
Robot Learning

Weekly Exercise 2

Marc Toussaint & Wolfgang Hönig

Learning & Intelligent Systems Lab, Intelligent Multi-Robot Coordination Lab, TU Berlin

Marchstr. 23, 10587 Berlin, Germany

Summer 2024

1 Work with the Literature

[The links to literature sometimes point to journal sites, but they should be accessible from within TU Berlin.]

a) Have a look at Eq. (1) of

H. T. Siegelmann, B. G. Horne, and C. L. Giles. Computational capabilities of recurrent NARX neural networks.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(2):208–215, 1997. URL: https:

//ieeexplore.ieee.org/abstract/document/558801/

This paper describes a classical “NARX” model. Consider the discrete time dynamics

vt+1 = vt + ut−3 (1)

pt+1 = pt + τvt−2 (2)

yt = pt , (3)

with variables (pt, vt), controls ut, and sensor observation yt. τ ∈ R is a fixed constant. (In words: the control

directly adds to the velocities – but with a delay of 3 steps! And the velocities add to the position – but with a

delay of 2 steps! And we only observe position pt, not velocities.)

Could the “NARX” model described in the paper above learn this dynamics? How would you have to choose nu
and ny?

We rewrite the dynamics in NARX form:

yt = pt = pt−1 + τvt−3 (4)

= pt−1 + τ [vt−4 + ut−7] (5)

= pt−1 + τ [1
τ

(pt−1 − pt−2) + ut−7] (6)

= 2pt−1 − pt−2 + τut−7 . (7)

Which is in NARX form for nu = 7 and ny = 2.

b) Also have a look at Eq. (1) of

M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian Processes for Data-Efficient Learning in Robotics and Control.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–423, 2015-02. URL: http://ieeexplore.

ieee.org/document/6654139/, doi:10.1109/TPAMI.2013.218

This is also called a state-space model. How can you define xt for our dynamics above so that it can be represented in

that form (1)?

Go back to the original equations (1-3). We need to define xt to be “all relevant things on the RHS” of eqns (1-3). xt
definitely needs to contain pt to predict yt, but also vt−2 to predict pt+1, and therefore also vt−2 and ut−5 to predict vt−1.

So let’s try

xt =



pt
vt−2

ut−1

ut−2

ut−3

ut−4

ut−5



, and xt+1 =



pt+1

vt−1

ut
ut−1

ut−2

ut−3

ut−4



=



pt + τvt−2

vt−2 + ut−5

ut
ut−1

ut−2

ut−3

ut−4



= f(xt, ut) . (8)

1

https://ieeexplore.ieee.org/abstract/document/558801/
https://ieeexplore.ieee.org/abstract/document/558801/
http://ieeexplore.ieee.org/document/6654139/
http://ieeexplore.ieee.org/document/6654139/
https://doi.org/10.1109/TPAMI.2013.218

Robot Learning
Weekly Exercise 2, Marc Toussaint & Wolfgang Hönig—Summer 2024 2

2 System Identification of a Simple Car

Consider the dynamics model of a first order car with states q = (x, y, θ)>

(position and orientation), actions/controls u = (s, φ)> (speed and steering

wheel angle), and known dynamics

q̇ = f(q, u) =


s cos θ
s sin θ
s
L tanφ

. (9)

Here, L is the distance between the wheels and not known.

a) Assume you have an example trajectory D = {(xt, yt, θt, st, φt)}nt=1, where individual datapoints were sampled

at 10Hz. Formulate an optimization problem that computes the “best” L for the given data.

L∗ = argmin
L

n−1∑
t=1

(
L− st

θ̇t
tanφt

)2

, (10)

where θ̇t is estimated numerically from the data (which is why we have n−1 rather than n data points). A basic estimate

is θ̇t ≈ d(θt+1,θt)

∆t
, where d(θt+1, θt) is a distance metric in SO(2).

An alternative error function is

L∗ = argmin
L

n−1∑
t=1

(
θ̇t −

st
L

tanφt
)2

. (11)

b) Find a closed-form solution for your optimization problem in a).

Since it’s a quadratic problem, we can find the global extrema when the gradient is zero:

2

n−1∑
t=1

(
L∗ − st

θ̇t
tanφt

)
= 0 (12)

(n− 1)L∗ =

n−1∑
t=1

st

θ̇t
tanφt (13)

(In other words, taking the mean over the estimated individual L’s.)

3 Mountain Car Dynamics Learning

This is a coding exercise. Please bring your laptop and connect to the HDMI in the tutorial to show your results. (If

you upload a pdf, just include a screenshot of results in the pdf.)

Install the mountain car simulation of gymnasium (https://gymnasium.farama.org/) using

pip install gymnasium[classic-control]

The following code simulates a few steps and collects data for a dynamics learning problem:

import gymnasium as gym

import numpy as np

env = gym.make(’MountainCarContinuous-v0’, render_mode=’human’)

for this problem observation=state

u_dim = env.action_space.shape[0]

x_dim = env.observation_space.shape[0]

https://gymnasium.farama.org/

Robot Learning
Weekly Exercise 2, Marc Toussaint & Wolfgang Hönig—Summer 2024 3

data_input = np.zeros((0,x_dim+u_dim))

data_target = np.zeros((0,x_dim))

n_data = 200

x_state, info = env.reset()

for t in range(n_data):

u_controls = env.action_space.sample() # agent policy that uses the observation and info

u_controls = np.sin([.01*t])

x_prev = x_state

x_state, reward, terminated, truncated, info = env.step(u_controls)

terminated = a terminal state (often goal state, sometimes kill state, typically with pos/neg reward) is reached;

formally: the infinite MPD transitions to a deadlock nirvana state with eternal zero rewards

truncated = the simulation is ’artificially’ truncated by some time limited - that’s actually formally inconsistent to the definition of an infinite MDP

data_input = np.vstack([data_input, np.concatenate([x_prev, u_controls])])

data_target = np.vstack([data_target, x_state])

if terminated or truncated:

if truncated:

print(’-- truncated -- should not happen!’)

else:

print(’-- terminated -- goal state reached’)

x_state, info = env.reset()

env.close()

print(’input data:’, data_input.shape)

print(’output data:’, data_target.shape)

a) Increase the amount of data you collect (e.g. to n = 1000) and learn a regression from the input to output.

Use whatever ML techniques you learned about in previous courses. Also linear regression is an option, which

should work particularly well if you happen to include cos(3x0) as a feature (where x0 is the first entry of x: the

position; see the domain documentation).

b) The above might not work well (in the sense of generalizing to the full state space), because the controller

generating the data (u_controls = np.sin([.01*t])) is not very explorative. Play around with alternatives that

generate much better data for learning.

Following the typical ’grid sampling’ of frequency inputs when analyzing linear systems in frequency space, I modified
exploration to

freq = 1+t//100

u_controls = np.sin([.01*freq*t])

c) Assume that you could only observe the position x0 of the car, not the velocity x1. As the state is not fully observable,

you’ll need to learn an autoregression model with longer input window. Modify the code above so that the data only

contains positions and controls as input, and predicts the next position.

Simple for this simulation: store data xt-2, xt-1, u 7→ xt with x=position only. In this particular simulation, the difference

xt-1 − xt-2 = vt-1 is the velocity.

d) [Added for the tutorial session, to show you an easy way of how to make use of a learned model.] First, since we know

this is a physical system with observed position q and velocity q̇, let’s also treat is like that: The forward dynamics is a

mapping q, q̇, u 7→ q̈, while the inverse dynamics is the mapping q, q̇, q̈ 7→ u. Learn the inverse dynamics function (define

q̈ as the change in velocity by a simulation step). Then use the inverse dynamics to impose a PD behavior

q̈∗ = kp(q
∗ − q)− kdq̇

with q∗ = 2 and kp = m/τ2 , kd = 2mξ/τ (exactly as in last exercise solution), and τ = 50, ξ = 0.9.

References

[1] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian Processes for Data-Efficient Learning in Robotics

and Control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–423, 2015-02. URL:

http://ieeexplore.ieee.org/document/6654139/, doi:10.1109/TPAMI.2013.218.

[2] H. T. Siegelmann, B. G. Horne, and C. L. Giles. Computational capabilities of recurrent NARX neural networks.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(2):208–215, 1997. URL: https:

//ieeexplore.ieee.org/abstract/document/558801/.

http://ieeexplore.ieee.org/document/6654139/
https://doi.org/10.1109/TPAMI.2013.218
https://ieeexplore.ieee.org/abstract/document/558801/
https://ieeexplore.ieee.org/abstract/document/558801/

	Work with the Literature
	System Identification of a Simple Car
	Mountain Car Dynamics Learning

