circuit_polynomial
index
/home/hennich/Uni/SONC_polynomial_optimization/python/circuit_polynomial.py

Class for Circuit Polynomials, intended for SONC.

 
Modules
       
numpy
polynomial_base
sympy

 
Classes
       
polynomial_base.Polynomial(builtins.object)
CircuitPolynomial

 
class CircuitPolynomial(polynomial_base.Polynomial)
    Class for circuit polynomials.
 
Circuit polynomials in n variables are polynomials such that the Newton 
polytope is a simplex, formed by monomial squares, and one exponent is a 
non-square and lies in the relative interior.
 
 
Method resolution order:
CircuitPolynomial
polynomial_base.Polynomial
builtins.object

Methods defined here:
__init__(self, *args, **kwargs)
Docstring imported from polynomial.
circuit_number(self)
Compute the circuit number, stored in self.theta.
minimiser(self)
Computer the minimiser of the polynomial.
non_negative(self)
Check, whether polynomial is non-negative.

Methods inherited from polynomial_base.Polynomial:
__add__(self, other)
Return the sum of this polynomial with another one.
__call__(self, x, dtype='float')
Evaluate the polynomial at point x.
__dict__ = mappingproxy({'__module__': 'circuit_polynomial'...rcuitPolynomial.non_negative at 0x7fb16ecdab70>})
__eq__(self, other)
Check equality of polynomials.
__neg__(self)
Return the negation of this polynomial.
__sizeof__(self)
Return bit-size of the instance.
__str__(self)
Return the polynomial as string.
__sub__(self, other)
Return the difference between this polynomial and another one.
clean(self)
Bring polynomial into clean state.
copy(self)
Return a copy of itself.
derive(self, index)
Compute the derivative with respect to the given index.
 
Call:
        res = p.derive(index)
Input:
        index [integer] - index of variable, by which we derive p, starting with zero
Output:
        res - Polynomial, derivative of p by x_index
pip(self)
Return the polynomial in PIP-format.
prime(self, variables=None)
Compute full derivative of the polynomial.
 
Call:
        pprime = p.prime([variables])
Input:
        variables [optional, default: all occurring] - number of variables, by which we derive
Output:
        pprime - Polynomial, derivative of p
scaleround(self, factor)
Scale polynomial and round coefficients to integer.
 
Call:
        p.scaleround(factor)
Input:
        factor [number] - scale all coefficients by 'factor', then round to integer
 
Note: This function changes the coefficients in place and sets the 'dirty' flag to 'True'.
tex(self)
Return the polynomial as string for LaTeX.
to_symbolic(self)
Return the polynomial as symbolic expression in sympy.

Data descriptors inherited from polynomial_base.Polynomial:
__weakref__
list of weak references to the object (if defined)

Data and other attributes inherited from polynomial_base.Polynomial:
__hash__ = None

 
Data
        sympy_flag = True
x = x