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1 Literature: Privileged and Sensorimotor Policy Training

Here is a prominent application paper for RL:

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion over challenging ter-

rain. Science Robotics, 5(47):eabc5986, 2020-10-21. URL: https://www.research-collection.ethz.ch/bitstream/

handle/20.500.11850/448343/1/2020_science_robotics_lee_locomotion.pdf

It uses standard RL in simulation to train a privileged policy (which they call “teacher policy”) which has full access

to the simulation’s state information (e.g. exact terrain profile). In a second stage they train a sensorimotor policy

(which they call “student policy”) to imitate the privileged policy, but with sensorimotor (partially observable) input

only. As the teacher policy can be queried anywhere, they can use DAgger for imitation, which simplifies imitation

learning a lot.
[The general idea of training a sensor-based (=partial input) policy from a privileged (=full information) policy is old, previously called input remapping, or just surrogate

model.]

Fig. 4 gives an overview of the approach. Here the questions:

a) The input to the previleged policy is full information (exact robot & simulation state). But what is the definition

of the output action āt? Looking for an answer you’ll find words like “leg frequencies” and “foot position

residuals” – what are these?

page 8: “The policy outputs fi’s and target foot position residuals (∆rfi,T )”. fi’s are modulations of the base frequency

(1.25Hz) (one number), and ∆r ∈ R3 are foot position offsets, relative to a fixed (expert programmed) reference motion

F (ϕ). The policy outputs this for each leg, I think. (So, āt should be 16-dim).

b) The Supplement S4 (pdf page 16) explains the reward function – a great example for reward engineering (in the positive

sense, as this reflects the authors’ understanding of “good locomotion”). Be able to explain each term and how they

relate to higher level “commands”.

A linear combination of 7 terms.... A “bell-shaped” reward (of the form exp(−sx2)) is used in the context of following

(operator-commanded) reference velocities. Foot Clearance and Collisions are (surprisingly) low weighted soft penalties.

Smoothness a standard acceleration penalty, and torque penalties standard control costs (closely related to acceleration

penalties).

c) Eq.(1) includes a second loss term, comparing l̄t(ot, xt) with lt(H). Explain what lt(H) is and the idea of this term.

My favorite detail of the paper: The privileged policy is force (its architecture designed) to compress the privileged

information into a latent code l̄t. The sensor-based policy does not have access to this information, but is trained to

predict that same l̄t from a history H of observations. This predicted lt is then fed into another MLP (together with

observable information ot) to predict the action at. This pipeline of two networks is trained to minimize the prediction

error on both, lt and at.

2 Episodes & Terminal States

Standard MDP theory assumes an infinite process s0, a0, r0, s1, a1, r1, ... of states, actions and rewards. Accordingly,

the return is defined as the infinite sum
∑∞

t=0 γ
trt.
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However, practical problems in the literature often involve “terminal states”, and one speaks of “episodes”. The

following exercise clarifies how “terminal states” and “episodes” are meant in an infinite MDP.

a) We define a terminal state as follows: Assume that in step T the agent reaches a terminal state sT . The agent

can then make a very last action aT , and gets a final reward rT = R(sT , aT ), but after this “there are no more

states, actions, or rewards”, and the total return of the agent is
∑T

t=0 γ
trt.

At first sight this is inconsistent to how MDPs are defined, because by definition they do not terminate. How

can you construct a formal MDP to model such terminal states? (Tip: Extend the state space.)

We can add a ‘Nirvana’ state to the MDP; informally, the nirvana state sN has the properties

� the terminal state transitions to the nirvana state for any action.

� one cannot escape from the nirvana state

� there is no reward in the nirvana state

The reward then becomes
∑∞

t=0 γ
trt =

∑T
t=0 γ

trt +
∑∞

t=T+1 γ
t · 0 =

∑T
t=0 γ

trt

b) Consider an MDP where the goal state is a tunnel state, which means that every choice of action in the goal state leads

to receiving the goal reward and transitioning to a (maybe random) initial state s ∼ P (s0).

Is the optimal policy for the MDP with tunnel goal state the same as the optimal policy for an MDP where the goal state

is a terminal state? Provide arguments (ideally a rough proof or counterexample) for your answer.

The answer is no: One can construct counterexamples.

First recall the geometric series
∑∞

t=0 γ
t = 1

1−γ

A counter example is a MDP where at the start we have two choice, and none afterwards. All transitions are deterministic.

The first choice leads to 1 transition, then reward a, then termination; the second choice leads to 5 transitions without

reward, then reward b, then termination.

If the reward states are terminal states, the first choice has return γa, the second choice has return γ5b. We can choose

b large so that the second choice is better.

If the reward states are tunnal states, the first choice has return γa 1
1−γ2 , and the second choice has return γ5b 1

1−γ6 . The

latter decreases drastically with γ; and for same a, b, γ the first choice is better.

c) In practice one never runs (or simulates) a process infinitely long. Instead, one typically aborts/truncates at some finite

horizon T . One such truncated run is called episode. One then typically repeats many episodes (to collect data for

learning or estimation of values/performance). When an episode was truncated, discuss how one could actually estimate

the expected return of the policy?

Truncation is trickly. (That’s why gym environments explicitly report whether an episolde was trunctated instead of

reached a terminal state.) When an episode was truncated then the policy “could have” collected more reward; e.g., if

the last state was rewarded with r and the policy could just rest there, one should add r 1
1−γ

to the total return to be fair.

However, that depends very much on the problem. In practise, people usually ignore the information that the episode

was truncated instead of terminated, and only report on the truncated return. Strictly speaking this makes the MDP

non-stationary, because absolute time influences the expected total return, not just state.

3 Lunar Lander Domain Randomization

This is a coding exercise. Please bring your laptop and connect to the HDMI in the tutorial to show your results. (If

you upload a pdf, just include a screenshot of results in the pdf.)

Install the lunar lander simulation of gymnasium (https://gymnasium.farama.org/) using

pip install "gymnasium[box2d]"

Similar to before, one can create an instance of the lunar lander (with varying wind enabled) using

https://gymnasium.farama.org/
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env = gym.make(’LunarLanderContinuous-v2’, enable_wind=True)

a) Train a policy – you should be able to reach rewards of > 200. To avoid finding new hyperparameters, use TD3

rather than SAC for training, where the default settings (with MlpPolicy and action noise) should work well.

Hint: The action noise can be defined as follows:

from stable_baselines3.common.noise import NormalActionNoise

action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions))

b) Validate your policy in environments with different wind magnitudes and gravities. You can adjust these settings
when making a gym environment, e.g.,

env = gym.make(’LunarLanderContinuous-v2’, enable_wind=True, gravity=-10, wind_power=5)

For gravity, use values between -11 and -1; for the wind magnitude use values between 0 and 20.

In which settings does your policy work well and in which does it not?

c) Train a policy with domain randomization on both gravity and wind power. How does this policy compare to

the other policy when validating in different settings as in b)?

Hint: You can use the callback mechanism of the policy (for on rollout end) to add the randomization at

the end of each episode. To do this, you can directly modify the parameters of the environment, e.g., set

env.gravity =

np.random.uniform(min value, max value).
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