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Overview

• compute dense optical flow 

• find j different motion models M from optical flow 

• Segmentation: assign pixels to different motion models

ECCV Paper 

• arbitrary camera motion 
• angle likelihood

ECCV Workshop 

• arbitrary camera motion 
• flow likelihood 
• incorporating statistics  

of optical flow

Goal: Segmentation of static environment and moving objects

ICCV Paper 
• only camera translation 
• angle field
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Modeling Motion

contributions to the motion field: 

• camera motion 
A. translation 
B. rotation 

• object motion
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Assumption 2

flow noise n is Gaussian distributed conditioned on the flow magnitude

q

p( vt | r, Mj )
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Assumption 3

translational optical flow vectors are noisy observations of the 
true trans. motion vectors 

vt
q

p( vt | r, Mj )
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How can we incorporate  
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How can we incorporate  
“true” statistics of optical flow?

ground truth flow: Sintel



Results: Video
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