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All 4 exercises are a bit too much for a start. Question 3 is bonus.

1 Basic Inverse Kinematics

a) Inverse kinematics (or general constraint solving) can be framed as the optimization problem

min ¢ — qol* + ulé(a)* , (1)
qER™

for some constraint function ¢ : R® — R?. Assuming linear ¢(q) = ¢(qo) + J(q — qo) with Jacobian .J, the
solution is

¢ =g — (JT+ L7 T é(q0) - (2)
Verify this by deriving it step by step.

b) To enforce a hard constraint, we want to take the limit  — oo. But J'.J is typically not invertible (e.g., d < n),
and you can’t directly take the limit in the above solution. However, the solution to this limit is

¢ = a0 —J(JT) " ¢(q0) - (3)
Derive this from the above. Tip: Learn about the Woodbury identity.
a) Derivation...
b) Cheat sheet: https://www.user.tu-berlin.de/mtoussai/notes/gaussians.pdf

Woodbury (for A, B pos.def.): (A+ J BJ)'J'B=A*J(B*+JA*J")?!
Due to the Woodbury identity, the pseudo inverse can be written in two ways (with W = I):

JH=W/p+J N T =W Owr I+ 1)t (4)

Note that you CANNOT USE THE FIRST VERSION to take the limit y — oo because J'J is not invertible. (It is a
n x n-matrix of rank d.) But you can use the second version to let u — oo and J# — WJ (JWJT)?, where JWJ"
is a d X d-matrix with full rank (for non-singular .J).

2 Point mass under PD control

m

Consider a point mass in a 1D space together with a PD control law:

e The point has mass m, and position ¢(t) € R.


https://www.user.tu-berlin.de/mtoussai/notes/gaussians.pdf
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e The PD controller applies linear force
u(t) = —kpa(t) — kaq(t)

to the point, where k,, kg € R are positive constants.
e The resulting dynamics is mg(t) = u(t).
a) Given the initial state ¢(0) = a, ¢(0) = 0, what is ¢(¢)? (Solve the differential equation.)

Ansatz: Assume ¢(t) = c e’ (where ¢, A € C!!)

Let’s first solve the differential equation, then later care about boundary constraints ¢(0) = a, ¢(0) = 0:

me X eM=—k,ce —kgc e (5)
O:[mck2+kdc/\ +kp d (6)
0=m N +ks \+kp (7)
N —kq £ \/k2 — 4mk, ®)
2m
The term — 2’“;; in )\ isreal < exponential decay
The square root is (typically) negative <> oscilatory, with + just orientation
(I DIDN'T LOOK AT THE OVERDAMPED CASE.)
Now let’s look at the boundary conditions: Let’s write ¢ = a + ia with a,a € R:
a=q(t) = Re(c) =a 9)
0= (1) = Re(e) = —2ha 22V Iki — dmby| (10)
a= i# (11)

and the velocity constraint can be realized just by a phase shift by a.

(I think I now get where you got the idea of “overlaying sin and cos solutions” from... In the complex notation, that’s
just a phase shift.)

b) The solution describes a damped oscillation around the set-point ¢* = 0. How do you have to choose k, and k4 such
that the behavior becomes the exponential approach ¢(t) = ae Y7 for some time scale T € R? (This is called “critically
damped”.)

kp = m/7°  ka = 2mé&/T
In general & € (0, 1] gives the damping coefficient. £ = 1 is critically damped

3 BONUS: Fun with Euler-Lagrange

Consider an inverted pendulum mounted on a wheel in the 2D x-z-plane; similar to a Segway. The exercise is to derive
the Euler-Lagrange equation for this system.
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a) Describe the pose p; € R? of every body in (z, z, ¢) coordinates: its position in the x-z-plane, and its rotation ¢
relative to the world-vertical. Assume fixed parameters r: radius of the wheel, I: length of the pendulum (height
of its COM).

pA:(

b) Describe the (linear and angular) velocity v; = p; € R?® of every body.

UA_[

¢) Formulate the total kinetic energy T' = % > v] M;v;, summing over the two bodies i = A, B. Note that

m; 0 0
Mi=]10 m; O (14)

0 0 L

x + sin(0)l
) ; PB = ( cos(0)l ] (12)
0

sl8 © 8

vp=| —f sin(0)! (13)

] & + 0 cos(0)!
0

38 O K

with m,; € R the normal mass of body 4, and I; € R the rotational inertia of body i.

1 1 +
T = 5 1 Mava + ’UBMBUB (15)
1 52 2,2 . 25212 | 52
=5 <x ma + —IA + i’mp +2m3x0605(9)l+m30 cos(6)°l° +mpsin(0) 01" + 0 [B> (16)
1 Ia 52 2
=3 mA+mB—|— )+2m3x9005(9)l+9 (mBl” + IB) (17)

d) Formulate the potential energy U

U = gmp cos(0)l (18)

e) Bonus: Compute the Euler-Lagrange Equation

d OL 0L
gy 19
T dtog  0q’ (19)
with L = T — U, using the minimal coordinates ¢ = (z,0), where z is the position of the wheel and 6 the angle of the
pendulum relative to the world-vertical.

L=T-U (20)
_1 /(.2 Ia . - 2
=5\ (ma+mp + T—2)+2m3x0005(9)l+9 (mBl° +1B) ) — gmp cos(0)l (21)
oL
5 0 (22)
oL . Ia :
% = Z(ma +mp + 772) + mp0 cos(0)l (23)
% = —mpifsin(0)l + gmp sin(0)l = mplsin(d)(g — i6) (24)
% = 0(mpl® 4 Ig) + mpi cos(0)! (25)
_ G0 d_ . Ia j — mpfsi
= 2% om Z(ma+mp + 2 ) + mp6 cos(0)l — mpO”° sin(6)! (26)
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Ty = ia—L _ 9L _ G(mpl® + Ig) + mpi cos(9)l — mpif sin(0)l — mplsin(0)(g — i0) (27)

dt 90 00
= 6(mpl® + Ip) + mpi cos(9)l — mplsin(d)g (28)

4 Logistic Regression

Consider a binary classification problem with data D = {(z;,v:)}",, 2; € R? and y; € {0,1}. We define

TOREY: (29)
p(x) = o(f(@)), o(z)=1/(L+e7) (30)
L (8) = =3 |yilogp(w:) + (1 = ) log[1 — p(ay)] (31)

i=1

where 3 € R? is the model parameter, o(z) the sigmoidal function, and L™ (3) the neg-log-likelihood of the data
under the model.

a) Compute the derivative %L(B). Tip: use the fact %a(z) =0(2)(1 - o(z2)).

b) Compute the 2nd derivative aa—;L(ﬁ).

¢) How is the neg-log-likelihood related to the cross-entropy? How would the above change when adding an
additional regularization A|3]? to the loss?

L(p) = _Z"llogp(% )+ A8 (32)
== il [y log pi + (1 —yi) log[1 — pi]] +AIBI° (33)

VL(B) = %?T = i(pi —yi) i +2MB = X (p —y) + 2\ (34)
V2L(8) = 8;%(2@) _ ,nl pi(l = pi) @ @) + 20 = XTWX + 2AI (35)
where p(z) := P(y :171 |z) = o(2'B), pi :=p(x:), W := diag(po (1 — p)) (36)

(iii) same! nnl=cross-entropy with one-hot encoded target; (above includes \)
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