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1 Literature: SAC

The following paper introduces Soft Actor-Critic, a state-of-the art RL method that integrates many good ideas that

have been discovered over the last decade into a rather clean algorithm:

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor. In International Conference on Machine Learning, pages 1861–1870, 2018. URL:

https://proceedings.mlr.press/v80/haarnoja18b

a) First some bug hunting:

– In the Supplementary Material, Appendix A., Equation (14), there is a notational bug. Can you find it?

– In the main paper, going from Eq. (5) to (6), I think there is another bug. Can you find it?

– The line below (6) states “where the actions are sampled” – can you explain where actions are sampled?

– Idea for another exercise: In the paper the authors state that the gradient of the policy parameters could be
estimated using the REINFORCE / likelihood ratio gradient estimator. The students could derive this one, or show
that the reparametrization one has lower variance.
This would link ex 1 and 2 nicely.

in (14): There is an expectation Esl,al{·} but sl, al nowhere used. That must be a bug, just syntactically. Solution: It

should be [r(sl, al) + αH(π(·|sl)) | st, at].

Eq (5) has an Eat{·}, which is lost in (6). It should be

· · · (Vψ(st)− Eat∼πϕ{Qθ(st, at)− log πϕ(at|st)})

That also explains what “actions are sampled” means. (Maybe they dropped the Eat∼πϕ{} because they wanted to save

space and then put in the sentence below the “where actions are sampled”..? But that’s crazy.)

b) Now the core question: In Alg. 1 lower part you find three lines to train the parameters ψ, θi, ϕ, as well as a low-pass

filter for ψ̄.

– Find out which functions these parameters parameterize.

– Find out where these parameters are used during training, i.e., the inter-dependencies of training: For instance, when
ϕ is trained, does that depend on ψ? Answer this for all parameters ψ, θi, ϕ.

Vψ: the value function, Qθ1,2 the double Q-functions, πϕ the policy

training Vψ depends on θ1,2 (both, taking min, as explained on the right) and ϕ

training Qθi depends only on the low-pass of ψ! → very stable

training πϕ depends on θ1,2 (both, taking min) but not ψ

2 The Reparametrization Trick

We typically write a conditional density as p(x|y). If that depends on parameters (to be trained), we may write this

as pθ(x|y) or p(x|y; θ).
The reparametrization trick states that any (conditional) distribution p(x|y; θ) can instead be represented as a deter-

ministic function x = f(y, ϵ; θ), ϵ ∼ p(ϵ).
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a) Given a Gaussian distribution pθ(x) = N(x|µ,Σ) with parameters θ = (µ,Σ), µ ∈ Rn, Σ ∈ Rn×n, how can you

rewrite this as deterministic x = fθ(ϵ) with ϵ ∼ N(0, In), ϵ ∈ Rn?

First, ϵ ∼ N(0, 1) is n-dim Gaussian. (Sorry if that was not clear.)

Given ϵ ∼ N(0, 1), we have (for invertible C):

N(ϵ, 0; I) = |C| N(Cϵ, 0; CC⊤) = |C| N(Cϵ+ µ, µ; CC⊤) . (1)

Therefore Cϵ + µ is distributed Gaussian with mean µ and covariance matric CC⊤. Therefore, define fθ(ϵ) = Cϵ + µ

where C is the Cholesky decomp of Σ.

Note, this way of manipulating Gaussians is perhaps not common. You really think of N(x, a;A) = 1
|2πΣ|1/2

exp{− 1
2
(x−a)⊤A-1(x−

a)} as just an expression, and the above equalities clearly hold for this expression.

b) Given discrete (aka. categorical) distribution p(x) over a discrete x ∈ {1, ..,M}. How can you rerepresent sampling

x ∼ p(x) as a deterministic function x = f(ϵ) with ϵ ∼ U[0, 1] uniformly in the real inverval [0, 1]?

Let F (z) = p(x ≤ z) be the accumulated distribution (e.g., F (M) = 1, F (1) = p(1). Think of F (z) as partitioning the

interval [0, 1] in M segments, each with size p(z). Then define f(ϵ) = min{z ∈ {1, ..,M} : F (z) ≥ ϵ}, i.e., the smallest

integer z such that F (z) ≥ ϵ.

[This is called a “trick” in a particular context: Sometimes there is a sampling step within an architecture, i.e., within a computation graph.

E.g. x 7→ z ∼ pθ(z|x), z 7→ y = gθ(z), which is a VAC example, where the latent variable z is sampled in the “middle” of the architecture.

Gradients in principle don’t propagate through a sampling operation, and standard training would not be possible. But representing this as

x 7→ z = fθ(x, ϵ), z 7→ y = gθ(z) with the sampling ϵ ∼ p(ϵ) done outside the architecture, gradients flow through f and g as usual, and the

training process has to sample ϵ’s as if it was data.]

3 Mountain Car RL using SAC

Use the SAC implementation in Stable Baselines3 to solve the Continuous Mountain Car problem: https://stable-baselines3.

readthedocs.io/en/master/modules/sac.html.

a) First, run SAC off-the-shelf, with default parameters using the example code provided on the above URL. In the

tutorial, be able to demonstrate the final policy: Run multiple test rollouts, and compute the discounted total

return (directly from the reward observations) for each test rollout.

b) Monitoring the training process is generally important in RL. Follow https://stable-baselines3.readthedocs.

io/en/master/guide/examples.html#callbacks-monitoring-training to plot the training process (and gen-

erally learn about the Callback mechanism).

c) The SAC method has a ton of parameters. Try:

– Fixing ent_coef to one particular value (e.g. 10; or check the SAC paper for common choices), and report on the
difference.

– The discounting factor gamma, e.g. to γ = 0.999.

– The network architecture (by default net_arch = [256, 256]). You’ll have to look into code to understand the param-
eter, esp. the get_actor_critic_arch method in https://github.com/DLR-RM/stable-baselines3/blob/master/

stable_baselines3/common/torch_layers.py. Try smaller networks.
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