
Robot Learning

Weekly Exercise 7

Marc Toussaint & Wolfgang Hönig

Learning & Intelligent Systems Lab, Intelligent Multi-Robot Coordination Lab, TU Berlin

Marchstr. 23, 10587 Berlin, Germany

Summer 2024

1 Literature: Adversarial Inverse Reinforcement Learning

Here is an advanced paper on inverse RL applied to robotics problems:

J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement learning, 2018-08-13.

URL: http://arxiv.org/abs/1710.11248, arXiv:1710.11248[cs]

The paper was a big step forward in enabling Deep Learning methods for Inverse RL, namely by formulating a loss

function similar to Generative Adversarial Networks (GANs) – actually following the original idea formulating InvRL

as a discriminative (max margin) problem [3]. A followup paper [4] provides a nicer summary of the history of InvRL

ideas and proposes improvement on Adversarial InvRL, but without robotics applications.

The paper webpage https://sites.google.com/view/adversarial-irl provides some videos. Here the questions:

a) Let’s start with the experiments in Section 7.2: The setting of the evaluation is transfer learning. Be able to

explain Table 1: What are the two domains and what kind of transfer is tested? What does “TRPO, ground

truth” mean (TRPO is a standard RL method)?

“point mass” is not properly defined. Presumably it is q, q̇ ∈ R2, and u ∈ R2 are direct accelerations; the dynamics a

Euler integration.

The quadruped ant is a standard gym environment https://gymnasium.farama.org/main/environments/mujoco/ant/, but the details of the mutilation

are not given. Shrink is clear, but what does “disable” mean? Is the dimensionality of the controls reduced? (That would

be possible when only transferring the learned reward function.)

Ground Truth: TRPO is trained using the true reward function. The others (GAIL, AIRL) are trained using the InvRL-

learned reward function but then evaluated with the true reward function (which is also not clearly stated). TRPO was

also used to generate the expert data for inverse RL, which is why it is generally best.

b) In Section 7.3, the setting of evaluation is imitation learning. How is that different to the setting of 7.2? How does AIRL

compare with GAIL (a pure imitation learning method) and the TRPO expert?

c) The last equation in Sec. 4 (page 4) defines the discriminator Dθ(s, a). In GANs, a discriminator outputs the probability

of whether the input data point is from the “original source” instead of from the learned generative model. What exactly

is the meaning of the output of the Dθ(s, a) defined here?

In logistic regression pθ(y = 1|x) = exp{fθ(x)}
exp{fθ(x)}+exp{−fθ(x)}

is class y = 1 probability when fθ(x) the energy of class y = 1

and −fθ(x) the energy of class y = 0. fθ is then trained to minimize the classification loss under this probabilitic model.

In our case, fθ(s, a) is the energy of class “expert-took-this-action”, while log π(a|s) is the energy of the class “adversarial-

took-this-action”. So this is like logistic regression, but the energy of the “other” class is not assumed −fθ but log π(a|s),
which makes sense as π(a|s) is known and log π(a|s) truely the energy. (As is clear from multi-class classification, it is

perfectly fine to have separate energy models for each class. The special assumption made in binary classification, that

the two energies are f and −f is not mandatory.)

[Note that, as in GANs, Alg. 1 describes an algorithm that also improves the “generative model” (here the learned policy π) whenever the discriminative model

was improved.]

1

http://arxiv.org/abs/1710.11248
http://arxiv.org/abs/1710.11248 [cs]
https://sites.google.com/view/adversarial-irl
https://gymnasium.farama.org/main/environments/mujoco/ant/

Robot Learning
Weekly Exercise 7, Marc Toussaint & Wolfgang Hönig—Summer 2024 2

d) At first it might be unclear why learning Dθ(s, a) is related to extracting an underlying reward function. The last equation

in Sec 6 (page 6) is quite crucial to understand this – explain roughly why the two neural nets gθ(s) and hϕ(s) in Eq.(4)

end up estimating reward and value functions.

First, suddenly the discriminator is extended to be a function of (s, a, s′) instead of just (s, a). That’s of course “legal” to

do, but not well motivated if one understands that discriminator to be a classifier of expert-vs-adversarial-took-this-action,

which should only depend on a.

But it is not wrong to make it a function of (s, a, s′); and the special form (4) then explains this: Note that γ plays a

crucial role in (4). This particular form of the energy function forces hϕ to learn a very particular state-only-dependent

term that relates to discounting and recursiveness of values; while the gθ term may depend on action. The last equation

in Sec. 6 illustrates how this forces the training to converge to a Q and V function.

2 Inverse RL on a Toy Control Problem

Consider a trivial control domain, with state x ∈ R, controls u ∈ [−1, 1], and deterministic state transitions xt+1 =

xt + ut.

The expert policy π∗ is deterministic and chooses π(x) = clip(−x), where clip(x) = max{−1,min{+1, x}} (a typical

notation for clipping you should get used to).

a) What is a reward function R(x) (depending on state only), such that the expert policy π∗ is optimal? Derive the

Q-function Qπ∗
(x, u) for your reward function R(x) and prove that π∗ is optimal. Assume a given discounting

γ ∈ [0, 1). Is π∗ the only optimal policy for your R(x), or do equally optimal policies exist?

Obvious reward function R(x = 0) = 1 and zero otherwise.

The value function in state x = 0 is M = 1
1−γ

, the value in other states is V ∗(x) = γ⌈|x|⌉M .

The Q-function equals the value function for optimal controls; and γV for non-optimal controls (moving away). Assuming

x > 0, whenever u ≤ fmod(x) we are still optimal.

b) For a given γ, there exist many reward functions R(x) such that π∗ is optimal. (Rescaling R is trivial – neglect this.)

Describe a space of alternative reward functions such that π∗ is still optimal; e.g., find some (non-trivial) F (x) such that

for R(x)← R(x) + F (x), π∗ is still optimal.

Given any monotone decreasing function g(x), R(x) = g(|x|) should lead to the same optimal behavior.

Or adding a constant to any such R should also lead to the same behavior.

[Note, this sounds like a question about reward shaping (=changing R while guaranteeing invariance of the optimal policy) [2]. However, this question is slightly

different, as we have a concrete deterministic dynamics and do not require invariance w.r.t. all possible world dynamics.]

c) Now, conversely, find a (minimal) variation F (x) such that for R(x)← R(x) + F (x), π∗ is not optimal anymore.

[This illustrates how a choice of reward function can discriminate between policies; as is implicit in adversarial InvRL.]

3 Practical Exercise: Exploration in RL

In this exercise, we will revisit the Continuous Mountain Car problem from gym. Previously, running SAC with default

parameters from StableBaselines3 did not perform well. This week, we will explore whether exploration can make

things work better.

One way to explore in RL is by adding noise to the actions taken. The paper Pink Noise Is All You Need: Colored Noise

Exploration In Deep Reinforcement Learning (https://openreview.net/pdf?id=hQ9V5QN27eS) compares three types

of noise:

� Gaussian (white) noise

� Ornstein-Uhlenbeck (OU) noise

� Pink noise

Our goal is to compare the effects of these noises on agent actions during training.

https://openreview.net/pdf?id=hQ9V5QN27eS

Robot Learning
Weekly Exercise 7, Marc Toussaint & Wolfgang Hönig—Summer 2024 3

a) Review the ActionNoise wrapper from StableBaselines3 (https://stable-baselines3.readthedocs.io/en/

master/_modules/stable_baselines3/common/noise.html#ActionNoise), and the Pink Noise paper. Imple-

ment a child class MyPinkNoise(ActionNoise) that returns pink noise when called. Skeleton code is provided;

you need to implement the call and reset methods.

b) StableBaselines3 includes implementations of Gaussian and OU noise (https://stable-baselines3.readthedocs.

io/en/master/common/noise.html). Using your pink noise implementation, plot the different noise traces by

plotting the 1D action on the y-axis and the time step on the x-axis with scale=0.3 for all noises.

What do you observe?

c) Use all three noise types to train SAC on MountainCarContinuous with default parameters. Using scale=0.3,

train for total timesteps=2e4.

What do you observe? Plot the learning curves of all training runs.

HINT: It is not expected that all noises will lead to successful training. You do not need to adjust any SAC

parameters.

a) Look at the solution code in the supplementary materials for an implementation of the MyPinkNoise class.

b) Samples of the different noises look as follows:

We can see that OU noise is highly correlated over time. White noise (Gaussian) is completely uncorreltaed. Pink noise

meets the middle ground: it is correlated, but less than OU. This guarantees exploration, while still staying closer to the

actual policy than when OU noise is being used.

c) The learning curves look as follows:

We can see that only the agent that uses pink noise for explration learns to solve the task.

This gives us the following insights: Pink noise exploration can help to solve problems such as MountainCar. Using

the noise can prevent us from needing meticulous hyperparameter tuning. Secondly, we see that pink noise meets the

sweet-spot of noise being just enough correlated over an episode. Without any correlation, the agent learns only slowly

and converges to a local optimum (return 0). With OU noise, the exploration is so stong that the executed actions are

too far of the current policy for learning to succeed.

NOTE: If you would like to use pink noise in your own future projects, there exists an official implementatino of the

paper, which includes a wrapper for StableBaselines: https://github.com/martius-lab/pink-noise-rl.

https://stable-baselines3.readthedocs.io/en/master/_modules/stable_baselines3/common/noise.html#ActionNoise
https://stable-baselines3.readthedocs.io/en/master/_modules/stable_baselines3/common/noise.html#ActionNoise
https://stable-baselines3.readthedocs.io/en/master/common/noise.html
https://stable-baselines3.readthedocs.io/en/master/common/noise.html
https://github.com/martius-lab/pink-noise-rl

Robot Learning
Weekly Exercise 7, Marc Toussaint & Wolfgang Hönig—Summer 2024 4

References

[1] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement learning, 2018-08-13. URL:

http://arxiv.org/abs/1710.11248, arXiv:1710.11248[cs].

[2] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and application to reward

shaping. In Icml, volume 99, pages 278–287, 1999. URL: https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/

readings/NgHaradaRussell-shaping-ICML1999.pdf.

[3] A. Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In Icml, volume 1, page 2, 2000. URL: http:

//www.datascienceassn.org/sites/default/files/Algorithms%20for%20Inverse%20Reinforcement%20Learning.pdf.

[4] A. Tucker, A. Gleave, and S. Russell. Inverse reinforcement learning for video games, 2018-10-24. URL: http://arxiv.

org/abs/1810.10593, arXiv:1810.10593[cs,stat].

http://arxiv.org/abs/1710.11248
http://arxiv.org/abs/1710.11248 [cs]
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
http://www.datascienceassn.org/sites/default/files/Algorithms%20for%20Inverse%20Reinforcement%20Learning.pdf
http://www.datascienceassn.org/sites/default/files/Algorithms%20for%20Inverse%20Reinforcement%20Learning.pdf
http://arxiv.org/abs/1810.10593
http://arxiv.org/abs/1810.10593
http://arxiv.org/abs/1810.10593 [cs, stat]

	Literature: Adversarial Inverse Reinforcement Learning
	Inverse RL on a Toy Control Problem
	Practical Exercise: Exploration in RL

