

MOA-NET: SELF-SUPERVISED MOTION SEGMENTATION

Pia Bideau, Rakesh R Menon, Erik Learned-Miller

University of Massachusetts Amherst College of Information and Computer Science

MOTION SEGMENTATION

- P Bideau, E Learned-Miller, ECCV 2016:
 It's moving! A probabilistic model for causal motion segmentation
- P Bideau, A RoyChoudhury, R Menon, E Learned-Miller, CVPR 2018: The best of both worlds: Combining CNNs and geometric constraints for hierarchical motion segmentation
- P Bideau, R Menon, E Learned-Miller, Workshop ECCV 2018:
 MoA-Net: Unsupervised Motion Segmentation

OVERVIEW

Motivation

How do humans know

what is moving in the world and what is not?

- Approach: Motion Segmentation
 - Rotation compensation
 - Learning Motion Patterns: MoA-Net
- Results
- Future Research Questions

- stationary scene
- moving object
- **no** observer motion

- stationary scene
- moving object
- observer motion

- stationary scene
- moving object
- **no** observer motion

- stationary scene
- moving object
- observer motion

- stationary scene
- moving object
- no observer motion

- stationary scene
- moving object
- observer motion

All motions result in changes of the retinal image.

What is the problem about retinal image motion?

- photoreceptors are slow
- motion detection in our brain is challenging

Need to stabilize the image, to reduce retinal image motion

OVERVIEW

Motivation

How do humans know

what is moving in the world and what is not?

- Approach: Motion Segmentation
 - Rotation compensation
 - Learning Motion Patterns: MoA-Net
- Results
- Future Research Questions

APPROACH: MOTION SEGMENTATION

step 1: rotation compensation

step 2: motion segmentation

APPROACH: MOTION SEGMENTATION

step 1: rotation compensation

step 2: motion segmentation

ROTATION COMPENSATION

- rotation + translation
- optical flow magnitude is dependent on scene depth
- optical flow angle is dependent on scene depth

- translation
- optical flow magnitude is dependent on scene depth
- optical flow angle is independent of scene depth

ROTATION COMPENSATION

only camera translation and object motion

optical flow angle field

MOTION SEGMENTATION

step 1: rotation compensation

step 2: motion segmentation

MOTION SEGMENTATION DEFINITION

Def.: Moving Object

A moving object is a connected image region that undergoes some independent motion. The connected image region can be of any size and shape.

- Generating connected object regions.
- Splitting each object into n subregions.
- Assigning to each motion region a translational 3D direction.
- Smoothing motion boundaries inside moving objects.
- Adding random gaussian noise.

- Generating connected object regions.
- Splitting each object into n subregions.
- Assigning to each motion region a translational 3D direction.
- Smoothing motion boundaries inside moving objects.
- Adding random gaussian noise.

$$\theta = \operatorname{atan}(-fV + yW, -fU + xW)$$
$$= \operatorname{atan}(-V' + yW, -U' + xW)$$

Generating connected object regions.

Splitting each object into n subregions.

Assigning to each motion region a translational 3D direction.

Smoothing motion boundaries inside moving objects.

Adding random gaussian noise.

$$\theta = \operatorname{atan}(-fV + yW, -fU + xW)$$
$$= \operatorname{atan}(-V' + yW, -U' + xW)$$

Generating connected object regions.

Splitting each object into n subregions.

Assigning to each motion region a translational 3D direction.

Smoothing motion boundaries inside moving objects.

Adding random gaussian noise.

$$\theta = \operatorname{atan}(-fV + yW, -fU + xW)$$

$$= \operatorname{atan}(-V' + yW, -U' + xW)$$

- Generating connected object regions.
- Splitting each object into n subregions.
- Assigning to each motion region a translational 3D direction.
- Smoothing motion boundaries inside moving objects.
- Adding random gaussian noise.

$$\theta = \operatorname{atan}(-fV + yW, -fU + xW)$$

$$= \operatorname{atan}(-V' + yW, -U' + xW)$$

- Generating connected object regions.
- Splitting each object into n subregions.
- Assigning to each motion region a translational 3D direction.
- Smoothing motion boundaries inside moving objects.
- Adding random gaussian noise.

- Generating connected object regions.
- Splitting each object into n subregions.
- Assigning to each motion region a translational 3D direction.
- Smoothing motion boundaries inside moving objects.
- Adding random gaussian noise.

- Generating connected object regions.
- Splitting each object into n subregions.
- Assigning to each motion region a translational 3D direction.
- Smoothing motion boundaries inside moving objects.
- Adding random gaussian noise.

MOTION SEGMENTATION

step 2: motion segmentation

OVERVIEW

Motivation

How do humans know

what is moving in the world and what is not?

- Approach: Motion Segmentation
 - Rotation compensation
 - Learning Motion Patterns: MoA-Net
- Results
- Future Research Questions

SEGMENTATION RESULTS

video frame ground truth Jain et al. Tokmakov et al. ours

SEGMENTATION RESULTS

	Motion Segmentation: Sintel					
	J Mean	J Recall	J Decay	F Mean	F Recall	F Decay
	†	\uparrow	\downarrow	\uparrow	†	\
Tokmakov [1, 2]	50.46	55.43	44.50	53.43	35.04	39.75
Jain et al. [3]	29.63	24.98	36.07	28.65	14.70	31.20
ours	54.77	54.47	26.57	59.71	61.38	14.79

SEGMENTATION RESULTS

OVERVIEW

Motivation

How do humans know

what is moving in the world and what is not?

- Approach: Motion Segmentation
 - Rotation compensation
 - Learning Motion Patterns: MoA-Net
- Results
- Future Research Questions

FUTURE RESEARCH QUESTIONS

- Importance of the flow magnitude for
 - estimating the scene depth
 - dealing with estimated (noisy) optical flow

-QUESTIONS-