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1 Literature: Learning to Plan in TAMP

Here is an example paper for learning to plan:

D. Driess, J.-S. Ha, and M. Toussaint. Deep Visual Reasoning: Learning to Predict Action Sequences for Task

and Motion Planning from an Initial Scene Image, 2020-06-09. URL: http://arxiv.org/abs/2006.05398, arXiv:

2006.05398

The paper trains an image-based action sequence prediction. A follow-up paper1 does something similar with a much

more ambitious Large Manguage Model, but the above paper more clearly defines the problem in relation to TAMP.

To get an overview, you may first watch the video https://www.youtube.com/watch?v=i8yyEbbvoEk.

Here are the questions:

a) Eq. (4) defines the action sequence prediction model π. Note that S is the scene, g the goal, and a1:K ∈
T(g, S), FS(a1:K) = 1 means “a1:K is feasible and leads to goal g”.

How does this π relate to modern sequence/language models, which also predict the next word/token given

previous tokens? (What exactly is similar and different?)

How does this π relate to a trained state evaluation function as they are used, e.g., in modern chess/go engines?

(Which score a board and therefore provide a heuristic for search. What exactly is similar and different?)

The analogy is: a1:k-1 are tokens of previous words. Similar: It predicts the next word (action). Different: Actually it

predicts the “probability of the next word”, or rather that the next word is part of a feasible sentence. Also unusual in

classical LLMs: This prediction is conditional to other information: The scene and the goal. That’s similar to modern

“multi-modal” LLMs, which can take words, images, anything as input (e.g. PaLM-E).

π is exactly the ‘optimal’ state-evaluation function in a one-player game, where the return is binary, indicating feasibility

of a1:K . ’optimal’ in the sense of assuming optimal continuation of future decisions (as in Bellman optimality) – which

is why we have the ∃ quantifiers. However, this state-evaluation function is conditional to S, g, and the state is the full

a1:k-1 so far. (See section on “Relation to Q-Function”).

b) In Eq. (4), the actions ak are input to the network. But they are encoded in a very particular way, as explained in

subsection C (see also video at 0:20sec). How exactly are actions encoded?

Image (depth) paired with object masks. Conveninet: There is no need to given them IDs or numbers. The mask has a

universal format to “refer” to objects, no matter how many objects there are in the scene.

c) As always, understanding the data generation is key. Section V.B (page 7) explains the data generation process, and

Eq. (5) the definition of Ddata (ingnore Dtrain). In this whole process, how often was the feasibility FS(a1:K) of an action

sequence a1:K in a scene S being computed. (This computation happended fully model-based assuming full knowledge of

the scene instantiated in the simulator.)

1D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu, W. Huang, Y. Chebotar,

P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke, K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence. PaLM-E:

An Embodied Multimodal Language Model, 2023-03-06. URL: http://arxiv.org/abs/2303.03378, arXiv:2303.03378
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102 566 + 2 741 573 = 2 844 139

2 Optimal Sequential Manipulation in TAMP

Consider the scene on the right, where we have one robot with 7 degrees of freedom (dofs)

q ∈ R7, and a stick with its pose s ∈ SE(3) as degrees of freedom. (Ignore the triangle in the

image.)

As discussed in the lecture, we consider the whole scene as a single multibody system with

(q, s) as its configuration. Initially the stick is lying somewhere on the table (away from the

red ball); the final goal is for the stick to touch the red ball.

Assume that you have access to three constraint functions:

� ϕgrasp(q, s) ∈ R3 is a 3-dimensional constraint such that ϕgrasp(q, s) = 0 indicates a correct (stable) grasp of the

stick by the robot.

� ϕtouch(s) ∈ R1 is a 1-dimensional constraint such that ϕtouch(s) = 0 indicates that the stick touches the red ball.

� ϕcoll(q, s) ∈ R1 is a 1-dimensional constraint such that ϕcoll(q, s) ≤ 0 indicates that nothing in the scene collides.

a) Formulate a mathematical program that represents the problem of optimally grasping the stick and then, with

the grasped stick, optimally touching the red ball. The problem should only be about finding the grasp pose

and the final pose – not yet the motions in between. As usual, optimality should reflect minimal motion effort

by the robot. Assume the initial configuration is (q0, s0) ∈ R7 × SE(3).

min
q1,2,s1,2

2∑
t=1

||qt − qt-1||2 + ||st − st-1||2 (1)

s.t. ∀t=1,2 : ϕcoll(qt, st) = 0 (2)

ϕgrasp(q1, s1) = 0 (3)

ϕtouch(s2) = 0 (4)

s1 = s0 (5)

relPose(s2, q2) = relPose(s1, q1) (6)

The last line is really the caveat! Imposing that the relative pose of the stick in hand is the same in time slice 1 and 2.

b) It is quite natural to choose (q1, s1, q2, s2) as the decision variables of the above mathematical program. But can you

think of an alternative, lower-dimensional parameterization of the problem?

s1 = s0 so we don’t need that. And we introduce r = relPose(s2, q2) as the actual decision variable, and st = s(r, qt) as

a direct function of the robot pose and the grasp pose. Esp. if the manipulation sequence was longer, this is much lower

dimensional.

min
q1,2,r

2∑
t=1

||qt − qt-1||2 (7)

s.t. ∀t=1,2 : ϕcoll(qt, s(r, qt)) = 0 (8)

ϕgrasp(q1, s0) = 0 (9)

ϕtouch(s(r, q2)) = 0 (10)

s(r, q1) = s0 (11)

c) Now modify the mathematical program above (of a) or b)) to include the full motion from the start configuration until

the stick touches the ball. Use an optimality criterion as is standard in trajectory optimization.
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min
q[0,2],r

∫ 2

t=0

||q̈(t)||2 (12)

s.t. q(0) = q̇(0) = 0 (13)

∀t∈[0,1] : ϕcoll(q(t), s0) = 0 (14)

∀t∈[1,2] : ϕcoll(q(t), s(r, q(t))) = 0 (15)

ϕgrasp(q(1), s0) = 0 (16)

ϕtouch(s(r, q(2))) = 0 (17)

s(r, q(1)) = s0 (18)

d) Neglect the motion again; consider only grasp and touch. But this time consider a sequence of 4 actions: grasp-stick, place-

stick, grasp-stick, touch-ball, where the 2nd action places the stick back on the table before picking it up again. Can you

think of scene (stick and ball placement) where this action sequence makes sense? Instead of (q1, s1, q2, s2, q3, s3, q4, s4),

what would be a lower-dimensional parameterization?

If the ball is very far, so that the stick needs to be grasped at an end; but the stick is also far and can only grasped in

the middle; then a re-grasp of the stick is necessary. The optimization formulation above can solve for this.

First s1 = s0 and s3 = s2, as it is resting on the table. We can also replace s2 by a relative placement parameter

p = relPose(s2, table), which is only 3 or 4dof as the stick needs to lay flat.

(For discussion at the tutorial:) You know how path finding in a standard setting is defined as finding a collision
free path.2 How can the same sequential manipulation problem as in b) be represented as a path finding problem
(respecting all constraints but neglecting optimality)?

Multi-modal motion planning – but one runs into so many issues. Naive/random search over mode transitions/switches can kill

efficiency.
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2E.g., finding a continuous path γ : [0, T ] → Xfree from a given start configuration γ(0) = x0 to a final configuration γ(T ) ∈ Xgoal

within the free configuration space Xfree = {x ∈ X : ϕcoll ≤ 0}.
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