Causal Motion Segmentation in Moving Camera Videos

Pia Bideau, Erik Learned-Miller University of Massachusetts, Amherst

Molion Segmentation

Molion Segmentation

 M Narayana, A Hanson, E Learned-Miller, ICCV13: "Coherent motion Segmentation in moving camera videos using optical flow"

Motion Segmentation

- M Narayana, A Hanson, E Learned-Miller, ICCV13: "Coherent motion Segmentation in moving camera videos using optical flow"
- P Bideau, E Learned-Miller, ECCV16:
 "It's Moving! A probabilistic Model for Causal Motion Segmentation"

Molion Segmentation

- M Narayana, A Hanson, E Learned-Miller, ICCV13: "Coherent motion Segmentation in moving camera videos using optical flow"
- P Bideau, E Learned-Miller, ECCV16:
 "It's Moving! A probabilistic Model for Causal Motion Segmentation"
- P Bideau, E Learned-Miller, Workshop: "Moving Object Segmentation using Statistics of Optical Flow"

Overview

Goal: Segmentation of static environment and moving objects

- compute dense optical flow
- find j different motion models M from optical flow
- Segmentation: assign pixels to different motion models

ICCV Paper

- only camera translation
- angle field

ECCV Paper

- arbitrary camera motion
- angle likelihood

ECCV Workshop

- arbitrary camera motion
- flow likelihood
- incorporating statistics of optical flow

contributions to the motion field:

- camera motion
 - A. translation
 - B. rotation
- object motion

camera rotation only:

camera translation only:

camera rotation only:

optical flow is independent of scene depth

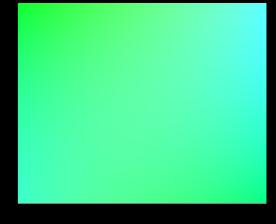
camera translation only:

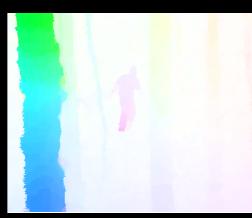
camera rotation only:

optical flow is independent of scene depth

camera translation flow magnitude is only:

dependent on scene depth





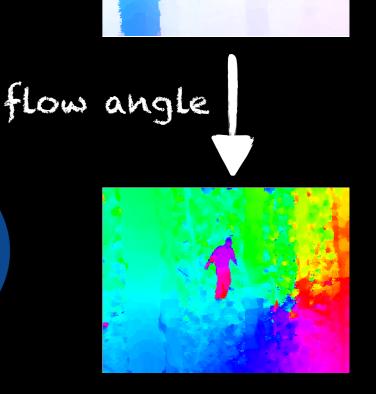
camera rotation only:

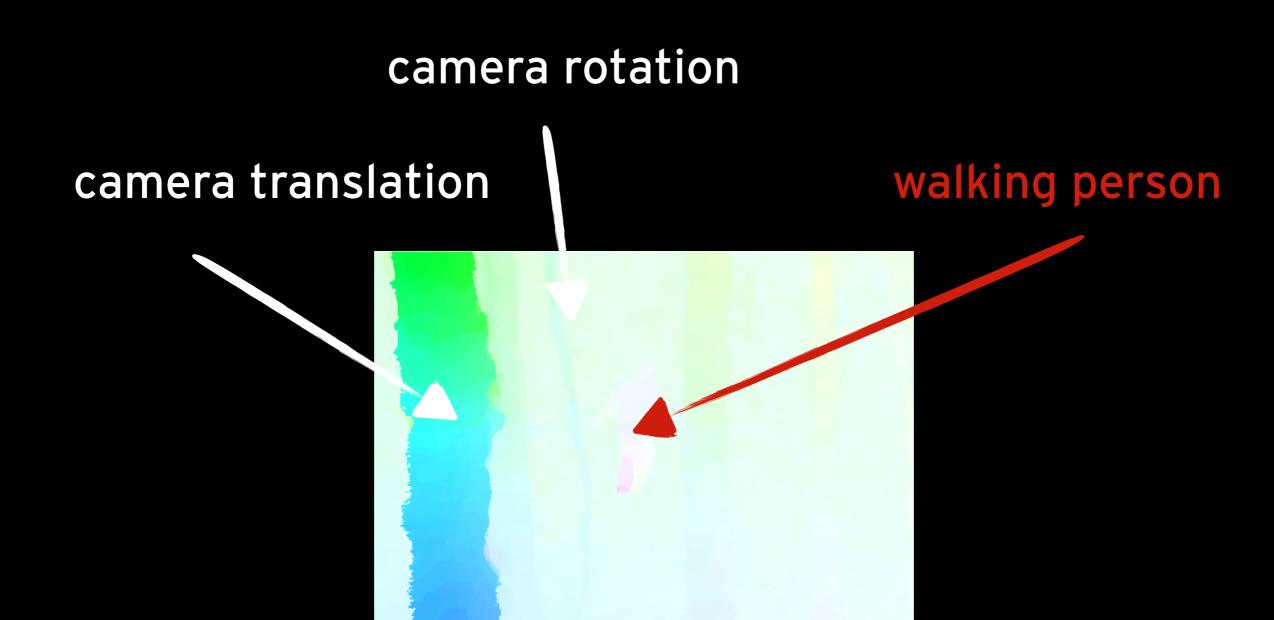
optical flow is independent of scene depth

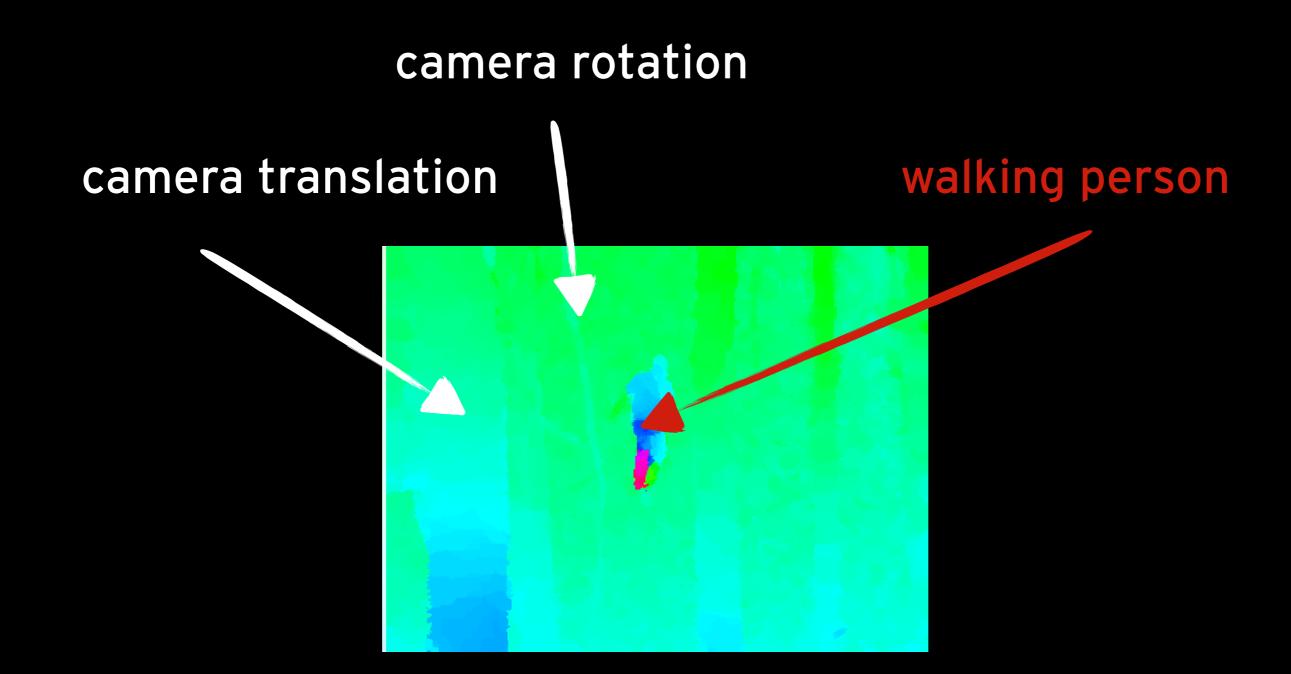
only:

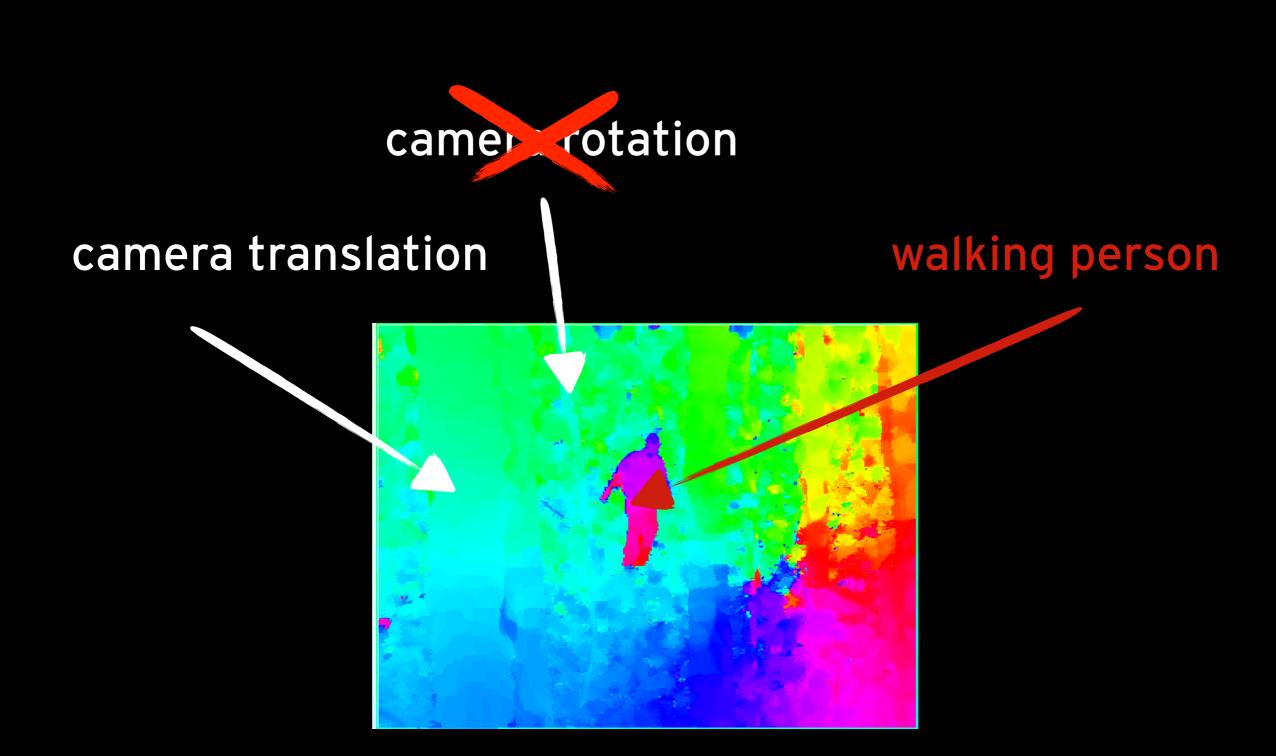
camera translation flow magnitude is dependent on scene depth

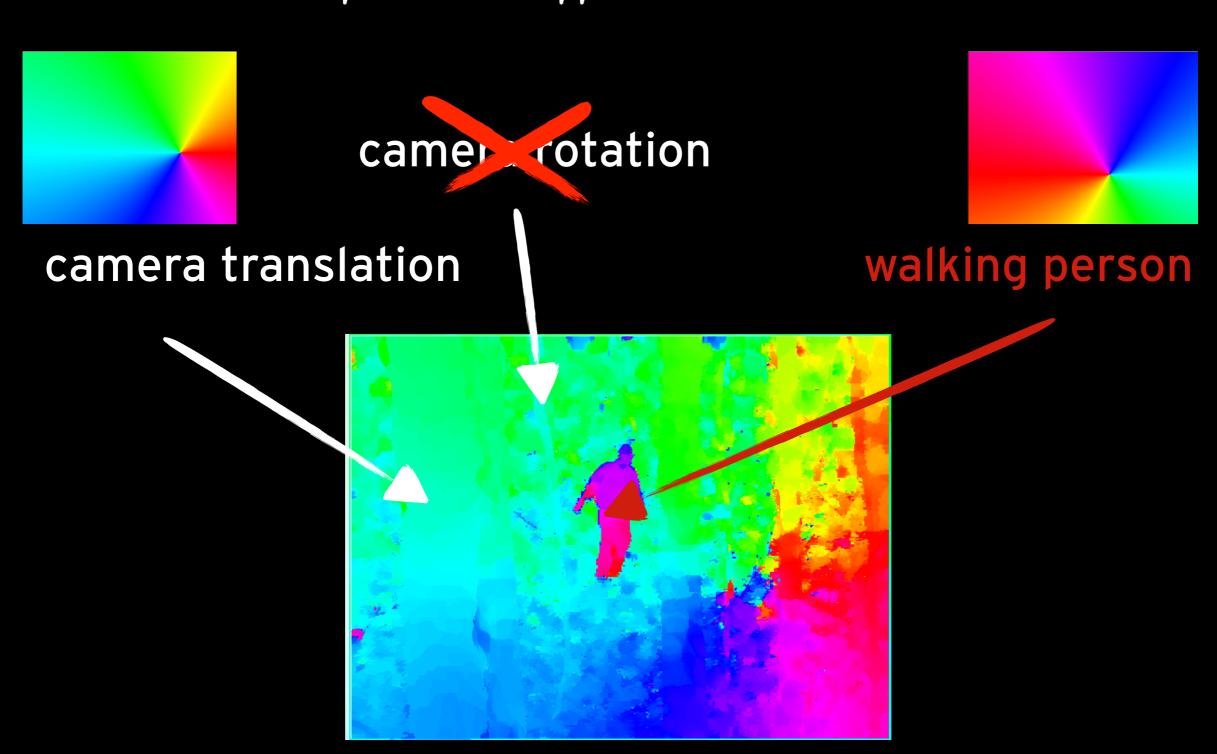
> flow angle is independent of scene depth

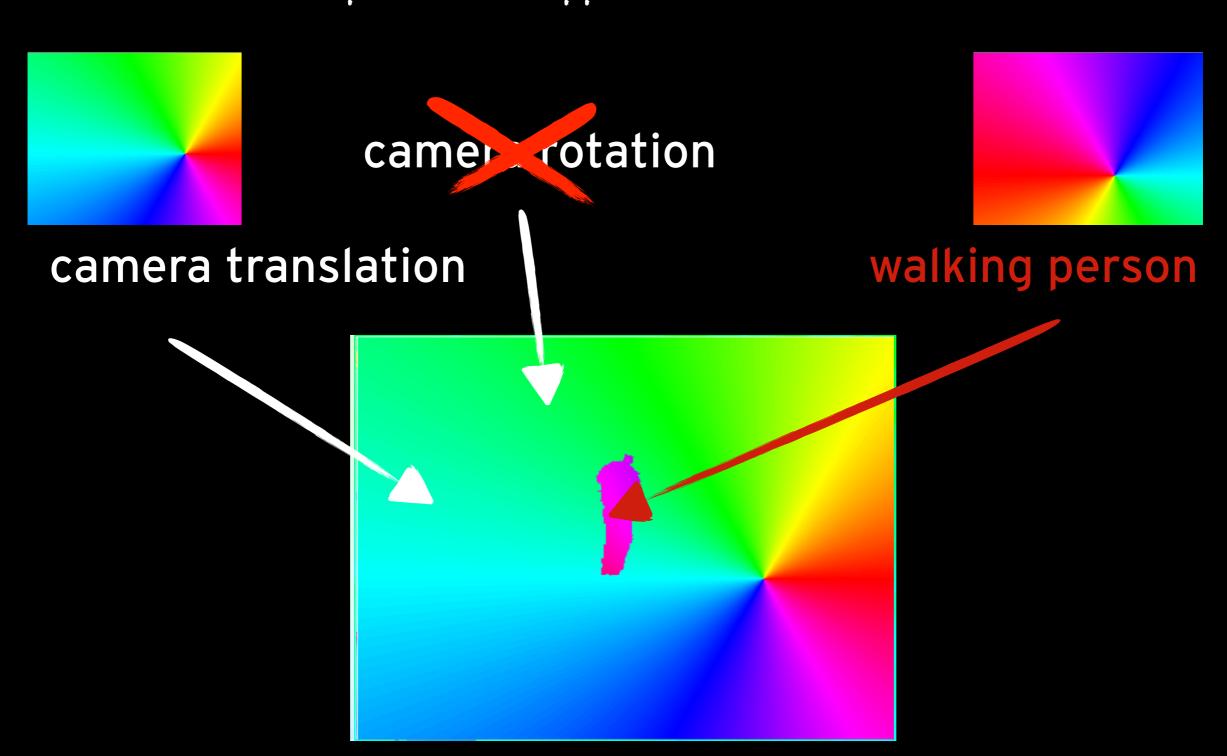






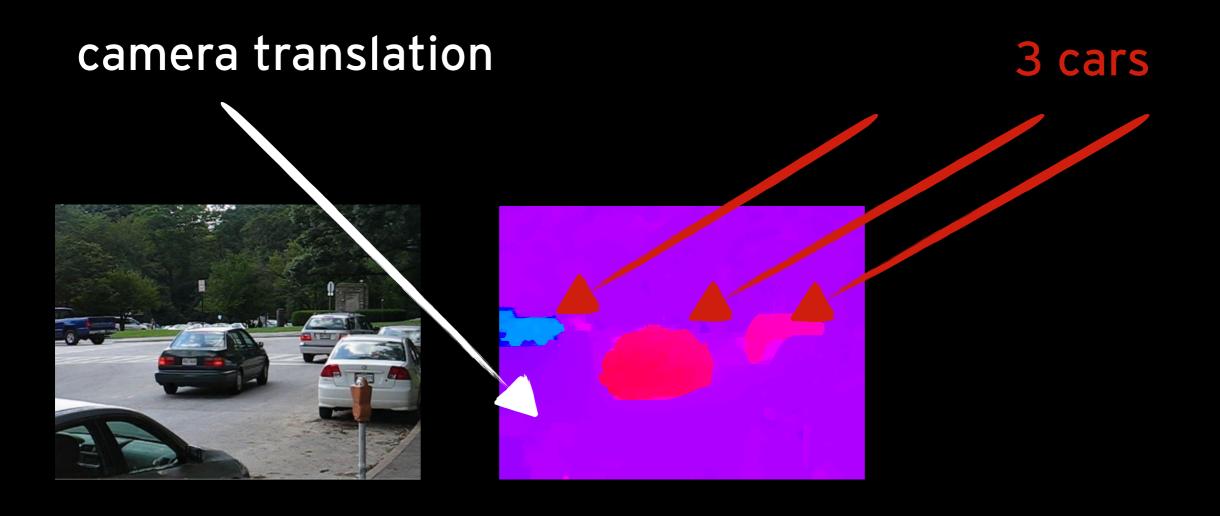


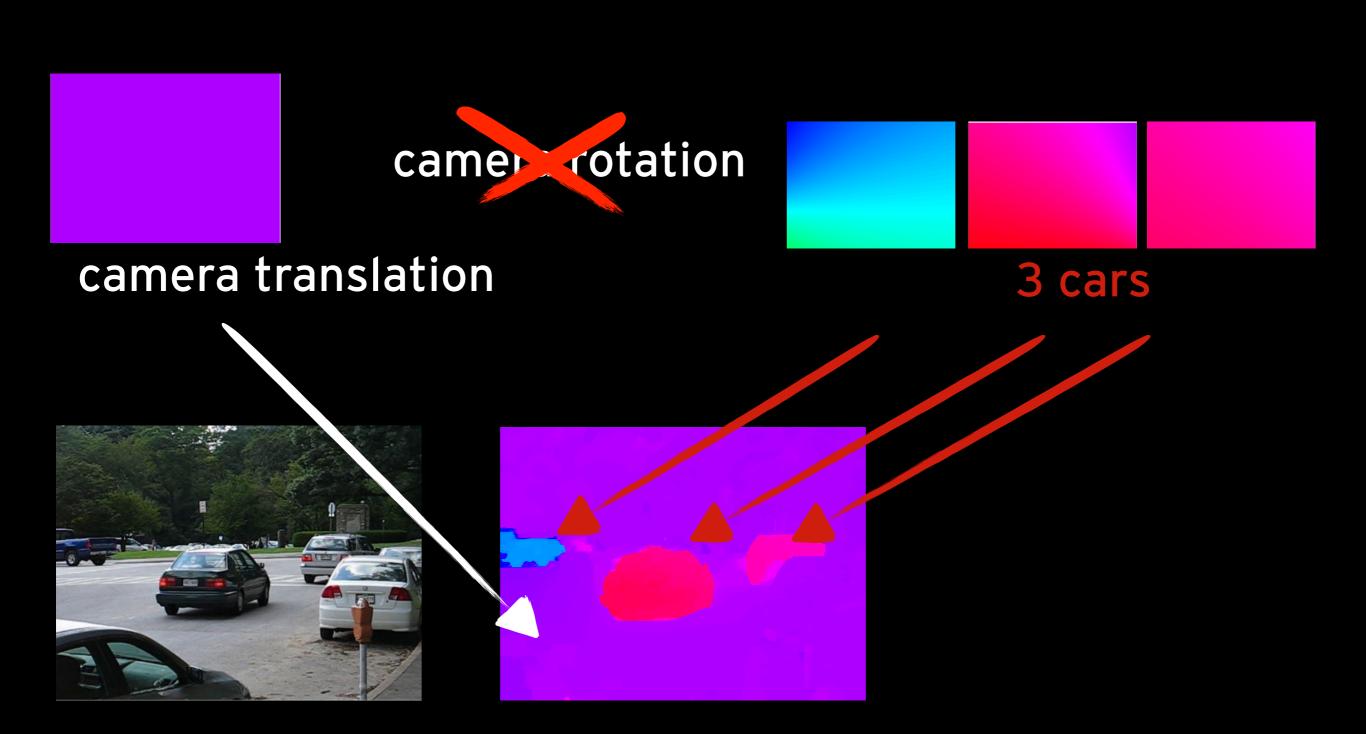




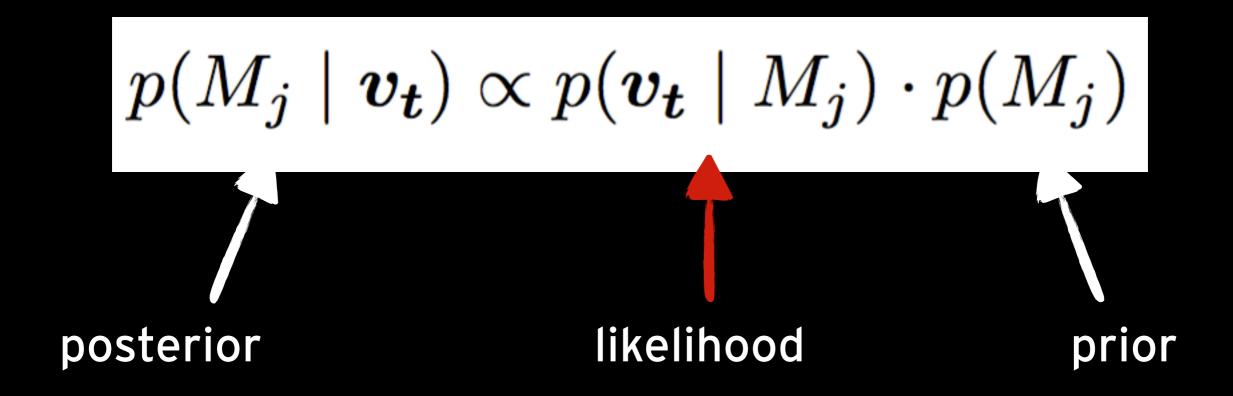
each motion component is approximated with a motion model

camera rotation





segmentation: Bayes' rule

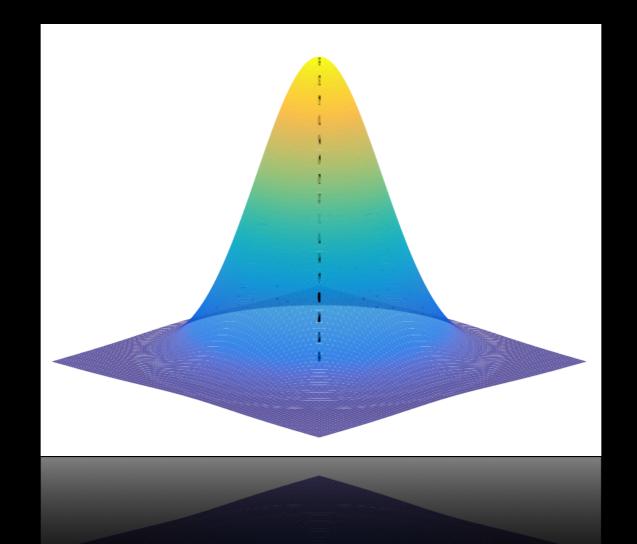


 M_j motion model (angle field) v_t observed trans. flow

Assumption 1

motion field vectors are Gaussian distributed

$$\mathbf{q} \sim \mathcal{N}(0, \Sigma_2)$$



 M_j motion model (angle field) v_t observed trans. flow q true trans. flow

Assumption 2

flow noise *n* is Gaussian distributed conditioned on the flow magnitude

$$\boldsymbol{n} \sim \mathcal{N}(0, \Sigma_1(r))$$

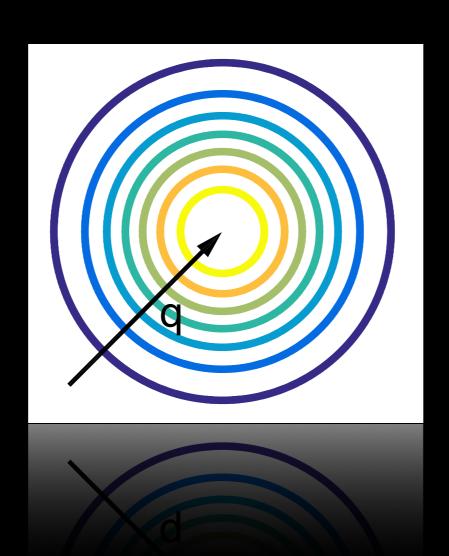
 M_j motion model (angle field)

 v_t observed trans. flow

q true trans. flow

n flow noise

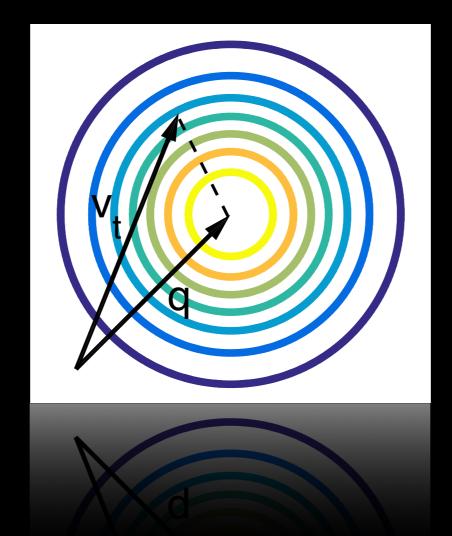
r unknown true flow magnitude



Assumption 3

translational optical flow vectors are noisy observations of the true trans. motion vectors

$$v_t = q + n$$



 M_j motion model (angle field)

 v_t observed trans. flow

q true trans. flow

n flow noise

r unknown true flow magnitude

Segmentation: Bayes' rule

likelihood:

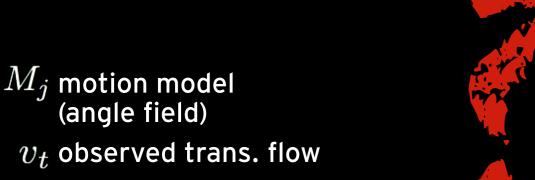
$$egin{aligned} p(oldsymbol{v_t} \mid M_j) &= \int p(oldsymbol{v_t}, r \mid M_j) \, dr \ &= \int p(oldsymbol{v_t} \mid r, M_j) p(r \mid M_j) \, dr \end{aligned}$$

- M_j motion model (angle field)
 - v_t observed trans. flow
 - q true trans. flow
 - n flow noise
 - r unknown true flow magnitude

segmentation: Bayes' rule

likelihood:

$$egin{align} p(oldsymbol{v_t} \mid M_j) &= \int p(oldsymbol{v_t}, r \mid M_j) \, dr \ &= \int p(oldsymbol{v_t} \mid r, M_j) p(r \mid M_j) \, dr \ \end{gathered}$$

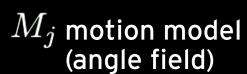


- \boldsymbol{q} true trans. flow
- n flow noise
- r unknown true flow magnitude

segmentation: Bayes' rule

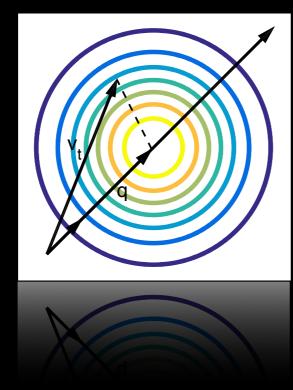
likelihood:

$$egin{align} p(oldsymbol{v_t} \mid M_j) &= \int p(oldsymbol{v_t}, r \mid M_j) \, dr \ &= \int p(oldsymbol{v_t} \mid r, M_j) p(r \mid M_j) \, dr \ \end{gathered}$$



 v_t observed trans. flow

- q true trans. flow
- n flow noise
- r unknown true flow magnitude



Segmentation: Bayes' rule

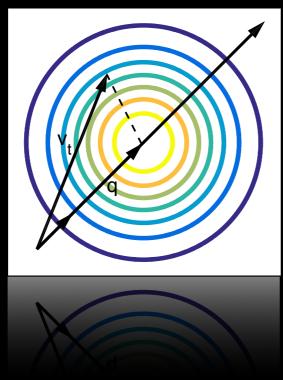
likelihood:

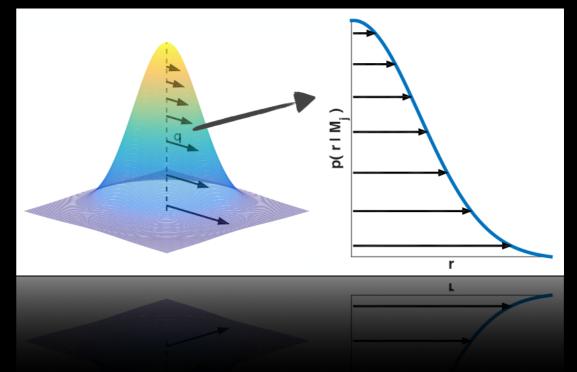
$$egin{aligned} p(oldsymbol{v_t} \mid M_j) &= \int p(oldsymbol{v_t}, r \mid M_j) \, dr \ &= \int p(oldsymbol{v_t} \mid r, M_j) p(r \mid M_j) \, dr \end{aligned}$$

 M_j motion model (angle field)

 v_t observed trans. flow

- q true trans. flow
- n flow noise
- r unknown true flow magnitude

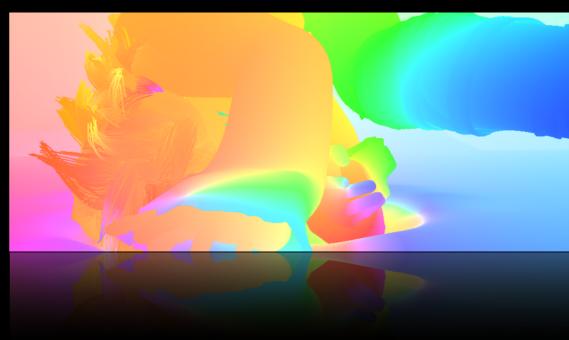




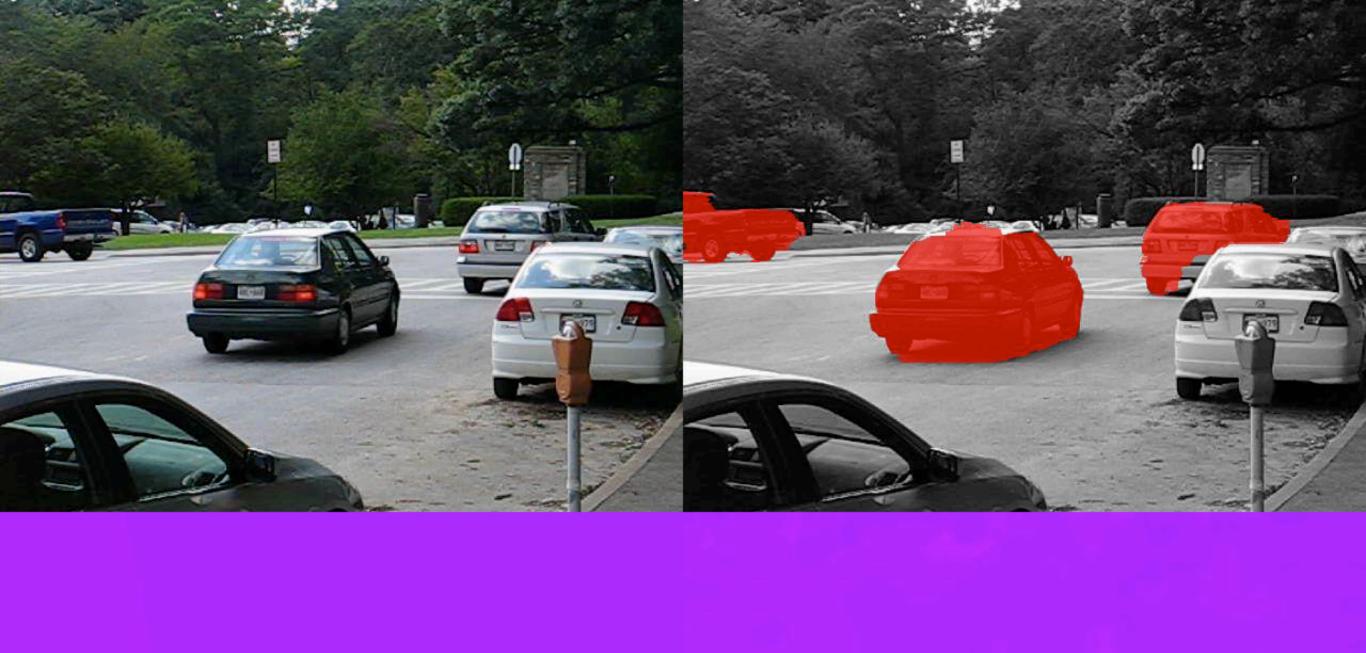
How can we incorporate "true" statistics of optical flow?

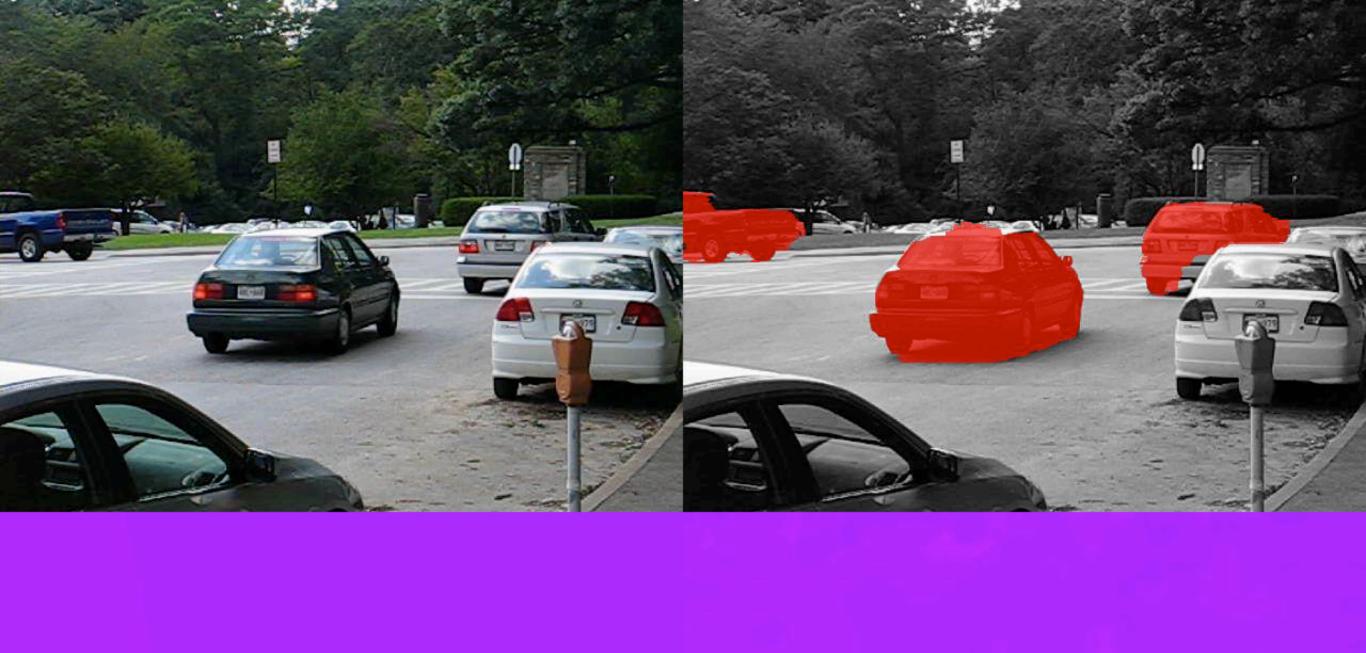
How can we incorporate "true" statistics of optical flow?

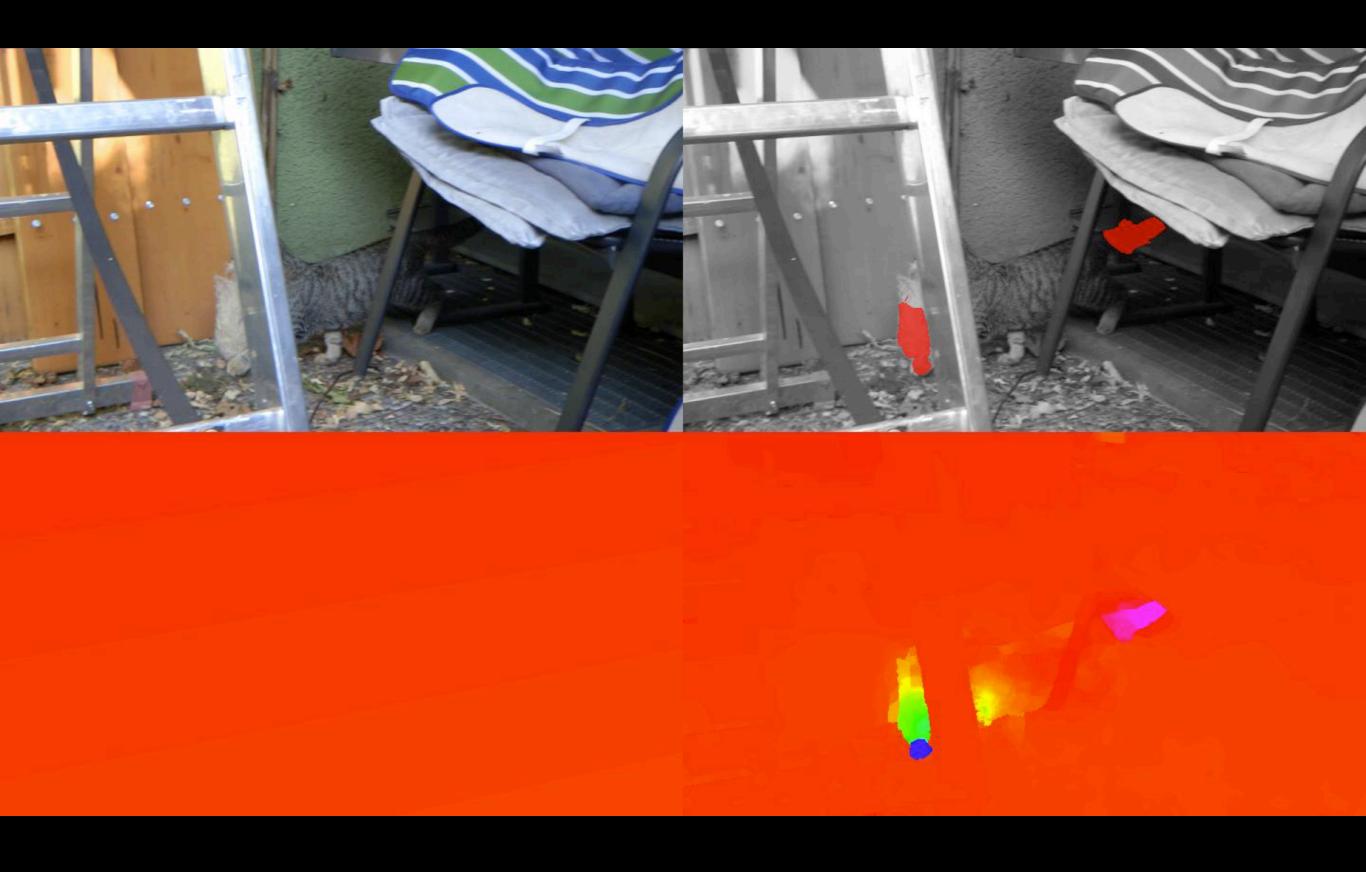
ground truth flow: Sintel

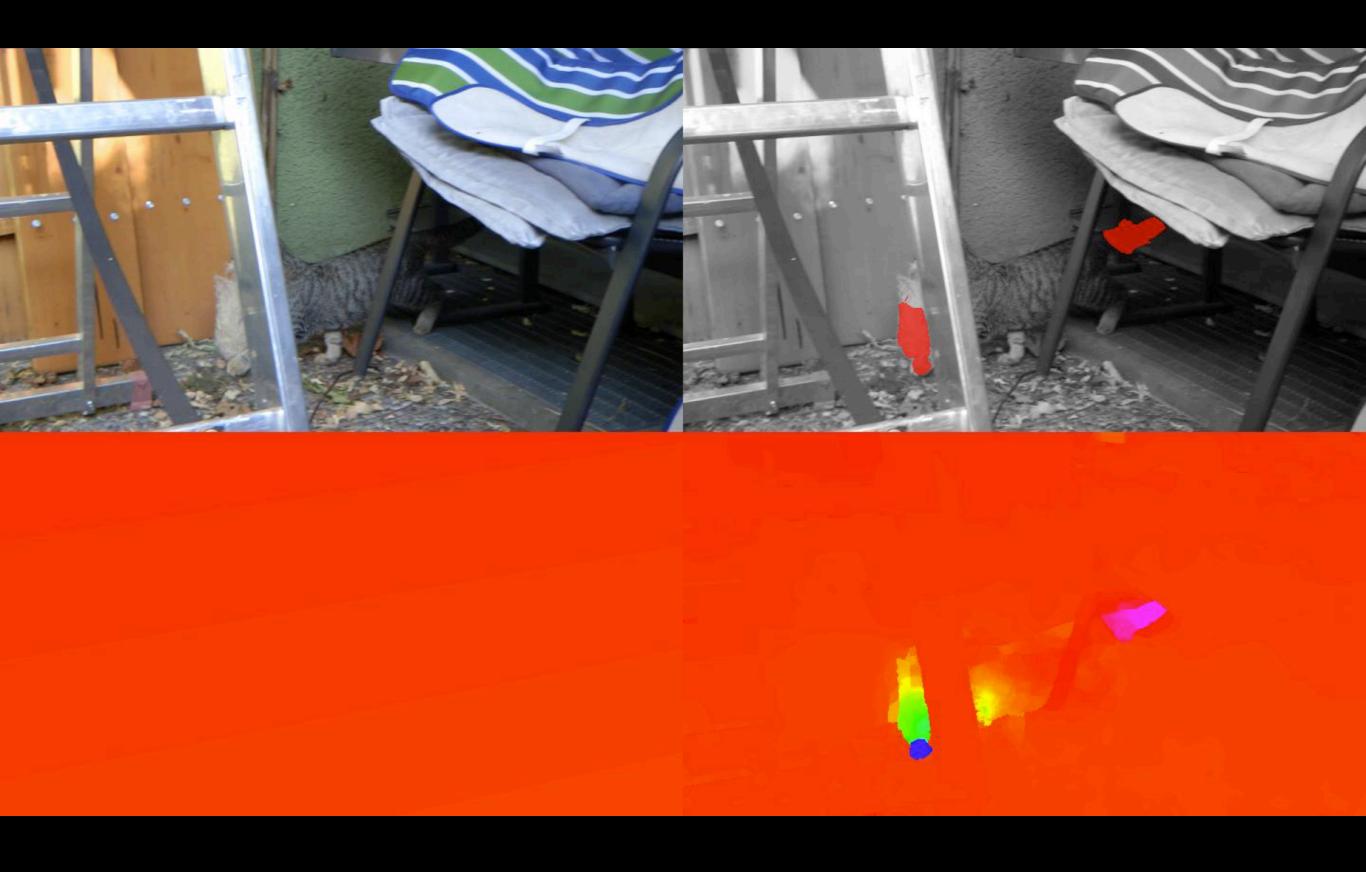


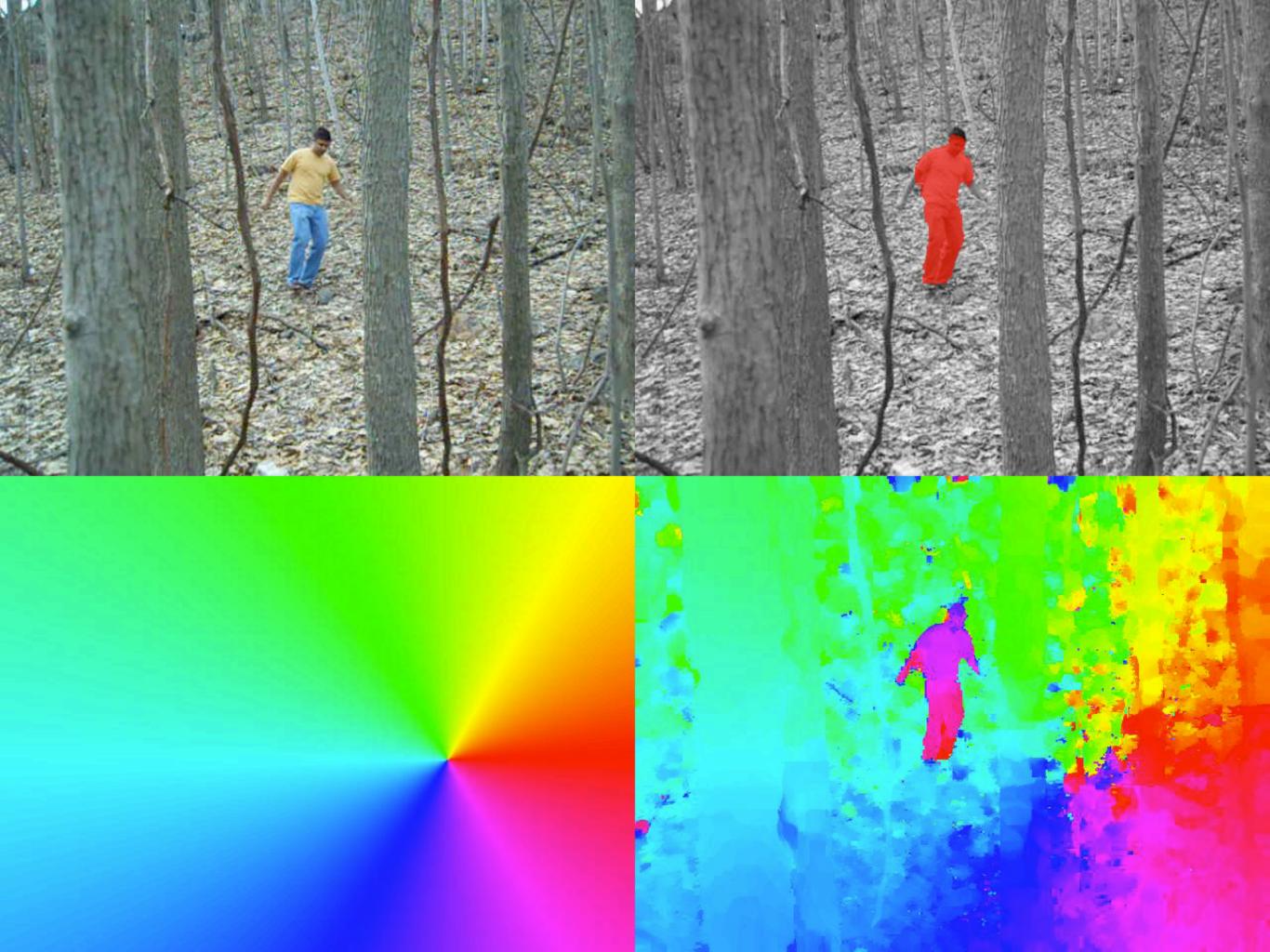
Results: Video

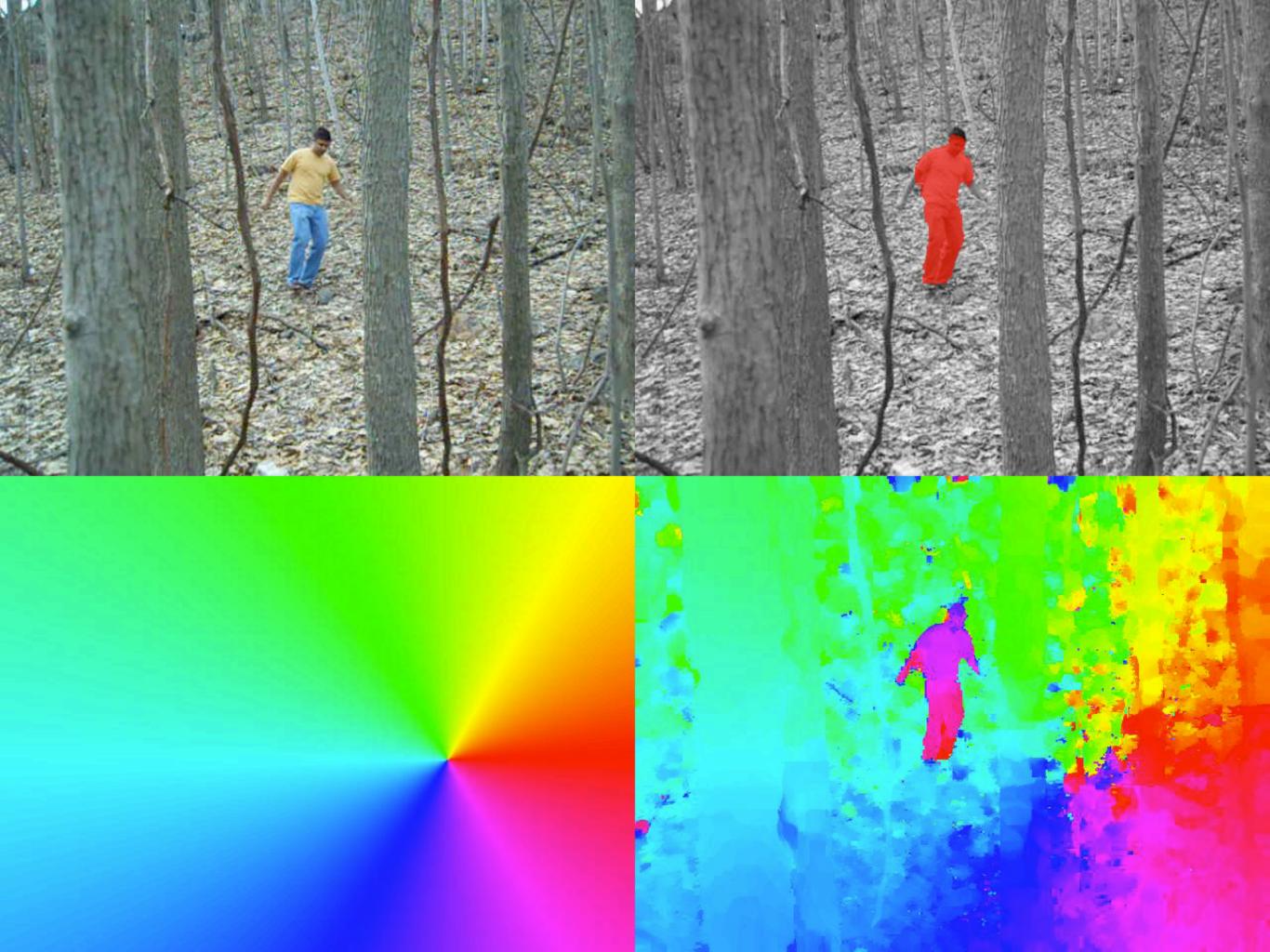








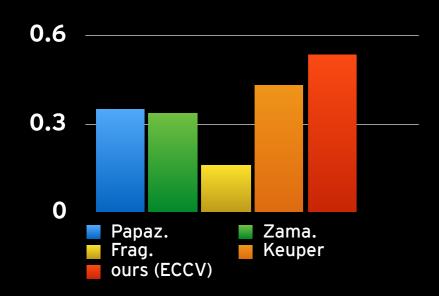




RESULES

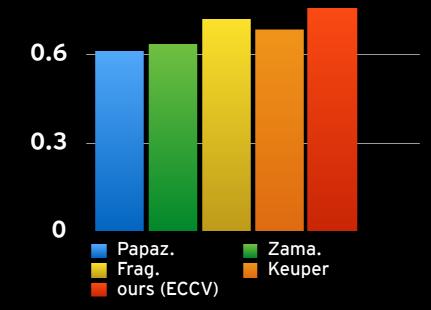
camouflaged Animal

MCC 0.9



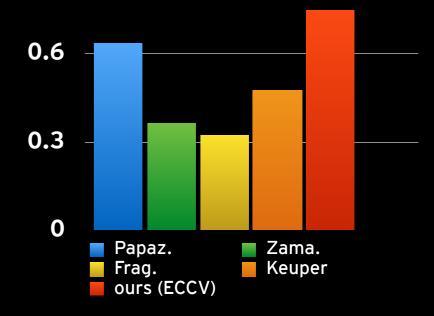
BMS-26

MCC 0.9



complex background

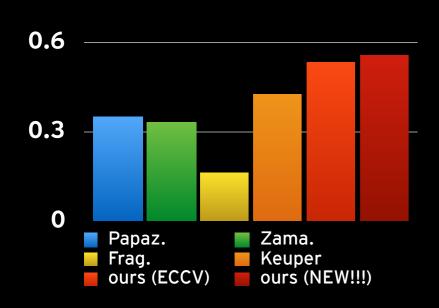
MCC 0.9



Resules

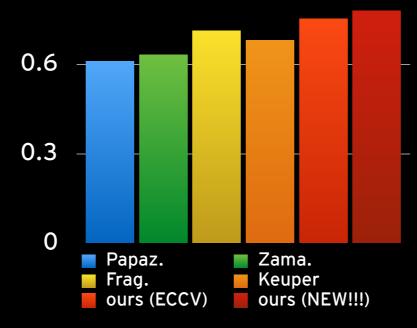
camouflaged Animal

MCC 0.9



BMS-26

MCC 0.9



complex background

