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...GIVEN THE EFFECT...FIND THE CAUSE!

Inverse problems: given observation y and partially known forward operator A:
find ze€X st. Alx)=~y

enforce structure for @ via priors/regularization/models...

® Sparsity, low-rankness, atomic sets - well-established theory

v

1/30



...GIVEN THE EFFECT...FIND THE CAUSE!

Inverse problems: given observation y and partially known forward operator A:
find ze€X st. Alx)=~y
enforce structure for @ via priors/regularization/models...

® Sparsity, low-rankness, atomic sets - well-established theory

® often too generic for real-world data

® algorithms Q are too slow and need handcrafted tuning for many real-world/time applications

v

1/30



...GIVEN THE EFFECT...FIND THE CAUSE!

Inverse problems: given observation y and partially known forward operator A:
find ze€X st. Alx)=~y
enforce structure for @ via priors/regularization/models...

® Sparsity, low-rankness, atomic sets - well-established theory

® often too generic for real-world data

® algorithms Q are too slow and need handcrafted tuning for many real-world/time applications

® optimize A under practical constraints is often difficult

v

1/30



...GIVEN THE EFFECT...FIND THE CAUSE!

Inverse problems: given observation y and partially known forward operator A:

find ze€X st. Alx)=~y
enforce structure for @ via priors/regularization/models...

® Sparsity, low-rankness, atomic sets - well-established theory

® often too generic for real-world data

® algorithms Q are too slow and need handcrafted tuning for many real-world/time applications

® optimize A under practical constraints is often difficult

“Learn to sense and to recover”

find (A,Q) st. Egoxloss(z, Q(A(x))) issmall”
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OUTLINE

@ Problem Statement

@ Cradient-based Learning of Discrete Measurement Matrices
® Application 1: Learning Masks for Single-Pixel Imaging

@ Application 2: Learning Pooling Matrices for Group Testing
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Gradient-Based Learning of Discrete Structured
Measurement Operators for Signal Recovery

Jonathan Sauder™, Martin Genzel™, and Peter Jung

Abstract—Countless signal processing applications include the
reconstruction of signals from few indirect linear measurements.
The design of effective measurement operators is typically con-
strained by the underlying hardware and physics, posing a
challenging and often even discrete optimizaﬁon task. While the
potential of gradient-based learning via the unmllmg of 1ter4tlve
recovery algorithms has been d rated, it has r
unclear how to leverage this technique when the set of admis-
sible measurement operators is structured and discrete. We
tackle this problem by bining unrolled optimization with
Gumbel reparametrizations, which enable the computation of

discrete subset—to improve the performance of downstream
tasks poses great computational challenges. While it is often
easy to create a suitable random mask, it is not obvious how to
optimize the measurement matrix in a way that is both efficient
and respects the feasibility constraints. Classical approaches
commonly use discrete optimization to find such sets, as no
gradients can be directly computed.

On the other hand, gradient-based optimization via back-
propagation through massive nonlinear computational graphs
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® Recover x € X C R™ from (noisy) linear measurements y = A(xz) = ®x + e € R™
® minimal acquisition time&storage m ~ DoF(X) < n = “sensing & compression”
® & liesin finite set of admissible matrices @ (determined by physics / detectors)

® x is recovered from y using parametrized recovery algorithm fg  : R™ — R"

x — fo.a(Px) can be understood as autoencoder

find good and admissible ® € & and algorithm parameters 0

Jtit B [“’SS("”G""(‘I’””) | ””)]

data-driven via “training”

prototypical playground is “compressed sensing” < recovering sparse « fromy = ®x + e
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COMPRESSED SE

classical sampling/scanning ”... if you sample densely enough, you can per-

fectly reconstruct the original analog data...”
© good, if signals “fill up” a subspace (linear structure)

® wasteful for compressible signals (non-linear structure)
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COMPRESSED SENSING

classical sampling/scanning ”... if you sample densely enough, you can per-

fectly reconstruct the original analog data...”
© good, if signals “fill up” a subspace (linear structure)

® wasteful for compressible signals (non-linear structure)

“...Can we not just directly measure the part that will not end up
being thrown away ?” [Donoho, 2006]

® Well-investigated, theoretical bounds, algorithms

pictogram from R. Baraniuk, “Compressive Sensing”, Eusipco09 )
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NTEES IN COMPRESSED SENSING, A QUICK TOUR

xf = argmin ||z]|; st ||[®z—y| <

T
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GUARANTEES IN COMPRESSED SENSING, A QUICK TOUR

xf = argmin ||z]|; st ||[®z—y| <

if sparse vectors are “well-separated” from nullspace of ®
(NSP <= RIP <« coherence):

T
[ — x| <

holds for all y = ®x + e with

® depends on (in this case the noise-level/SNR)

® Problematic, if noise depends on @ (Poisson/multiplicative noise, covariance matching...)
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GUARANTEES IN COMPRESSED SENSING, A QUICK TOUR

xf = argmin ||z]|; st ||[®z—y| <

if sparse vectors are “well-separated” from nullspace of ®

(NSP <= RIP <= coherence): x1
|l2* - || 5
holds for all y = ®x + e with
® depends on hyper-parameter € (in this case the noise-level/SNR)
® Problematic, if noise depends on @ (Poisson/multiplicative noise, covariance matching...)
® Non-negativity & “biased” measurements are helpful, example later
L]
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COMPRESSED SENSING: GOALS

task 1: find @ € R™*™ with minimal m for given sparsity s under practical constraints
g p y p
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COMPRESSED SENSING: GOALS

task 1: find ® € R™*™ with minimal m for given sparsity s under practical constraints

® deterministic constructions known for m = O(s?) (based on coherence)

e “sufficiently random” whp for m = O(s polylog(n)) (RIP/NSP etc.) [Candes & Tao, 2005]

® ...many works on other random models ...

® random binary matrices [Kueng & PJ, 2018], designs and orthogonal arrays [P, Kueng, Mixton , 2019]

= “structured derandomization”, find “concentrated measure” p on &
taslk 2: develop fast algorithms and hyper-parameter tuning
® most of algorithms are too complex and not suited for real-time applications

. « 3 N » N
in “machine learning” terminology:

IgignEm,%p[loss(fe,@(@w% )]
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GRADIENT-BASED LEARNING OF DISCRETE MEASUREMENT MATRICES
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LUDE MEASUREMENT MAP IN LEARNING

® |learning unstructured ® = use Vg [Adler et al 2016, Wu et al. 2019]
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LUDE MEASUREMENT MAP IN LEA

® |learning unstructured ® = use Vg [Adler et al 2016, Wu et al. 2019]

® here ® is discrete, i.e., optimize instead a discrete distribution p on ¢
min By gy [loss(fo,8(Px), )]
2

aligns with derandomization principle
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INCLUDE MEASUREMENT MAP IN LEARNING

® |learning unstructured ® = use Vg [Adler et al 2016, Wu et al. 2019]
® here ® is discrete, i.e., optimize instead a discrete distribution p on ¢
Iﬁi{)n Ey a~plloss(fo.a(Px), )]
aligns with derandomization principle

@ Gradient descent on p but estimate V,Eg,, f(®) via sampling

® perform sampling in a way that allows backprop - Gumbel reparametrization
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THE PRINCIPLE

® Consider computational graph with a random node v taking the values in [a] :== {1, ..., a}.

® inputs to node v are unnormalized log-probabilities ¢ = (1 ..., ¢,) € R®

Pl = i) = 2P0

—a————— = softmax(y);, i=1,...,a
Zj:l eXp(‘Pj)

® realization of v is then passed through a differentiable function f.

Estimate V _E, {f( 1‘)} by sampling
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® Consider computational graph with a random node v taking the values in [a] :== {1, ..., a}.

® inputs to node v are unnormalized log-probabilities ¢ = (1 ..., ¢,) € R®

Pl = i) = 2P0

—a————— =softmax(¢);, i=1,...,a
Zj:l eXp(‘Pj)

® realization of v is then passed through a differentiable function f.

Estimate V _E, {f( 1*)} by sampling N V=2
o efficiently sample from v by using [Gumbel 1954]
v = one_hot(arg max[y; + gi)
where g; = —log(—log(u;)) with uq, ..., ug ~iqg unif([0,1]) ye3
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THE PRINCIPLE: GUMBEL SOFTMAX

...so, we can sample v via
v = one_hot(arg max[y; + g;]) gi ~ G(0,1)
K2

® But backprop doesn’t work because of arg max.
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THE PRINCIPLE: GUMBEL SOFTMAX

...so, we can sample v via
v = one_hot(arg max[y; + g;]) gi ~ G(0,1)
K2

® But backprop doesn’t work because of arg max.

® Gumbel-softmax [Jang et al. 2016; Maddison et al. 2016]
replace arg max in backward pass with softmax with temperature 7:

exp((gi + ¢i)/T)
> -1 exp((g; + ¢;5)/T)

v = = softmax((¢ + g)/7):

® As T — 0, softmax approaches arg max
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CIPLE: GUMBEL TOP-K AND THE METHOD

® from reservoir sampling: Gumbel softmax extends naturally to Gumbel top-k! [Vieira 2014]

® learnable component for “selecting k out of a set”

The Method (for structured binary m x n-matrix)
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CIPLE: GUMBEL TOP-K AND THE METHOD

® from reservoir sampling: Gumbel softmax extends naturally to Gumbel top-k! [Vieira 2014]

® learnable component for “selecting k out of a set”

The Method (for structured binary m x n-matrix)

© let {I;};cp a partition of 7 := [m] x [n]

@ for each i € [I] use Gumbel top-k to select k; elements from I;.

® forward pass: gives a random m X n binary matrix ® via top-k; and . ..

@ backward pass: well-defined gradient prop. via softmax instead of hard top-k; [Bengio et.al, 2013]

@ construction can be freely used in conjunction with automatic differentiation

ok, now we also need a “trainable” recovery algorithm ...

v
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ALGORITHM UNFOLDING J

Classical
y

algorithm

training data
{(xa, ya) Yo

v
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ALGORITHM UNFOLDING

Computational graph of many iterative algorithms can be viewed as neural networks...

® consider for example:
min [y - ®a3 + Ag(a)

and use proximal (Landweber) iterations:

&tV = prox,, (8® + 7V (|ly - 220|3)),
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ALGORITHM UNFOLDING

Computational graph of many iterative algorithms can be viewed as neural networks...

® consider for example:
min [ly — @[3 + Ag(x)

and use proximal (Landweber) iterations:

&tV = prox,, (8® + 7V (|ly - 220|3)),

® g(x) = ||z|| = element-wise soft-thresholding, known as
Iterative Shrinkage and Thresholding Algorithm 0.5+ g(-) for soft thresholding (I1)
[Daubechies et al., 2004]

(lSTA) /J\"f/f\):]// (Zi:(/\Jr,:(I)?((I)J\,/\/‘r7y)> 05

L T
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ALGORITHM UNFOLDING: LEARNED ISTA AND A RECOVERY GUARANTEE

Unfolding iterations into network fg &, several proposals [Gregor&LeCun 2010, Liu 2019, Chen 2018,...]:

(LISTA-CP) 2+ =p 4 (m(k) — B®W” (<I>a:(k) — y)) {a® B®k)Y
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Unfolding iterations into network fg &, several proposals [Gregor&LeCun 2010, Liu 2019, Chen 2018,...]:

(LISTA-CP) 2D =p 4 (a:(k) — B®W” (@:c(k) — y)) {a® B®*)Y

(ALISTA) et =p (:c(k) — 4B (i’m(k’) - y)) {al®) 4y
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ALGORITHM UNFOLDING: LEARNED ISTA AND A RECOVERY GUARANTEE

Unfolding iterations into network fg &, several proposals [Gregor&LeCun 2010, Liu 2019, Chen 2018,...]:

(LISTA-CP) 2D =p 4 (:c(k) — B®W” ('I':c(k) — y)) {a(k),B(k)}
sy 265D e (5915 (300 ) (a9, )
® supervised training on X with E;x ¢ loss(fg & (®x + €), z), unsupervised is possible as well
® X = bounded s-sparse vectors and cross-coherence i := (B, ®)

Theorem: [Liu et al., 2019 ; Hauffen, PJ, Miicke 2022]
Forany ¢ € X withs < (u=' +1)/2, |le|l2 < eand a® > 1+ ¢ yields:

1z — ||z < s + (1 + k") [lell2

for ¢ = c({auy }¥,_,) < 1 and constants depend on X and {a/ }¥,_ . Jﬁ
[ |
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e adaptive parameters depend on ||z(*) — z||;

v
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ALGORITHM UNFOLDING: ADAPTIVE PARAMETERS

e adaptive parameters depend on ||z(*) — z||;
e use r*) = ||®x® — y||; and u®) = | B*(@x*) — )|,
® neurally augmented ALISTA (NA-ALISTA) [Behrens, Sauder, PJ 2020]:

$(k:+1) =Dy (r (k) 1)) (w(k> _ A‘(IJ/;)V (lw/.'y) |:B* (@w(k) — y)i|)

train LSTMs to represent o+, -) and (-, -)
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A HM UNFOLDING: BENCHMARK

Significantly reduces number of iterations required! Enabling real-time applications

—25 4+ —— ALISTA —— AGLISTA —— FISTA
—— ALISTA-AT —— NA-ALISTA — ISTA

730IIIIIIIIIIIIII
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Tterations (K) ﬂs
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A HM UNFOLDING: BENCHMARK

Significantly reduces number of iterations required! Enabling real-time applications

classical-algorithms

trajned algorithms

720_

—25 44 — ALISTA —— AGLISTA —— FISTA
—— ALISTA-AT —— NA-ALISTA — ISTA

730 T T T T

T T T T T
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APPLICATION 1: LEARNING MASKS FOR SINGLE-PIXEL IMAGING
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APPLICATION 1: LEARNING MASKS FOR SINGLE-PIXEL IMAGING

[~ Pixel

Projection/lens

Y
Camera lens

[adapted from [Bacca et al. 2019]]

® X =MNIST (n = 282 = 784)

® & is the set of binary matrices with k; = 32 ones per row i (“on”-pixels per mask)

® fo.& is NA-ALISTA with T" = 20 layers/iterations

o L(b2) = o — o3 v
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APPLICATION 1: LEARNING MASKS FOR SINGLE-PIXEL IMAGING

(a) Random Masks (b) Learned Masks

(c) Random @ (d) Learned ¢

V8| a|7

(e) Reconstructed (random P) (f) Reconstructed (learned ®) ..ﬁ

21/30



APPLICATION 1: LEARNING MASKS FOR SINGLE-PIXEL IMAGING

baseline: Iterative Hard-thresholding (IHT) z(*+1) = [, (:n("") — P* (@x(k) -y))

e =282 = 784 (X=MNIST) 0 IHT baselines
.\
® random I C Z = [m] X [n] — _54 LW a—
jaa)
<
® swap arandom 1 < 0 = 10 4
® accept if loss L decreases =
Z, —15 4
® Greedy: not accept if L increase z
] = —20 4
® SimAn: accept if Random (IHT) | —— Random (NA-ALISTA) —— SimAn (IHT)
exp[(L — L) /7] <u~ U(0,1) —25 4 Ours (11 —— Ours (NA-ALISTA) — Greedy (IHT)
. .. T T T T T T T T T
and 7 — 0 with training 103050 100 150 200 250 300 400 500

Measurements (m)

v
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APPLICATION 1: LEARNING MASKS FOR SINGLE-PIXEL IMAGING

baseline: Iterative Hard-thresholding (IHT) z(*+1) = [, (w(k) — P* (@x(k) -y))

e =282 = 784 (X=MNIST) 0 IHT baselines
® random I C Z = [m] X [n] —~ _54
jaa)
<
® swap arandom 1 < 0 g 104 \
® accept if loss L decreases =
Z, —15 4
® Greedy: not accept if L increase %
& —20

® SimAn: accept if —— Random (IHT) _ —— Random (NA-ALISTA) —— SimAn (IHT)
exp[(L — L) /7] <u~U(0,1) =25 7 — Ours (IHT) —— Ours (NA-ALISTA) —— Greedy (IHT)
T T T T T T T T T
103050 100 150 200 250 300 400 500
Measurements (m)

and 7 — 0 with training

® Improvements for IHT while trained with NA-ALISTA =- due to ¢ ﬂs
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APPLICATION 1: LEARNING MASKS FOR SINGLE-PIXEL IMAGING

SUPER-PIXEL MAsks FOR SPI

distance ~1 cm distance 17.5 cm

Dichroic Optical Switch Scene

Visible Light Mirror I | -

B3

VIS-Mask THz Mask single-pixel
collecting optics detector

THz Sour(e ‘ H |

Terahertz SPI [Augustin, PJ, Frohmann, Hiibers, 2019] - image: [Reiche, P) 2020]

® wavelength is in order of pixel size, diffraction degrades image quality = use super-pixels! 15
|
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APPLICATION 1: LEARNING MASKS FOR SINGLE-PIXEL IMAGING

SUPER-PIXEL MAsks FOR SPI

distance ~1 cm distance 17.5 cm

[ ‘ | ‘ (b) Learned Masks

Dichroic Optical Switch Scene

Visible Light Mirror I || -

VIS-Mask THz Mask collecting optics

single-pixel

detector (d) Learned ®

THz Source ‘ H ‘

Terahertz SPI [Augustin, PJ, Frohmann, Hiibers, 2019] - image: [Reiche, PJ 2020]

® wavelength is in order of pixel size, diffraction degrades image quality = use super-pixels! 15
|

® sample binary masks with d ones forming super-pixels of size A
23/30



APPLICATION 2: LEARNING POOLING MATRICES FOR GROUP TESTING
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® Non-adaptive viral testing of n individuals with minimal amount of m qPCR-tests

® s < nindividuals are positive, i.e., vector of viral loads © = (z1,...,z,) is sparse

thus, viral-load recovery is a compressed sensing problem [Bah, Petersen & PJ, 2024]
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APPLICATION 2: LEARNING PooOLING MATRICES FOR GROUP TESTING

® Non-adaptive viral testing of n individuals with minimal amount of m qPCR-tests
® s < nindividuals are positive, i.e., vector of viral loads © = (z1,...,z,) is sparse

thus, viral-load recovery is a compressed sensing problem [Bah, Petersen & PJ, 2024]

adaptive testing, n = 24, m = 10

RUTTR IR T TOR TR IT

Pool 1 Pool 2 Pool 3 Pool 4

/
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APPLICATION 2: LEARNING PooOLING MATRICES FOR GROUP TESTING

® Non-adaptive viral testing of n individuals with minimal amount of m qPCR-tests
® s < nindividuals are positive, i.e., vector of viral loads © = (z1,...,z,) is sparse

thus, viral-load recovery is a compressed sensing problem [Bah, Petersen & PJ, 2024]
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® binary pooling matrix ® € {0,1}"*™ has k non-zeros per row (pool size)

® pooled measurements of viral loads are y = ®x + e with sparse x > 0 15
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APPLICATION 2: LEARNING PooOLING MATRICES FOR GROUP TESTING

® gPCR modeling is complicated and involves multiplicative noise, yielding heavy-tailed models
® non-negative least absolute deviations (NNLAD) is a compressed sensing algorithm

o — aremin |Bx —

@ = argmin @2 — y||;

if 3t such that ®T¢ > 0 and ||2 — z||; < O(||e||1) if ® has NSP [Petersen, Bah, PJ, 2021]

® /;-regularization is superflous = no hyperparameter tuning !
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® gPCR modeling is complicated and involves multiplicative noise, yielding heavy-tailed models
® non-negative least absolute deviations (NNLAD) is a compressed sensing algorithm

o — aremin |Bx —

@ = argmin @2 — y||;

if 3t such that ®T¢ > 0 and ||2 — z||; < O(||e||1) if ® has NSP [Petersen, Bah, PJ, 2021]

® /;-regularization is superflous = no hyperparameter tuning !

Example:  disjunct matrix
® ¢ {0,1}248x9%L ith
k= 31 and has NSP for

s < 7 (LDPC/Array code)
[Lofti&Vidyasagar, 2020] 1
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APPLICATION 2: LEARNING PoOLING MATRICES FOR GRO

Learning pooling matrices (k ones per row) and tuning viral load recovery

® projected subgradient descent for NNLAD can
be unfolded

® slow convergence (not relevant for testing)

® supervised training with 200 iterations/layers

inference with 1000 iterations

v

28/30



APPLICATION 2: LEARNING PooOLING MATRICES FOR GROUP TESTING

Learning pooling matrices (k ones per row) and tuning viral load recovery

® projected subgradient descent for NNLAD can
be unfolded

® slow convergence (not relevant for testing)

® supervised training with 200 iterations/layers
® inference with 1000 iterations

o & c {0,1)248%961 f = 3]

® X = {s=80and z°"*" ~ Beta iid}

o NMAE= lz=Zl

[EIIR

v

28/30



Learning pooling matrices (k ones per row) and tuning viral load recovery

® projected subgradient descent for NNLAD can
be unfolded

® slow convergence (not relevant for testing)

® supervised training with 200 iterations/layers
® inference with 1000 iterations
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® X = {s=80and z°"*" ~ Beta iid}
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CONCLUSION

® optimal measurement matrices can not be constructed analytically, only random method

® classical algorithms well-understood but too slow and generic for realtime applications
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algorithm unfolding allows backprop and data-driven optimization of ®

® overcome handcrafted hyper-parameter tuning

® learn better and constrained random models for ® = derandomization

“learn to sense and to recover”

v

29/30



CONCLUSION

® optimal measurement matrices can not be constructed analytically, only random method

® classical algorithms well-understood but too slow and generic for realtime applications
algorithm unfolding allows backprop and data-driven optimization of ®

® overcome handcrafted hyper-parameter tuning

® learn better and constrained random models for ® = derandomization
“learn to sense and to recover”
® examples in single-pixel/detector imaging and pooling

Thank you!
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