
Learning Discrete Measurement Matrices
and Algorithm Unfolding for Signal
Recovery

Siyakhula - German Research Days at AIMS’ 20-years
Celebration, 2024

Peter Jung, Technical University Berlin
peter.jung@tu-berlin.de

March 22, 2024



. . . given the effect. . . find the cause!

Inverse problems: given observation y and partially known forward operator A:

find x ∈ X s.t. A(x) ≈ y

enforce structure for x via priors/regularization/models. . .

, Sparsity, low-rankness, atomic sets - well-established theory

/ often too generic for real-world data

/ algorithmsQ are too slow and need handcrafted tuning for many real-world/time applications

/ optimizeA under practical constraints is often difficult

“Learn to sense and to recover”

find (A,Q) s.t. Ex∼X loss(x,Q(A(x))) ”is small”

1 / 30



. . . given the effect. . . find the cause!

Inverse problems: given observation y and partially known forward operator A:

find x ∈ X s.t. A(x) ≈ y

enforce structure for x via priors/regularization/models. . .

, Sparsity, low-rankness, atomic sets - well-established theory

/ often too generic for real-world data

/ algorithmsQ are too slow and need handcrafted tuning for many real-world/time applications

/ optimizeA under practical constraints is often difficult

“Learn to sense and to recover”

find (A,Q) s.t. Ex∼X loss(x,Q(A(x))) ”is small”

1 / 30



. . . given the effect. . . find the cause!

Inverse problems: given observation y and partially known forward operator A:

find x ∈ X s.t. A(x) ≈ y

enforce structure for x via priors/regularization/models. . .

, Sparsity, low-rankness, atomic sets - well-established theory

/ often too generic for real-world data

/ algorithmsQ are too slow and need handcrafted tuning for many real-world/time applications

/ optimizeA under practical constraints is often difficult

“Learn to sense and to recover”

find (A,Q) s.t. Ex∼X loss(x,Q(A(x))) ”is small”

1 / 30



. . . given the effect. . . find the cause!

Inverse problems: given observation y and partially known forward operator A:

find x ∈ X s.t. A(x) ≈ y

enforce structure for x via priors/regularization/models. . .

, Sparsity, low-rankness, atomic sets - well-established theory

/ often too generic for real-world data

/ algorithmsQ are too slow and need handcrafted tuning for many real-world/time applications

/ optimizeA under practical constraints is often difficult

“Learn to sense and to recover”

find (A,Q) s.t. Ex∼X loss(x,Q(A(x))) ”is small”

1 / 30



Outline

1 Problem Statement

2 Gradient-based Learning of Discrete Measurement Matrices

3 Application 1: Learning Masks for Single-Pixel Imaging

4 Application 2: Learning Pooling Matrices for Group Testing

2 / 30



3 / 30



Problem Statement

4 / 30



Problem Statement

• Recover x ∈ X ⊂ Rn from (noisy) linear measurements y = A(x) = Φx+ e ∈ Rm

• minimal acquisition time&storagem ≃ DoF(X ) ≪ n ⇒ “sensing & compression”
• Φ lies in finite set of admissible matrices Φ (determined by physics / detectors)

• x is recovered from y using parametrized recovery algorithm fθ,Φ : Rm → Rn

• x → fθ,Φ(Φx) can be understood as autoencoder

• find good and admissible Φ ∈ Φ and algorithm parameters θ

min
Φ∈Φ,θ

Ex∼X

[
loss(fθ,Φ(Φx),x)

]

data-driven via “training”

prototypical playground is “compressed sensing”⇔ recovering sparse x from y = Φx+ e

5 / 30



Problem Statement

• Recover x ∈ X ⊂ Rn from (noisy) linear measurements y = A(x) = Φx+ e ∈ Rm

• minimal acquisition time&storagem ≃ DoF(X ) ≪ n ⇒ “sensing & compression”

• Φ lies in finite set of admissible matrices Φ (determined by physics / detectors)

• x is recovered from y using parametrized recovery algorithm fθ,Φ : Rm → Rn

• x → fθ,Φ(Φx) can be understood as autoencoder

• find good and admissible Φ ∈ Φ and algorithm parameters θ

min
Φ∈Φ,θ

Ex∼X

[
loss(fθ,Φ(Φx),x)

]

data-driven via “training”

prototypical playground is “compressed sensing”⇔ recovering sparse x from y = Φx+ e

5 / 30



Problem Statement

• Recover x ∈ X ⊂ Rn from (noisy) linear measurements y = A(x) = Φx+ e ∈ Rm

• minimal acquisition time&storagem ≃ DoF(X ) ≪ n ⇒ “sensing & compression”
• Φ lies in finite set of admissible matrices Φ (determined by physics / detectors)

• x is recovered from y using parametrized recovery algorithm fθ,Φ : Rm → Rn

• x → fθ,Φ(Φx) can be understood as autoencoder

• find good and admissible Φ ∈ Φ and algorithm parameters θ

min
Φ∈Φ,θ

Ex∼X

[
loss(fθ,Φ(Φx),x)

]

data-driven via “training”

prototypical playground is “compressed sensing”⇔ recovering sparse x from y = Φx+ e

5 / 30



Problem Statement

• Recover x ∈ X ⊂ Rn from (noisy) linear measurements y = A(x) = Φx+ e ∈ Rm

• minimal acquisition time&storagem ≃ DoF(X ) ≪ n ⇒ “sensing & compression”
• Φ lies in finite set of admissible matrices Φ (determined by physics / detectors)

• x is recovered from y using parametrized recovery algorithm fθ,Φ : Rm → Rn

• x → fθ,Φ(Φx) can be understood as autoencoder

• find good and admissible Φ ∈ Φ and algorithm parameters θ

min
Φ∈Φ,θ

Ex∼X

[
loss(fθ,Φ(Φx),x)

]

data-driven via “training”

prototypical playground is “compressed sensing”⇔ recovering sparse x from y = Φx+ e

5 / 30



Compressed Sensing

classical sampling/scanning ”. . . if you sample densely enough, you can per-
fectly reconstruct the original analog data. . . ”

, good, if signals “fill up” a subspace (linear structure)

/ wasteful for compressible signals (non–linear structure)

“. . .Can we not just directly measure the part that will not end up
being thrown away ?” [Donoho, 2006]

, Well-investigated, theoretical bounds, algorithms

pictogram from R. Baraniuk, “Compressive Sensing”, Eusipco09
6 / 30



Compressed Sensing

classical sampling/scanning ”. . . if you sample densely enough, you can per-
fectly reconstruct the original analog data. . . ”

, good, if signals “fill up” a subspace (linear structure)

/ wasteful for compressible signals (non–linear structure)

“. . .Can we not just directly measure the part that will not end up
being thrown away ?” [Donoho, 2006]

, Well-investigated, theoretical bounds, algorithms

pictogram from R. Baraniuk, “Compressive Sensing”, Eusipco09
6 / 30



Compressed Sensing

classical sampling/scanning ”. . . if you sample densely enough, you can per-
fectly reconstruct the original analog data. . . ”

, good, if signals “fill up” a subspace (linear structure)

/ wasteful for compressible signals (non–linear structure)

“. . .Can we not just directly measure the part that will not end up
being thrown away ?” [Donoho, 2006]

, Well-investigated, theoretical bounds, algorithms

pictogram from R. Baraniuk, “Compressive Sensing”, Eusipco09
6 / 30



Guarantees in Compressed Sensing, a quick tour

Convex recovery approach with guarantees

x♯ = argmin ∥z∥1 s.t. ∥Φz − y∥ ≤ ϵ

if sparse vectors are “well-separated” from nullspace of Φ
(NSP ⇐ RIP⇐ coherence):∥∥x♯ − x

∥∥ ≲ ϵ

holds for all y = Φx+ e with ∥e∥ ≤ ϵ.

x1

∥x∥2

∥x∥0

∥x∥1

x2

x∗

∥A(x)− y∥2 ≤ ϵ

A(x) = A(x∗)

• depends on hyper-parameter ϵ (in this case the noise-level/SNR)

/ Problematic, if noise depends on x (Poisson/multiplicative noise, covariance matching. . . )

, Non-negativity & “biased” measurements are helpful, example later

7 / 30



Guarantees in Compressed Sensing, a quick tour

Convex recovery approach with guarantees

x♯ = argmin ∥z∥1 s.t. ∥Φz − y∥ ≤ ϵ

if sparse vectors are “well-separated” from nullspace of Φ
(NSP ⇐ RIP⇐ coherence):∥∥x♯ − x

∥∥ ≲ ϵ

holds for all y = Φx+ e with ∥e∥ ≤ ϵ.

x1

∥x∥2

∥x∥0

∥x∥1

x2

x∗

∥A(x)− y∥2 ≤ ϵ

A(x) = A(x∗)

• depends on hyper-parameter ϵ (in this case the noise-level/SNR)

/ Problematic, if noise depends on x (Poisson/multiplicative noise, covariance matching. . . )

, Non-negativity & “biased” measurements are helpful, example later

7 / 30



Guarantees in Compressed Sensing, a quick tour

Convex recovery approach with guarantees

x♯ = argmin ∥z∥1 s.t. ∥Φz − y∥ ≤ ϵ

if sparse vectors are “well-separated” from nullspace of Φ
(NSP ⇐ RIP⇐ coherence):∥∥x♯ − x

∥∥ ≲ ϵ

holds for all y = Φx+ e with ∥e∥ ≤ ϵ.

x1

∥x∥2

∥x∥0

∥x∥1

x2

x∗

∥A(x)− y∥2 ≤ ϵ

A(x) = A(x∗)

• depends on hyper-parameter ϵ (in this case the noise-level/SNR)

/ Problematic, if noise depends on x (Poisson/multiplicative noise, covariance matching. . . )

, Non-negativity & “biased” measurements are helpful, example later

7 / 30



Compressed Sensing: Goals

task 1: find Φ ∈ Rm×n with minimal m for given sparsity s under practical constraints

• deterministic constructions known for m = O(s2) (based on coherence)
• “sufficiently random” whp form = O(s polylog(n)) (RIP/NSP etc.) [Candes & Tao, 2005]

• . . .many works on other random models . . .
• random binary matrices [Kueng & PJ, 2018], designs and orthogonal arrays [PJ, Kueng, Mixton , 2019]

⇒ “structured derandomization”, find “concentrated measure” p on Φ

task 2: develop fast algorithms and hyper-parameter tuning

• most of algorithms are too complex and not suited for real-time applications

in “machine learning” terminology:

min
p,θ

Ex,Φ∼p[loss(fθ,Φ(Φx), x)]

two techniques: Gumbel reparametrizations and algorithm unfolding

8 / 30



Compressed Sensing: Goals

task 1: find Φ ∈ Rm×n with minimal m for given sparsity s under practical constraints

• deterministic constructions known for m = O(s2) (based on coherence)
• “sufficiently random” whp form = O(s polylog(n)) (RIP/NSP etc.) [Candes & Tao, 2005]

• . . .many works on other random models . . .

• random binary matrices [Kueng & PJ, 2018], designs and orthogonal arrays [PJ, Kueng, Mixton , 2019]

⇒ “structured derandomization”, find “concentrated measure” p on Φ

task 2: develop fast algorithms and hyper-parameter tuning

• most of algorithms are too complex and not suited for real-time applications

in “machine learning” terminology:

min
p,θ

Ex,Φ∼p[loss(fθ,Φ(Φx), x)]

two techniques: Gumbel reparametrizations and algorithm unfolding

8 / 30



Compressed Sensing: Goals

task 1: find Φ ∈ Rm×n with minimal m for given sparsity s under practical constraints

• deterministic constructions known for m = O(s2) (based on coherence)
• “sufficiently random” whp form = O(s polylog(n)) (RIP/NSP etc.) [Candes & Tao, 2005]

• . . .many works on other random models . . .
• random binary matrices [Kueng & PJ, 2018], designs and orthogonal arrays [PJ, Kueng, Mixton , 2019]

⇒ “structured derandomization”, find “concentrated measure” p on Φ

task 2: develop fast algorithms and hyper-parameter tuning

• most of algorithms are too complex and not suited for real-time applications

in “machine learning” terminology:

min
p,θ

Ex,Φ∼p[loss(fθ,Φ(Φx), x)]

two techniques: Gumbel reparametrizations and algorithm unfolding

8 / 30



Compressed Sensing: Goals

task 1: find Φ ∈ Rm×n with minimal m for given sparsity s under practical constraints

• deterministic constructions known for m = O(s2) (based on coherence)
• “sufficiently random” whp form = O(s polylog(n)) (RIP/NSP etc.) [Candes & Tao, 2005]

• . . .many works on other random models . . .
• random binary matrices [Kueng & PJ, 2018], designs and orthogonal arrays [PJ, Kueng, Mixton , 2019]

⇒ “structured derandomization”, find “concentrated measure” p on Φ

task 2: develop fast algorithms and hyper-parameter tuning

• most of algorithms are too complex and not suited for real-time applications

in “machine learning” terminology:

min
p,θ

Ex,Φ∼p[loss(fθ,Φ(Φx), x)]

two techniques: Gumbel reparametrizations and algorithm unfolding

8 / 30



Compressed Sensing: Goals

task 1: find Φ ∈ Rm×n with minimal m for given sparsity s under practical constraints

• deterministic constructions known for m = O(s2) (based on coherence)
• “sufficiently random” whp form = O(s polylog(n)) (RIP/NSP etc.) [Candes & Tao, 2005]

• . . .many works on other random models . . .
• random binary matrices [Kueng & PJ, 2018], designs and orthogonal arrays [PJ, Kueng, Mixton , 2019]

⇒ “structured derandomization”, find “concentrated measure” p on Φ

task 2: develop fast algorithms and hyper-parameter tuning

• most of algorithms are too complex and not suited for real-time applications

in “machine learning” terminology:

min
p,θ

Ex,Φ∼p[loss(fθ,Φ(Φx), x)]

two techniques: Gumbel reparametrizations and algorithm unfolding
8 / 30



Gradient-based Learning of Discrete Measurement Matrices

9 / 30



Include Measurement Map in Learning

• learning unstructured Φ⇒ use ∇Φ [Adler et al 2016, Wu et al. 2019]

• here Φ is discrete, i.e., optimize instead a discrete distribution p on Φ

min
p,θ

Ex,Φ∼p[loss(fθ,Φ(Φx),x)]

aligns with derandomization principle

1 Gradient descent on p but estimate ∇pEΦ∼pf(Φ) via sampling

2 perform sampling in a way that allows backprop - Gumbel reparametrization

10 / 30



Include Measurement Map in Learning

• learning unstructured Φ⇒ use ∇Φ [Adler et al 2016, Wu et al. 2019]

• here Φ is discrete, i.e., optimize instead a discrete distribution p on Φ

min
p,θ

Ex,Φ∼p[loss(fθ,Φ(Φx),x)]

aligns with derandomization principle

1 Gradient descent on p but estimate ∇pEΦ∼pf(Φ) via sampling

2 perform sampling in a way that allows backprop - Gumbel reparametrization

10 / 30



Include Measurement Map in Learning

• learning unstructured Φ⇒ use ∇Φ [Adler et al 2016, Wu et al. 2019]

• here Φ is discrete, i.e., optimize instead a discrete distribution p on Φ

min
p,θ

Ex,Φ∼p[loss(fθ,Φ(Φx),x)]

aligns with derandomization principle

1 Gradient descent on p but estimate ∇pEΦ∼pf(Φ) via sampling

2 perform sampling in a way that allows backprop - Gumbel reparametrization

10 / 30



The Principle

• Consider computational graph with a random node v taking the values in [a] := {1, . . . , a}.
• inputs to node v are unnormalized log-probabilities φ = (φ1 . . . , φa) ∈ Ra

P(v = i) =
exp(φi)∑a
j=1 exp(φj)

= softmax(φ)i, i = 1, . . . , a

• realization of v is then passed through a differentiable function f .

Estimate ∇φEv

[
f(v)

]
by sampling

• efficiently sample from v by using [Gumbel 1954]

v = one hot(argmax
i

[φi + gi])

where gi = − log(− log(ui)) with u1, . . . , ua ∼iid unif([0, 1])

11 / 30



The Principle

• Consider computational graph with a random node v taking the values in [a] := {1, . . . , a}.
• inputs to node v are unnormalized log-probabilities φ = (φ1 . . . , φa) ∈ Ra

P(v = i) =
exp(φi)∑a
j=1 exp(φj)

= softmax(φ)i, i = 1, . . . , a

• realization of v is then passed through a differentiable function f .

Estimate ∇φEv

[
f(v)

]
by sampling

• efficiently sample from v by using [Gumbel 1954]

v = one hot(argmax
i

[φi + gi])

where gi = − log(− log(ui)) with u1, . . . , ua ∼iid unif([0, 1])

11 / 30



The Principle: Gumbel Softmax

. . . so, we can sample v via

v = one hot(argmax
i

[φi + gi]) gi ∼ G(0, 1)

/ But backprop doesn’t work because of argmax.

, Gumbel-softmax [Jang et al. 2016; Maddison et al. 2016]

replace argmax in backward pass with softmax with temperature τ :

vi =
exp((gi + φi)/τ)∑a

j=1 exp((gj + φj)/τ)
= softmax((φ+ g)/τ)i

• As τ → 0, softmax approaches argmax

12 / 30



The Principle: Gumbel Softmax

. . . so, we can sample v via

v = one hot(argmax
i

[φi + gi]) gi ∼ G(0, 1)

/ But backprop doesn’t work because of argmax.

, Gumbel-softmax [Jang et al. 2016; Maddison et al. 2016]

replace argmax in backward pass with softmax with temperature τ :

vi =
exp((gi + φi)/τ)∑a

j=1 exp((gj + φj)/τ)
= softmax((φ+ g)/τ)i

• As τ → 0, softmax approaches argmax

12 / 30



The Principle: Gumbel top-k and the Method

• from reservoir sampling: Gumbel softmax extends naturally to Gumbel top-k! [Vieira 2014]

, learnable component for ”selecting k out of a set”

The Method (for structured binary m× n-matrix)

1 let {Ii}i∈[l] a partition of I := [m]× [n]

2 for each i ∈ [l] use Gumbel top-k to select ki elements from Ii.

3 forward pass: gives a randomm× n binary matrix Φ via top-ki and . . .

4 backward pass: well-defined gradient prop. via softmax instead of hard top-ki [Bengio et.al, 2013]

5 construction can be freely used in conjunction with automatic differentiation

ok, now we also need a “trainable” recovery algorithm . . .

13 / 30



The Principle: Gumbel top-k and the Method

• from reservoir sampling: Gumbel softmax extends naturally to Gumbel top-k! [Vieira 2014]

, learnable component for ”selecting k out of a set”

The Method (for structured binary m× n-matrix)
1 let {Ii}i∈[l] a partition of I := [m]× [n]

2 for each i ∈ [l] use Gumbel top-k to select ki elements from Ii.

3 forward pass: gives a randomm× n binary matrix Φ via top-ki and . . .

4 backward pass: well-defined gradient prop. via softmax instead of hard top-ki [Bengio et.al, 2013]

5 construction can be freely used in conjunction with automatic differentiation

ok, now we also need a “trainable” recovery algorithm . . .

13 / 30



The Principle: Gumbel top-k and the Method

• from reservoir sampling: Gumbel softmax extends naturally to Gumbel top-k! [Vieira 2014]

, learnable component for ”selecting k out of a set”

The Method (for structured binary m× n-matrix)
1 let {Ii}i∈[l] a partition of I := [m]× [n]

2 for each i ∈ [l] use Gumbel top-k to select ki elements from Ii.

3 forward pass: gives a randomm× n binary matrix Φ via top-ki and . . .

4 backward pass: well-defined gradient prop. via softmax instead of hard top-ki [Bengio et.al, 2013]

5 construction can be freely used in conjunction with automatic differentiation

ok, now we also need a “trainable” recovery algorithm . . .

13 / 30



The Principle: Gumbel top-k and the Method

• from reservoir sampling: Gumbel softmax extends naturally to Gumbel top-k! [Vieira 2014]

, learnable component for ”selecting k out of a set”

The Method (for structured binary m× n-matrix)
1 let {Ii}i∈[l] a partition of I := [m]× [n]

2 for each i ∈ [l] use Gumbel top-k to select ki elements from Ii.

3 forward pass: gives a randomm× n binary matrix Φ via top-ki and . . .

4 backward pass: well-defined gradient prop. via softmax instead of hard top-ki [Bengio et.al, 2013]

5 construction can be freely used in conjunction with automatic differentiation

ok, now we also need a “trainable” recovery algorithm . . .

13 / 30



The Principle: Gumbel top-k and the Method

• from reservoir sampling: Gumbel softmax extends naturally to Gumbel top-k! [Vieira 2014]

, learnable component for ”selecting k out of a set”

The Method (for structured binary m× n-matrix)
1 let {Ii}i∈[l] a partition of I := [m]× [n]

2 for each i ∈ [l] use Gumbel top-k to select ki elements from Ii.

3 forward pass: gives a randomm× n binary matrix Φ via top-ki and . . .

4 backward pass: well-defined gradient prop. via softmax instead of hard top-ki [Bengio et.al, 2013]

5 construction can be freely used in conjunction with automatic differentiation

ok, now we also need a “trainable” recovery algorithm . . .

13 / 30



The Principle: Gumbel top-k and the Method

• from reservoir sampling: Gumbel softmax extends naturally to Gumbel top-k! [Vieira 2014]

, learnable component for ”selecting k out of a set”

The Method (for structured binary m× n-matrix)
1 let {Ii}i∈[l] a partition of I := [m]× [n]

2 for each i ∈ [l] use Gumbel top-k to select ki elements from Ii.

3 forward pass: gives a randomm× n binary matrix Φ via top-ki and . . .

4 backward pass: well-defined gradient prop. via softmax instead of hard top-ki [Bengio et.al, 2013]

5 construction can be freely used in conjunction with automatic differentiation

ok, now we also need a “trainable” recovery algorithm . . .

13 / 30



Algorithm Unfolding

Classical
algorithm

y

training data
{(xd,yd)}Dd=1

x̂

14 / 30



Algorithm Unfolding

Computational graph of many iterative algorithms can be viewed as neural networks. . .

• consider for example:
min
x

∥y −Φx∥22 + λg(x)

and use proximal (Landweber) iterations:

x̂(t+1) = proxλg
(
x̂(t) + γ∇

(
∥y −Φx̂(t)∥22

))
,

• g(x) = ∥x∥1 ⇒ element-wise soft-thresholding, known as
Iterative Shrinkage and Thresholding Algorithm
[Daubechies et al., 2004]

(ISTA) x̂(t+1) = η λ
L

(
x̂(t) + γΦ∗(Φx̂(t) − y)

)

15 / 30



Algorithm Unfolding

Computational graph of many iterative algorithms can be viewed as neural networks. . .

• consider for example:
min
x

∥y −Φx∥22 + λg(x)

and use proximal (Landweber) iterations:

x̂(t+1) = proxλg
(
x̂(t) + γ∇

(
∥y −Φx̂(t)∥22

))
,

• g(x) = ∥x∥1 ⇒ element-wise soft-thresholding, known as
Iterative Shrinkage and Thresholding Algorithm
[Daubechies et al., 2004]

(ISTA) x̂(t+1) = η λ
L

(
x̂(t) + γΦ∗(Φx̂(t) − y)

)

15 / 30



Algorithm Unfolding: Learned ISTA and a Recovery Guarantee

Unfolding iterations into network fθ,Φ, several proposals [Gregor&LeCun 2010, Liu 2019, Chen 2018,. . . ]:

x(k+1) =ηα(k)

(
x(k) −B(k)∗

(
Φx(k) − y

))
{α(k),B(k)}(LISTA-CP)

• supervised training on X with Ex∼X ,e loss(fθ,Φ(Φx+ e),x), unsupervised is possible as well

• X = bounded s-sparse vectors and cross-coherence µ := µ(B,Φ)

Theorem: [Liu et al., 2019 ; Hauffen, PJ, Mücke 2022]

For any x ∈ X with s < (µ−1 + 1)/2, ∥e∥2 ≤ ϵ and α(k) ≳ µ+ ϵ ALISTA yields:

∥x(k) − x∥2 ≲ cks+
(
1 + kck

)
∥e∥2

for c = c({αk′}kk′=1) < 1 and constants depend on X and {αk′}kk′=1.

16 / 30



Algorithm Unfolding: Learned ISTA and a Recovery Guarantee

Unfolding iterations into network fθ,Φ, several proposals [Gregor&LeCun 2010, Liu 2019, Chen 2018,. . . ]:

x(k+1) =ηα(k)

(
x(k) −B(k)∗

(
Φx(k) − y

))
{α(k),B(k)}(LISTA-CP)

x(k+1) =ηα(k)

(
x(k) − γ(k)B∗

(
Φx(k) − y

))
{α(k), γ(k)}(ALISTA)

• supervised training on X with Ex∼X ,e loss(fθ,Φ(Φx+ e),x), unsupervised is possible as well

• X = bounded s-sparse vectors and cross-coherence µ := µ(B,Φ)

Theorem: [Liu et al., 2019 ; Hauffen, PJ, Mücke 2022]

For any x ∈ X with s < (µ−1 + 1)/2, ∥e∥2 ≤ ϵ and α(k) ≳ µ+ ϵ ALISTA yields:

∥x(k) − x∥2 ≲ cks+
(
1 + kck

)
∥e∥2

for c = c({αk′}kk′=1) < 1 and constants depend on X and {αk′}kk′=1.

16 / 30



Algorithm Unfolding: Learned ISTA and a Recovery Guarantee

Unfolding iterations into network fθ,Φ, several proposals [Gregor&LeCun 2010, Liu 2019, Chen 2018,. . . ]:

x(k+1) =ηα(k)

(
x(k) −B(k)∗

(
Φx(k) − y

))
{α(k),B(k)}(LISTA-CP)

x(k+1) =ηα(k)

(
x(k) − γ(k)B∗

(
Φx(k) − y

))
{α(k), γ(k)}(ALISTA)

• supervised training on X with Ex∼X ,e loss(fθ,Φ(Φx+ e),x), unsupervised is possible as well

• X = bounded s-sparse vectors and cross-coherence µ := µ(B,Φ)

Theorem: [Liu et al., 2019 ; Hauffen, PJ, Mücke 2022]

For any x ∈ X with s < (µ−1 + 1)/2, ∥e∥2 ≤ ϵ and α(k) ≳ µ+ ϵ ALISTA yields:

∥x(k) − x∥2 ≲ cks+
(
1 + kck

)
∥e∥2

for c = c({αk′}kk′=1) < 1 and constants depend on X and {αk′}kk′=1.

16 / 30



Algorithm Unfolding: Adaptive Parameters

• adaptive parameters depend on ∥x(k) − x∥1

• use r(k) = ∥Φx(k) − y∥1 and u(k) = ∥B∗(Φx(k) − y)∥1
• neurally augmented ALISTA (NA-ALISTA) [Behrens, Sauder, PJ 2020]:

x(k+1) =ηα(r(k),u(k))

(
x(k) − γ(r(k), u(k))

[
B∗

(
Φx(k) − y

)])
train LSTMs to represent α(·, ·) and γ(·, ·)

17 / 30



Algorithm Unfolding: Adaptive Parameters

• adaptive parameters depend on ∥x(k) − x∥1
• use r(k) = ∥Φx(k) − y∥1 and u(k) = ∥B∗(Φx(k) − y)∥1
• neurally augmented ALISTA (NA-ALISTA) [Behrens, Sauder, PJ 2020]:

x(k+1) =ηα(r(k),u(k))

(
x(k) − γ(r(k), u(k))

[
B∗

(
Φx(k) − y

)])
train LSTMs to represent α(·, ·) and γ(·, ·)

17 / 30



Algorithm Unfolding: Adaptive Parameters

• adaptive parameters depend on ∥x(k) − x∥1
• use r(k) = ∥Φx(k) − y∥1 and u(k) = ∥B∗(Φx(k) − y)∥1
• neurally augmented ALISTA (NA-ALISTA) [Behrens, Sauder, PJ 2020]:

x(k+1) =ηα(r(k),u(k))

(
x(k) − γ(r(k), u(k))

[
B∗

(
Φx(k) − y

)])
train LSTMs to represent α(·, ·) and γ(·, ·)

17 / 30



Algorithm Unfolding: Benchmark

Significantly reduces number of iterations required! Enabling real-time applications

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Iterations (K)

−30

−25

−20

−15

−10

−5

0

n
M

S
E

(d
B

)

ALISTA

ALISTA-AT

AGLISTA

NA-ALISTA

FISTA

ISTA

18 / 30



Algorithm Unfolding: Benchmark

Significantly reduces number of iterations required! Enabling real-time applications

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Iterations (K)

−30

−25

−20

−15

−10

−5

0

n
M

S
E

(d
B

)

ALISTA

ALISTA-AT

AGLISTA

NA-ALISTA

FISTA

ISTA

classical algorithms

18 / 30



Algorithm Unfolding: Benchmark

Significantly reduces number of iterations required! Enabling real-time applications

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Iterations (K)

−30

−25

−20

−15

−10

−5

0

n
M

S
E

(d
B

)

ALISTA

ALISTA-AT

AGLISTA

NA-ALISTA

FISTA

ISTA

classical algorithms

trained algorithms

18 / 30



Application 1: Learning Masks for Single-Pixel Imaging

19 / 30



Application 1: Learning Masks for Single-Pixel Imaging

[adapted from [Bacca et al. 2019]]

• X =MNIST (n = 282 = 784)

• Φ is the set of binary matrices with ki = 32 ones per row i (“on”-pixels per mask)

• fθ,Φ is NA-ALISTA with T = 20 layers/iterations

• L(x̂, x) = ∥x̂− x∥22

20 / 30



Application 1: Learning Masks for Single-Pixel Imaging

21 / 30



Application 1: Learning Masks for Single-Pixel Imaging

baseline: Iterative Hard-thresholding (IHT) x(k+1) = Hs

(
x(k) −Φ∗ (Φx(k) − y

))
• n = 282 = 784 (X=MNIST)

• random I ⊂ I = [m]× [n]

• swap a random 1 ⇔ 0

• accept if loss L decreases

• Greedy: not accept if L increase

• SimAn: accept if
exp[(L− L′)/τ ] ≤ u ∼ U(0, 1)

and τ → 0 with training

IHT baselines

, Improvements for IHT while trained with NA-ALISTA ⇒ due to Φ

22 / 30



Application 1: Learning Masks for Single-Pixel Imaging

baseline: Iterative Hard-thresholding (IHT) x(k+1) = Hs

(
x(k) −Φ∗ (Φx(k) − y

))
• n = 282 = 784 (X=MNIST)

• random I ⊂ I = [m]× [n]

• swap a random 1 ⇔ 0

• accept if loss L decreases

• Greedy: not accept if L increase

• SimAn: accept if
exp[(L− L′)/τ ] ≤ u ∼ U(0, 1)

and τ → 0 with training

IHT baselines

, Improvements for IHT while trained with NA-ALISTA ⇒ due to Φ

22 / 30



Application 1: Learning Masks for Single-Pixel Imaging

baseline: Iterative Hard-thresholding (IHT) x(k+1) = Hs

(
x(k) −Φ∗ (Φx(k) − y

))
• n = 282 = 784 (X=MNIST)

• random I ⊂ I = [m]× [n]

• swap a random 1 ⇔ 0

• accept if loss L decreases

• Greedy: not accept if L increase

• SimAn: accept if
exp[(L− L′)/τ ] ≤ u ∼ U(0, 1)

and τ → 0 with training

IHT baselines

, Improvements for IHT while trained with NA-ALISTA ⇒ due to Φ

22 / 30



Application 1: Learning Masks for Single-Pixel Imaging
Super-Pixel Masks for SPI

Terahertz SPI [Augustin, PJ, Frohmann, Hübers, 2019] - image: [Reiche, PJ 2020]

• wavelength is in order of pixel size, diffraction degrades image quality ⇒ use super-pixels!

• sample binary masks with d ones forming super-pixels of size ∆

23 / 30



Application 1: Learning Masks for Single-Pixel Imaging
Super-Pixel Masks for SPI

Terahertz SPI [Augustin, PJ, Frohmann, Hübers, 2019] - image: [Reiche, PJ 2020]

• wavelength is in order of pixel size, diffraction degrades image quality ⇒ use super-pixels!
• sample binary masks with d ones forming super-pixels of size ∆

23 / 30



Application 2: Learning Pooling Matrices for Group Testing

24 / 30



Application 2: Learning Pooling Matrices for Group Testing

• Non-adaptive viral testing of n individuals with minimal amount of m qPCR-tests
• s ≪ n individuals are positive, i.e., vector of viral loads x = (x1, . . . , xn) is sparse

thus, viral-load recovery is a compressed sensing problem [Bah, Petersen & PJ, 2024]

• binary pooling matrix Φ ∈ {0, 1}m×n has k non-zeros per row (pool size)

• pooled measurements of viral loads are y = Φx+ e with sparse x ≥ 0

25 / 30



Application 2: Learning Pooling Matrices for Group Testing

• Non-adaptive viral testing of n individuals with minimal amount of m qPCR-tests
• s ≪ n individuals are positive, i.e., vector of viral loads x = (x1, . . . , xn) is sparse

thus, viral-load recovery is a compressed sensing problem [Bah, Petersen & PJ, 2024]

adaptive testing, n = 24,m = 10

• binary pooling matrix Φ ∈ {0, 1}m×n has k non-zeros per row (pool size)

• pooled measurements of viral loads are y = Φx+ e with sparse x ≥ 0

25 / 30



Application 2: Learning Pooling Matrices for Group Testing

• Non-adaptive viral testing of n individuals with minimal amount of m qPCR-tests
• s ≪ n individuals are positive, i.e., vector of viral loads x = (x1, . . . , xn) is sparse

thus, viral-load recovery is a compressed sensing problem [Bah, Petersen & PJ, 2024]

adaptive testing, n = 24,m = 10

non-adaptive testing
n = 25, m = 10

• binary pooling matrix Φ ∈ {0, 1}m×n has k non-zeros per row (pool size)

• pooled measurements of viral loads are y = Φx+ e with sparse x ≥ 0

25 / 30



Application 2: Learning Pooling Matrices for Group Testing

• Non-adaptive viral testing of n individuals with minimal amount of m qPCR-tests
• s ≪ n individuals are positive, i.e., vector of viral loads x = (x1, . . . , xn) is sparse

thus, viral-load recovery is a compressed sensing problem [Bah, Petersen & PJ, 2024]

adaptive testing, n = 24,m = 10

non-adaptive testing
n = 25, m = 10

• binary pooling matrix Φ ∈ {0, 1}m×n has k non-zeros per row (pool size)

• pooled measurements of viral loads are y = Φx+ e with sparse x ≥ 0

25 / 30



Application 2: Learning Pooling Matrices for Group Testing

• qPCR modeling is complicated and involves multiplicative noise, yielding heavy-tailed models

• non-negative least absolute deviations (NNLAD) is a compressed sensing algorithm

x̂ = argmin
x≥0

∥Φx− y∥1

if ∃t such that ΦT t > 0 and ∥x̂− x∥1 ≲ O(∥e∥1) if Φ has NSP [Petersen, Bah, PJ, 2021]

• ℓ1-regularization is superflous ⇒ no hyperparameter tuning !

Example: disjunct matrix
Φ ∈ {0, 1}248×961 with
k = 31 and has NSP for
s ≤ 7 (LDPC/Array code)
[Lofti&Vidyasagar, 2020]

26 / 30



Application 2: Learning Pooling Matrices for Group Testing

• qPCR modeling is complicated and involves multiplicative noise, yielding heavy-tailed models

• non-negative least absolute deviations (NNLAD) is a compressed sensing algorithm

x̂ = argmin
x≥0

∥Φx− y∥1

if ∃t such that ΦT t > 0 and ∥x̂− x∥1 ≲ O(∥e∥1) if Φ has NSP [Petersen, Bah, PJ, 2021]

• ℓ1-regularization is superflous ⇒ no hyperparameter tuning !

Example: disjunct matrix
Φ ∈ {0, 1}248×961 with
k = 31 and has NSP for
s ≤ 7 (LDPC/Array code)
[Lofti&Vidyasagar, 2020]

26 / 30



Application 2: Learning Pooling Matrices for Group Testing

robust against corrupted tests (sparse noise) and empirical success up to s ≲ 70 ‼

27 / 30



Application 2: Learning Pooling Matrices for Group Testing

Learning pooling matrices (k ones per row) and tuning viral load recovery

• projected subgradient descent for NNLAD can
be unfolded

• slow convergence (not relevant for testing)

• supervised training with 200 iterations/layers

• inference with 1000 iterations

• Φ ∈ {0, 1}248×961, k = 31

• X = {s = 80 and xnon-zero
i ∼ Beta iid}

• NMAE= ∥x−x̂∥1

∥x∥1

28 / 30



Application 2: Learning Pooling Matrices for Group Testing

Learning pooling matrices (k ones per row) and tuning viral load recovery

• projected subgradient descent for NNLAD can
be unfolded

• slow convergence (not relevant for testing)

• supervised training with 200 iterations/layers

• inference with 1000 iterations

• Φ ∈ {0, 1}248×961, k = 31

• X = {s = 80 and xnon-zero
i ∼ Beta iid}

• NMAE= ∥x−x̂∥1

∥x∥1

28 / 30



Application 2: Learning Pooling Matrices for Group Testing

Learning pooling matrices (k ones per row) and tuning viral load recovery

• projected subgradient descent for NNLAD can
be unfolded

• slow convergence (not relevant for testing)

• supervised training with 200 iterations/layers

• inference with 1000 iterations

• Φ ∈ {0, 1}248×961, k = 31

• X = {s = 80 and xnon-zero
i ∼ Beta iid}

• NMAE= ∥x−x̂∥1

∥x∥1

28 / 30



Conclusion

/ optimal measurement matrices can not be constructed analytically, only random method

/ classical algorithms well-understood but too slow and generic for realtime applications

algorithm unfolding allows backprop and data-driven optimization of Φ

, overcome handcrafted hyper-parameter tuning

, learn better and constrained random models for Φ ⇒ derandomization

“learn to sense and to recover”

, examples in single-pixel/detector imaging and pooling

Thank you!

29 / 30



Conclusion

/ optimal measurement matrices can not be constructed analytically, only random method

/ classical algorithms well-understood but too slow and generic for realtime applications

algorithm unfolding allows backprop and data-driven optimization of Φ

, overcome handcrafted hyper-parameter tuning

, learn better and constrained random models for Φ ⇒ derandomization

“learn to sense and to recover”

, examples in single-pixel/detector imaging and pooling

Thank you!

29 / 30



Conclusion

/ optimal measurement matrices can not be constructed analytically, only random method

/ classical algorithms well-understood but too slow and generic for realtime applications

algorithm unfolding allows backprop and data-driven optimization of Φ

, overcome handcrafted hyper-parameter tuning

, learn better and constrained random models for Φ ⇒ derandomization

“learn to sense and to recover”

, examples in single-pixel/detector imaging and pooling

Thank you!

29 / 30



[1] E. J. Gumbel. Statistical theory of extreme values and some practical applications: a series of lectures. Vol. 33. US Government
Printing Office, 1954.

[2] E. Jang, S. Gu, and B. Poole. “Categorical reparameterization with gumbel-softmax”. arXiv preprint arXiv:1611.01144 (2016).

[3] C. J. Maddison, A. Mnih, and Y. W. Teh. “The concrete distribution: A continuous relaxation of discrete random variables”.
arXiv preprint arXiv:1611.00712 (2016).

[4] R. Kueng and P. Jung. “Robust Nonnegative Sparse Recovery and the Nullspace Property of 0/1 Measurements”. IEEE
Transactions on Information Theory 64.2 (Feb. 2018), 689–703.

[5] P. Jung, R. Kueng, and D. G. Mixon. “Derandomizing Compressed Sensing With Combinatorial Design”. Frontiers in Applied
Mathematics and Statistics 5 (June 2019). eprint: 1812.08130.

[6] H. B. Petersen, B. Bah, and P. Jung. “Practical high-throughput, non-adaptive and noise-robust SARS-CoV-2 testing”. arXiv
preprint arXiv:2007.09171 (2020).

[7] F. Behrens, J. Sauder, and P. Jung. “Neurally Augmented ALISTA”. International Conference on Learning Representations (ICLR)
(2021).

[8] H. B. Petersen, B. Bah, and P. Jung. “Efficient Tuning-Free l1-Regression of Nonnegative Compressible Signals”. Frontiers in
Applied Mathematics and Statistics 7 (June 2021).

[9] B. Bah, H. B. Petersen, and P. Jung. “Compressed sensing-based SARS-CoV-2 pool testing”. Notices of the American
Mathematical Society 2 (2024).

1812.08130

	Problem Statement
	Gradient-based Learning of Discrete Measurement Matrices
	Algorithm Unfolding
	Application 1: Learning Masks for Single-Pixel Imaging
	Application 2: Learning Pooling Matrices for Group Testing
	References

