e−z) (30)

Lnll(β) = −
n∑
i=1

[
yi log p(xi) + (1− yi) log[1− p(xi)]

]
(31)

where β ∈ Rd is the model parameter, σ(z) the sigmoidal function, and Lnll(β) the neg-log-likelihood of the data

under the model.

a) Compute the derivative ∂
∂βL(β). Tip: use the fact ∂

∂zσ(z) = σ(z)(1− σ(z)).

b) Compute the 2nd derivative ∂2

∂β2L(β).

c) How is the neg-log-likelihood related to the cross-entropy? How would the above change when adding an

additional regularization λ||β||2 to the loss?

L(β) = −
n∑
i=1

logP (yi |xi) + λ||β||2 (32)

= −
n∑
i=1

[
yi log pi + (1− yi) log[1− pi]

]
+ λ||β||2 (33)

∇L(β) =
∂L(β)

∂β

>
=

n∑
i=1

(pi − yi) xi + 2λIβ = X>(p− y) + 2λIβ (34)

∇2L(β) =
∂2L(β)

∂β2
=

n∑
i=1

pi(1− pi) xi x>i + 2λI = X>WX + 2λI (35)

where p(x) := P (y = 1 |x) = σ(x>β), pi := p(xi), W := diag(p ◦ (1− p)) (36)

(iii) same! nnl=cross-entropy with one-hot encoded target; (above includes λ)
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